xref: /openbmc/linux/mm/readahead.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 
26 #include "internal.h"
27 
28 /*
29  * Initialise a struct file's readahead state.  Assumes that the caller has
30  * memset *ra to zero.
31  */
32 void
33 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
34 {
35 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
36 	ra->prev_pos = -1;
37 }
38 EXPORT_SYMBOL_GPL(file_ra_state_init);
39 
40 /*
41  * see if a page needs releasing upon read_cache_pages() failure
42  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
43  *   before calling, such as the NFS fs marking pages that are cached locally
44  *   on disk, thus we need to give the fs a chance to clean up in the event of
45  *   an error
46  */
47 static void read_cache_pages_invalidate_page(struct address_space *mapping,
48 					     struct page *page)
49 {
50 	if (page_has_private(page)) {
51 		if (!trylock_page(page))
52 			BUG();
53 		page->mapping = mapping;
54 		do_invalidatepage(page, 0, PAGE_SIZE);
55 		page->mapping = NULL;
56 		unlock_page(page);
57 	}
58 	put_page(page);
59 }
60 
61 /*
62  * release a list of pages, invalidating them first if need be
63  */
64 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
65 					      struct list_head *pages)
66 {
67 	struct page *victim;
68 
69 	while (!list_empty(pages)) {
70 		victim = lru_to_page(pages);
71 		list_del(&victim->lru);
72 		read_cache_pages_invalidate_page(mapping, victim);
73 	}
74 }
75 
76 /**
77  * read_cache_pages - populate an address space with some pages & start reads against them
78  * @mapping: the address_space
79  * @pages: The address of a list_head which contains the target pages.  These
80  *   pages have their ->index populated and are otherwise uninitialised.
81  * @filler: callback routine for filling a single page.
82  * @data: private data for the callback routine.
83  *
84  * Hides the details of the LRU cache etc from the filesystems.
85  *
86  * Returns: %0 on success, error return by @filler otherwise
87  */
88 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
89 			int (*filler)(void *, struct page *), void *data)
90 {
91 	struct page *page;
92 	int ret = 0;
93 
94 	while (!list_empty(pages)) {
95 		page = lru_to_page(pages);
96 		list_del(&page->lru);
97 		if (add_to_page_cache_lru(page, mapping, page->index,
98 				readahead_gfp_mask(mapping))) {
99 			read_cache_pages_invalidate_page(mapping, page);
100 			continue;
101 		}
102 		put_page(page);
103 
104 		ret = filler(data, page);
105 		if (unlikely(ret)) {
106 			read_cache_pages_invalidate_pages(mapping, pages);
107 			break;
108 		}
109 		task_io_account_read(PAGE_SIZE);
110 	}
111 	return ret;
112 }
113 
114 EXPORT_SYMBOL(read_cache_pages);
115 
116 static int read_pages(struct address_space *mapping, struct file *filp,
117 		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
118 {
119 	struct blk_plug plug;
120 	unsigned page_idx;
121 	int ret;
122 
123 	blk_start_plug(&plug);
124 
125 	if (mapping->a_ops->readpages) {
126 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
127 		/* Clean up the remaining pages */
128 		put_pages_list(pages);
129 		goto out;
130 	}
131 
132 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
133 		struct page *page = lru_to_page(pages);
134 		list_del(&page->lru);
135 		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
136 			mapping->a_ops->readpage(filp, page);
137 		put_page(page);
138 	}
139 	ret = 0;
140 
141 out:
142 	blk_finish_plug(&plug);
143 
144 	return ret;
145 }
146 
147 /*
148  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
149  * the pages first, then submits them for I/O. This avoids the very bad
150  * behaviour which would occur if page allocations are causing VM writeback.
151  * We really don't want to intermingle reads and writes like that.
152  *
153  * Returns the number of pages requested, or the maximum amount of I/O allowed.
154  */
155 unsigned int __do_page_cache_readahead(struct address_space *mapping,
156 		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
157 		unsigned long lookahead_size)
158 {
159 	struct inode *inode = mapping->host;
160 	struct page *page;
161 	unsigned long end_index;	/* The last page we want to read */
162 	LIST_HEAD(page_pool);
163 	int page_idx;
164 	unsigned int nr_pages = 0;
165 	loff_t isize = i_size_read(inode);
166 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
167 
168 	if (isize == 0)
169 		goto out;
170 
171 	end_index = ((isize - 1) >> PAGE_SHIFT);
172 
173 	/*
174 	 * Preallocate as many pages as we will need.
