1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/dax.h> 12 #include <linux/gfp.h> 13 #include <linux/export.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 #include <linux/syscalls.h> 20 #include <linux/file.h> 21 #include <linux/mm_inline.h> 22 23 #include "internal.h" 24 25 /* 26 * Initialise a struct file's readahead state. Assumes that the caller has 27 * memset *ra to zero. 28 */ 29 void 30 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 31 { 32 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 33 ra->prev_pos = -1; 34 } 35 EXPORT_SYMBOL_GPL(file_ra_state_init); 36 37 /* 38 * see if a page needs releasing upon read_cache_pages() failure 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 40 * before calling, such as the NFS fs marking pages that are cached locally 41 * on disk, thus we need to give the fs a chance to clean up in the event of 42 * an error 43 */ 44 static void read_cache_pages_invalidate_page(struct address_space *mapping, 45 struct page *page) 46 { 47 if (page_has_private(page)) { 48 if (!trylock_page(page)) 49 BUG(); 50 page->mapping = mapping; 51 do_invalidatepage(page, 0, PAGE_SIZE); 52 page->mapping = NULL; 53 unlock_page(page); 54 } 55 put_page(page); 56 } 57 58 /* 59 * release a list of pages, invalidating them first if need be 60 */ 61 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 62 struct list_head *pages) 63 { 64 struct page *victim; 65 66 while (!list_empty(pages)) { 67 victim = lru_to_page(pages); 68 list_del(&victim->lru); 69 read_cache_pages_invalidate_page(mapping, victim); 70 } 71 } 72 73 /** 74 * read_cache_pages - populate an address space with some pages & start reads against them 75 * @mapping: the address_space 76 * @pages: The address of a list_head which contains the target pages. These 77 * pages have their ->index populated and are otherwise uninitialised. 78 * @filler: callback routine for filling a single page. 79 * @data: private data for the callback routine. 80 * 81 * Hides the details of the LRU cache etc from the filesystems. 82 */ 83 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 84 int (*filler)(void *, struct page *), void *data) 85 { 86 struct page *page; 87 int ret = 0; 88 89 while (!list_empty(pages)) { 90 page = lru_to_page(pages); 91 list_del(&page->lru); 92 if (add_to_page_cache_lru(page, mapping, page->index, 93 readahead_gfp_mask(mapping))) { 94 read_cache_pages_invalidate_page(mapping, page); 95 continue; 96 } 97 put_page(page); 98 99 ret = filler(data, page); 100 if (unlikely(ret)) { 101 read_cache_pages_invalidate_pages(mapping, pages); 102 break; 103 } 104 task_io_account_read(PAGE_SIZE); 105 } 106 return ret; 107 } 108 109 EXPORT_SYMBOL(read_cache_pages); 110 111 static int read_pages(struct address_space *mapping, struct file *filp, 112 struct list_head *pages, unsigned int nr_pages, gfp_t gfp) 113 { 114 struct blk_plug plug; 115 unsigned page_idx; 116 int ret; 117 118 blk_start_plug(&plug); 119 120 if (mapping->a_ops->readpages) { 121 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 122 /* Clean up the remaining pages */ 123 put_pages_list(pages); 124 goto out; 125 } 126 127 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 128 struct page *page = lru_to_page(pages); 129 list_del(&page->lru); 130 if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) 131 mapping->a_ops->readpage(filp, page); 132 put_page(page); 133 } 134 ret = 0; 135 136 out: 137 blk_finish_plug(&plug); 138 139 return ret; 140 } 141 142 /* 143 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all 144 * the pages first, then submits them all for I/O. This avoids the very bad 145 * behaviour which would occur if page allocations are causing VM writeback. 146 * We really don't want to intermingle reads and writes like that. 147 * 148 * Returns the number of pages requested, or the maximum amount of I/O allowed. 