175 	 */
176 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
177 		pgoff_t page_offset = offset + page_idx;
178 
179 		if (page_offset > end_index)
180 			break;
181 
182 		page = xa_load(&mapping->i_pages, page_offset);
183 		if (page && !xa_is_value(page)) {
184 			/*
185 			 * Page already present?  Kick off the current batch of
186 			 * contiguous pages before continuing with the next
187 			 * batch.
188 			 */
189 			if (nr_pages)
190 				read_pages(mapping, filp, &page_pool, nr_pages,
191 						gfp_mask);
192 			nr_pages = 0;
193 			continue;
194 		}
195 
196 		page = __page_cache_alloc(gfp_mask);
197 		if (!page)
198 			break;
199 		page->index = page_offset;
200 		list_add(&page->lru, &page_pool);
201 		if (page_idx == nr_to_read - lookahead_size)
202 			SetPageReadahead(page);
203 		nr_pages++;
204 	}
205 
206 	/*
207 	 * Now start the IO.  We ignore I/O errors - if the page is not
208 	 * uptodate then the caller will launch readpage again, and
209 	 * will then handle the error.
210 	 */
211 	if (nr_pages)
212 		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
213 	BUG_ON(!list_empty(&page_pool));
214 out:
215 	return nr_pages;
216 }
217 
218 /*
219  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
220  * memory at once.
221  */
222 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
223 			       pgoff_t offset, unsigned long nr_to_read)
224 {
225 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
226 	struct file_ra_state *ra = &filp->f_ra;
227 	unsigned long max_pages;
228 
229 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
230 		return -EINVAL;
231 
232 	/*
233 	 * If the request exceeds the readahead window, allow the read to
234 	 * be up to the optimal hardware IO size
235 	 */
236 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
237 	nr_to_read = min(nr_to_read, max_pages);
238 	while (nr_to_read) {
239 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
240 
241 		if (this_chunk > nr_to_read)
242 			this_chunk = nr_to_read;
243 		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
244 
245 		offset += this_chunk;
246 		nr_to_read -= this_chunk;
247 	}
248 	return 0;
249 }
250 
251 /*
252  * Set the initial window size, round to next power of 2 and square
253  * for small size, x 4 for medium, and x 2 for large
254  * for 128k (32 page) max ra
255  * 1-8 page = 32k initial, > 8 page = 128k initial
256  */
257 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
258 {
259 	unsigned long newsize = roundup_pow_of_two(size);
260 
261 	if (newsize <= max / 32)
262 		newsize = newsize * 4;
263 	else if (newsize <= max / 4)
264 		newsize = newsize * 2;
265 	else
266 		newsize = max;
267 
268 	return newsize;
269 }
270 
271 /*
272  *  Get the previous window size, ramp it up, and
273  *  return it as the new window size.
274  */
275 static unsigned long get_next_ra_size(struct file_ra_state *ra,
276 				      unsigned long max)
277 {
278 	unsigned long cur = ra->size;
279 
280 	if (cur < max / 16)
281 		return 4 * cur;
282 	if (cur <= max / 2)
283 		return 2 * cur;
284 	return max;
285 }
286 
287 /*
288  * On-demand readahead design.
289  *
290  * The fields in struct file_ra_state represent the most-recently-executed
291  * readahead attempt:
292  *
293  *                        |<----- async_size ---------|
294  *     |------------------- size -------------------->|
295  *     |==================#===========================|
296  *     ^start             ^page marked with PG_readahead
297  *
298  * To overlap application thinking time and disk I/O time, we do
299  * `readahead pipelining': Do not wait until the application consumed all
300  * readahead pages and stalled on the missing page at readahead_index;
301  * Instead, submit an asynchronous readahead I/O as soon as there are
302  * only async_size pages left in the readahead window. Normally async_size
303  * will be equal to size, for maximum pipelining.
304  *
305  * In interleaved sequential reads, concurrent streams on the same fd can
306  * be invalidating each other's readahead state. So we flag the new readahead
307  * page at (start+size-async_size) with PG_readahead, and use it as readahead
308  * indicator. The flag won't be set on already cached pages, to avoid the
309  * readahead-for-nothing fuss, saving pointless page cache lookups.
310  *
311  * prev_pos tracks the last visited byte in the _previous_ read request.
312  * It should be maintained by the caller, and will be used for detecting
313  * small random reads. Note that the readahead algorithm checks loosely
314  * for sequential patterns. Hence interleaved reads might be served as
315  * sequential ones.
316  *
317  * There is a special-case: if the first page which the application tries to
318  * read happens to be the first page of the file, it is assumed that a linear
319  * read is about to happen and the window is immediately set to the initial size
320  * based on I/O request size and the max_readahead.
321  *
322  * The code ramps up the readahead size aggressively at first, but slow down as
323  * it approaches max_readhead.
324  */
325 
326 /*
327  * Count contiguously cached pages from @offset-1 to @offset-@max,
328  * this count is a conservative estimation of
329  * 	- length of the sequential read sequence, or
330  * 	- thrashing threshold in memory tight systems
331  */
332 static pgoff_t count_history_pages(struct address_space *mapping,
333 				   pgoff_t offset, unsigned long max)
334 {
335 	pgoff_t head;
336 
337 	rcu_read_lock();
338 	head = page_cache_prev_miss(mapping, offset - 1, max);
339 	rcu_read_unlock();
340 
341 	return offset - 1 - head;
342 }
343 
344 /*
345  * page cache context based read-ahead
346  */
347 static int try_context_readahead(struct address_space *mapping,
348 				 struct file_ra_state *ra,
349 				 pgoff_t offset,
350 				 unsigned long req_size,
351 				 unsigned long max)
352 {
353 	pgoff_t size;
354 
355 	size = count_history_pages(mapping, offset, max);
356 
357 	/*
358 	 * not enough history pages:
359 	 * it could be a random read
360 	 */
361 	if (size <= req_size)
362 		return 0;
363 
364 	/*
365 	 * starts from beginning of file:
366 	 * it is a strong indication of long-run stream (or whole-file-read)
367 	 */
368 	if (size >= offset)
369 		size *= 2;
370 
371 	ra->start = offset;
372 	ra->size = min(size + req_size, max);
373 	ra->async_size = 1;
374 
375 	return 1;
376 }
377 
378 /*
379  * A minimal readahead algorithm for trivial sequential/random reads.
380  */
381 static unsigned long
382 ondemand_readahead(struct address_space *mapping,
383 		   struct file_ra_state *ra, struct file *filp,
384 		   bool hit_readahead_marker, pgoff_t offset,
385 		   unsigned long req_size)
386 {
387 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
388 	unsigned long max_pages = ra->ra_pages;
389 	unsigned long add_pages;
390 	pgoff_t prev_offset;
391 
392 	/*
393 	 * If the request exceeds the readahead window, allow the read to
394 	 * be up to the optimal hardware IO size
395 	 */
396 	if (req_size > max_pages && bdi->io_pages > max_pages)
397 		max_pages = min(req_size, bdi->io_pages);
398 
399 	/*
400 	 * start of file
401 	 */
402 	if (!offset)
403 		goto initial_readahead;
404 
405 	/*
406 	 * It's the expected callback offset, assume sequential access.
407 	 * Ramp up sizes, and push forward the readahead window.
408 	 */
409 	if ((offset == (ra->start + ra->size - ra->async_size) ||
410 	     offset == (ra->start + ra->size))) {
411 		ra->start += ra->size;
412 		ra->size = get_next_ra_size(ra, max_pages);
413 		ra->async_size = ra->size;
414 		goto readit;
415 	}
416 
417 	/*
418 	 * Hit a marked page without valid readahead state.
419 	 * E.g. interleaved reads.
420 	 * Query the pagecache for async_size, which normally equals to
421 	 * readahead size. Ramp it up and use it as the new readahead size.
422 	 */
423 	if (hit_readahead_marker) {
424 		pgoff_t start;
425 
426 		rcu_read_lock();
427 		start = page_cache_next_miss(mapping, offset + 1, max_pages);
428 		rcu_read_unlock();
429 
430 		if (!start || start - offset > max_pages)
431 			return 0;
432 
433 		ra->start = start;
434 		ra->size = start - offset;	/* old async_size */
435 		ra->size += req_size;
436 		ra->size = get_next_ra_size(ra, max_pages);
437 		ra->async_size = ra->size;
438 		goto readit;
439 	}
440 
441 	/*
442 	 * oversize read
443 	 */
444 	if (req_size > max_pages)
445 		goto initial_readahead;
446 
447 	/*
448 	 * sequential cache miss
449 	 * trivial case: (offset - prev_offset) == 1
450 	 * unaligned reads: (offset - prev_offset) == 0
451 	 */
452 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
453 	if (offset - prev_offset <= 1UL)
454 		goto initial_readahead;
455 
456 	/*
457 	 * Query the page cache and look for the traces(cached history pages)
458 	 * that a sequential stream would leave behind.