149 */ 150 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp, 151 pgoff_t offset, unsigned long nr_to_read, 152 unsigned long lookahead_size) 153 { 154 struct inode *inode = mapping->host; 155 struct page *page; 156 unsigned long end_index; /* The last page we want to read */ 157 LIST_HEAD(page_pool); 158 int page_idx; 159 int ret = 0; 160 loff_t isize = i_size_read(inode); 161 gfp_t gfp_mask = readahead_gfp_mask(mapping); 162 163 if (isize == 0) 164 goto out; 165 166 end_index = ((isize - 1) >> PAGE_SHIFT); 167 168 /* 169 * Preallocate as many pages as we will need. 170 */ 171 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 172 pgoff_t page_offset = offset + page_idx; 173 174 if (page_offset > end_index) 175 break; 176 177 rcu_read_lock(); 178 page = radix_tree_lookup(&mapping->i_pages, page_offset); 179 rcu_read_unlock(); 180 if (page && !radix_tree_exceptional_entry(page)) 181 continue; 182 183 page = __page_cache_alloc(gfp_mask); 184 if (!page) 185 break; 186 page->index = page_offset; 187 list_add(&page->lru, &page_pool); 188 if (page_idx == nr_to_read - lookahead_size) 189 SetPageReadahead(page); 190 ret++; 191 } 192 193 /* 194 * Now start the IO. We ignore I/O errors - if the page is not 195 * uptodate then the caller will launch readpage again, and 196 * will then handle the error. 197 */ 198 if (ret) 199 read_pages(mapping, filp, &page_pool, ret, gfp_mask); 200 BUG_ON(!list_empty(&page_pool)); 201 out: 202 return ret; 203 } 204 205 /* 206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 207 * memory at once. 208 */ 209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 210 pgoff_t offset, unsigned long nr_to_read) 211 { 212 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 213 struct file_ra_state *ra = &filp->f_ra; 214 unsigned long max_pages; 215 216 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 217 return -EINVAL; 218 219 /* 220 * If the request exceeds the readahead window, allow the read to 221 * be up to the optimal hardware IO size 222 */ 223 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 224 nr_to_read = min(nr_to_read, max_pages); 225 while (nr_to_read) { 226 int err; 227 228 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 229 230 if (this_chunk > nr_to_read) 231 this_chunk = nr_to_read; 232 err = __do_page_cache_readahead(mapping, filp, 233 offset, this_chunk, 0); 234 if (err < 0) 235 return err; 236 237 offset += this_chunk; 238 nr_to_read -= this_chunk; 239 } 240 return 0; 241 } 242 243 /* 244 * Set the initial window size, round to next power of 2 and square 245 * for small size, x 4 for medium, and x 2 for large 246 * for 128k (32 page) max ra 247 * 1-8 page = 32k initial, > 8 page = 128k initial 248 */ 249 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 250 { 251 unsigned long newsize = roundup_pow_of_two(size); 252 253 if (newsize <= max / 32) 254 newsize = newsize * 4; 255 else if (newsize <= max / 4) 256 newsize = newsize * 2; 257 else 258 newsize = max; 259 260 return newsize; 261 } 262 263 /* 264 * Get the previous window size, ramp it up, and 265 * return it as the new window size. 266 */ 267 static unsigned long get_next_ra_size(struct file_ra_state *ra, 268 unsigned long max) 269 { 270 unsigned long cur = ra->size; 271 unsigned long newsize; 272 273 if (cur < max / 16) 274 newsize = 4 * cur; 275 else 276 newsize = 2 * cur; 277 278 return min(newsize, max); 279 } 280 281 /* 282 * On-demand readahead design. 283 * 284 * The fields in struct file_ra_state represent the most-recently-executed 285 * readahead attempt: 286 * 287 * |<----- async_size ---------| 288 * |------------------- size -------------------->| 289 * |==================#===========================| 290 * ^start ^page marked with PG_readahead 291 * 292 * To overlap application thinking time and disk I/O time, we do 293 * `readahead pipelining': Do not wait until the application consumed all 294 * readahead pages and stalled on the missing page at readahead_index; 295 * Instead, submit an asynchronous readahead I/O as soon as there are 296 * only async_size pages left in the readahead window. Normally async_size 297 * will be equal to size, for maximum pipelining. 298 * 299 * In interleaved sequential reads, concurrent streams on the same fd can 300 * be invalidating each other's readahead state. So we flag the new readahead 301 * page at (start+size-async_size) with PG_readahead, and use it as readahead 302 * indicator. The flag won't be set on already cached pages, to avoid the 303 * readahead-for-nothing fuss, saving pointless page cache lookups. 