459 	 */
460 	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
461 		goto readit;
462 
463 	/*
464 	 * standalone, small random read
465 	 * Read as is, and do not pollute the readahead state.
466 	 */
467 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
468 
469 initial_readahead:
470 	ra->start = offset;
471 	ra->size = get_init_ra_size(req_size, max_pages);
472 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
473 
474 readit:
475 	/*
476 	 * Will this read hit the readahead marker made by itself?
477 	 * If so, trigger the readahead marker hit now, and merge
478 	 * the resulted next readahead window into the current one.
479 	 * Take care of maximum IO pages as above.
480 	 */
481 	if (offset == ra->start && ra->size == ra->async_size) {
482 		add_pages = get_next_ra_size(ra, max_pages);
483 		if (ra->size + add_pages <= max_pages) {
484 			ra->async_size = add_pages;
485 			ra->size += add_pages;
486 		} else {
487 			ra->size = max_pages;
488 			ra->async_size = max_pages >> 1;
489 		}
490 	}
491 
492 	return ra_submit(ra, mapping, filp);
493 }
494 
495 /**
496  * page_cache_sync_readahead - generic file readahead
497  * @mapping: address_space which holds the pagecache and I/O vectors
498  * @ra: file_ra_state which holds the readahead state
499  * @filp: passed on to ->readpage() and ->readpages()
500  * @offset: start offset into @mapping, in pagecache page-sized units
501  * @req_size: hint: total size of the read which the caller is performing in
502  *            pagecache pages
503  *
504  * page_cache_sync_readahead() should be called when a cache miss happened:
505  * it will submit the read.  The readahead logic may decide to piggyback more
506  * pages onto the read request if access patterns suggest it will improve
507  * performance.
508  */
509 void page_cache_sync_readahead(struct address_space *mapping,
510 			       struct file_ra_state *ra, struct file *filp,
511 			       pgoff_t offset, unsigned long req_size)
512 {
513 	/* no read-ahead */
514 	if (!ra->ra_pages)
515 		return;
516 
517 	if (blk_cgroup_congested())
518 		return;
519 
520 	/* be dumb */
521 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
522 		force_page_cache_readahead(mapping, filp, offset, req_size);
523 		return;
524 	}
525 
526 	/* do read-ahead */
527 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
528 }
529 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
530 
531 /**
532  * page_cache_async_readahead - file readahead for marked pages
533  * @mapping: address_space which holds the pagecache and I/O vectors
534  * @ra: file_ra_state which holds the readahead state
535  * @filp: passed on to ->readpage() and ->readpages()
536  * @page: the page at @offset which has the PG_readahead flag set
537  * @offset: start offset into @mapping, in pagecache page-sized units
538  * @req_size: hint: total size of the read which the caller is performing in
539  *            pagecache pages
540  *
541  * page_cache_async_readahead() should be called when a page is used which
542  * has the PG_readahead flag; this is a marker to suggest that the application
543  * has used up enough of the readahead window that we should start pulling in
544  * more pages.
545  */
546 void
547 page_cache_async_readahead(struct address_space *mapping,
548 			   struct file_ra_state *ra, struct file *filp,
549 			   struct page *page, pgoff_t offset,
550 			   unsigned long req_size)
551 {
552 	/* no read-ahead */
553 	if (!ra->ra_pages)
554 		return;
555 
556 	/*
557 	 * Same bit is used for PG_readahead and PG_reclaim.
558 	 */
559 	if (PageWriteback(page))
560 		return;
561 
562 	ClearPageReadahead(page);
563 
564 	/*
565 	 * Defer asynchronous read-ahead on IO congestion.
566 	 */
567 	if (inode_read_congested(mapping->host))
568 		return;
569 
570 	if (blk_cgroup_congested())
571 		return;
572 
573 	/* do read-ahead */
574 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
575 }
576 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
577 
578 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
579 {
580 	ssize_t ret;
581 	struct fd f;
582 
583 	ret = -EBADF;
584 	f = fdget(fd);
585 	if (!f.file || !(f.file->f_mode & FMODE_READ))
586 		goto out;
587 
588 	/*
589 	 * The readahead() syscall is intended to run only on files
590 	 * that can execute readahead. If readahead is not possible
591 	 * on this file, then we must return -EINVAL.
592 	 */
593 	ret = -EINVAL;
594 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
595 	    !S_ISREG(file_inode(f.file)->i_mode))
596 		goto out;
597 
598 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
599 out:
600 	fdput(f);
601 	return ret;
602 }
603 
604 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
605 {
606 	return ksys_readahead(fd, offset, count);
607 }
608