304 * 305 * prev_pos tracks the last visited byte in the _previous_ read request. 306 * It should be maintained by the caller, and will be used for detecting 307 * small random reads. Note that the readahead algorithm checks loosely 308 * for sequential patterns. Hence interleaved reads might be served as 309 * sequential ones. 310 * 311 * There is a special-case: if the first page which the application tries to 312 * read happens to be the first page of the file, it is assumed that a linear 313 * read is about to happen and the window is immediately set to the initial size 314 * based on I/O request size and the max_readahead. 315 * 316 * The code ramps up the readahead size aggressively at first, but slow down as 317 * it approaches max_readhead. 318 */ 319 320 /* 321 * Count contiguously cached pages from @offset-1 to @offset-@max, 322 * this count is a conservative estimation of 323 * - length of the sequential read sequence, or 324 * - thrashing threshold in memory tight systems 325 */ 326 static pgoff_t count_history_pages(struct address_space *mapping, 327 pgoff_t offset, unsigned long max) 328 { 329 pgoff_t head; 330 331 rcu_read_lock(); 332 head = page_cache_prev_hole(mapping, offset - 1, max); 333 rcu_read_unlock(); 334 335 return offset - 1 - head; 336 } 337 338 /* 339 * page cache context based read-ahead 340 */ 341 static int try_context_readahead(struct address_space *mapping, 342 struct file_ra_state *ra, 343 pgoff_t offset, 344 unsigned long req_size, 345 unsigned long max) 346 { 347 pgoff_t size; 348 349 size = count_history_pages(mapping, offset, max); 350 351 /* 352 * not enough history pages: 353 * it could be a random read 354 */ 355 if (size <= req_size) 356 return 0; 357 358 /* 359 * starts from beginning of file: 360 * it is a strong indication of long-run stream (or whole-file-read) 361 */ 362 if (size >= offset) 363 size *= 2; 364 365 ra->start = offset; 366 ra->size = min(size + req_size, max); 367 ra->async_size = 1; 368 369 return 1; 370 } 371 372 /* 373 * A minimal readahead algorithm for trivial sequential/random reads. 374 */ 375 static unsigned long 376 ondemand_readahead(struct address_space *mapping, 377 struct file_ra_state *ra, struct file *filp, 378 bool hit_readahead_marker, pgoff_t offset, 379 unsigned long req_size) 380 { 381 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 382 unsigned long max_pages = ra->ra_pages; 383 pgoff_t prev_offset; 384 385 /* 386 * If the request exceeds the readahead window, allow the read to 387 * be up to the optimal hardware IO size 388 */ 389 if (req_size > max_pages && bdi->io_pages > max_pages) 390 max_pages = min(req_size, bdi->io_pages); 391 392 /* 393 * start of file 394 */ 395 if (!offset) 396 goto initial_readahead; 397 398 /* 399 * It's the expected callback offset, assume sequential access. 400 * Ramp up sizes, and push forward the readahead window. 401 */ 402 if ((offset == (ra->start + ra->size - ra->async_size) || 403 offset == (ra->start + ra->size))) { 404 ra->start += ra->size; 405 ra->size = get_next_ra_size(ra, max_pages); 406 ra->async_size = ra->size; 407 goto readit; 408 } 409 410 /* 411 * Hit a marked page without valid readahead state. 412 * E.g. interleaved reads. 413 * Query the pagecache for async_size, which normally equals to 414 * readahead size. Ramp it up and use it as the new readahead size. 415 */ 416 if (hit_readahead_marker) { 417 pgoff_t start; 418 419 rcu_read_lock(); 420 start = page_cache_next_hole(mapping, offset + 1, max_pages); 421 rcu_read_unlock(); 422 423 if (!start || start - offset > max_pages) 424 return 0; 425 426 ra->start = start; 427 ra->size = start - offset; /* old async_size */ 428 ra->size += req_size; 429 ra->size = get_next_ra_size(ra, max_pages); 430 ra->async_size = ra->size; 431 goto readit; 432 } 433 434 /* 435 * oversize read 436 */ 437 if (req_size > max_pages) 438 goto initial_readahead; 439 440 /* 441 * sequential cache miss 442 * trivial case: (offset - prev_offset) == 1 443 * unaligned reads: (offset - prev_offset) == 0 444 */ 445 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 446 if (offset - prev_offset <= 1UL) 447 goto initial_readahead; 448 449 /* 450 * Query the page cache and look for the traces(cached history pages) 451 * that a sequential stream would leave behind. 452 */ 453 if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) 454 goto readit; 455 456 /* 457 * standalone, small random read 458 * Read as is, and do not pollute the readahead state. 459 */ 460 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 461 462 initial_readahead: 463 ra->start = offset; 464 ra->size = get_init_ra_size(req_size, max_pages); 465 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 466 467 readit: 468 /* 469 * Will this read hit the readahead marker made by itself? 470 * If so, trigger the readahead marker hit now, and merge 471 * the resulted next readahead window into the current one. 472 */ 473 if (offset == ra->start && ra->size == ra->async_size) { 474 ra->async_size = get_next_ra_size(ra, max_pages); 475 ra->size += ra->async_size; 476 } 477 478 return ra_submit(ra, mapping, filp); 479 } 480 481 /** 482 * page_cache_sync_readahead - generic file readahead 483 * @mapping: address_space which holds the pagecache and I/O vectors 484 * @ra: file_ra_state which holds the readahead state 485 * @filp: passed on to ->readpage() and ->readpages() 486 * @offset: start offset into @mapping, in pagecache page-sized units 487 * @req_size: hint: total size of the read which the caller is performing in 488 * pagecache pages 489 * 490 * page_cache_sync_readahead() should be called when a cache miss happened: 491 * it will submit the read. The readahead logic may decide to piggyback more 492 * pages onto the read request if access patterns suggest it will improve 493 * performance. 494 */ 495 void page_cache_sync_readahead(struct address_space *mapping, 496 struct file_ra_state *ra, struct file *filp, 497 pgoff_t offset, unsigned long req_size) 498 { 499 /* no read-ahead */ 500 if (!ra->ra_pages) 501 return; 502 503 /* be dumb */ 504 if (filp && (filp->f_mode & FMODE_RANDOM)) { 505 force_page_cache_readahead(mapping, filp, offset, req_size); 506 return; 507 } 508 509 /* do read-ahead */ 510 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 511 } 512 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 513 514 /** 515 * page_cache_async_readahead - file readahead for marked pages 516 * @mapping: address_space which holds the pagecache and I/O vectors 517 * @ra: file_ra_state which holds the readahead state 518 * @filp: passed on to ->readpage() and ->readpages() 519 * @page: the page at @offset which has the PG_readahead flag set 520 * @offset: start offset into @mapping, in pagecache page-sized units 521 * @req_size: hint: total size of the read which the caller is performing in 522 * pagecache pages 523 * 524 * page_cache_async_readahead() should be called when a page is used which 525 * has the PG_readahead flag; this is a marker to suggest that the application 526 * has used up enough of the readahead window that we should start pulling in 527 * more pages. 528 */ 529 void 530 page_cache_async_readahead(struct address_space *mapping, 531 struct file_ra_state *ra, struct file *filp, 532 struct page *page, pgoff_t offset, 533 unsigned long req_size) 534 { 535 /* no read-ahead */ 536 if (!ra->ra_pages) 537 return; 538 539 /* 540 * Same bit is used for PG_readahead and PG_reclaim. 541 */ 542 if (PageWriteback(page)) 543 return; 544 545 ClearPageReadahead(page); 546 547 /* 548 * Defer asynchronous read-ahead on IO congestion. 549 */ 550 if (inode_read_congested(mapping->host)) 551 return; 552 553 /* do read-ahead */ 554 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 555 } 556 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 557 558 static ssize_t 559 do_readahead(struct address_space *mapping, struct file *filp, 560 pgoff_t index, unsigned long nr) 561 { 562 if (!mapping || !mapping->a_ops) 563 return -EINVAL; 564 565 /* 566 * Readahead doesn't make sense for DAX inodes, but we don't want it 567 * to report a failure either. Instead, we just return success and 568 * don't do any work. 569 */ 570 if (dax_mapping(mapping)) 571 return 0; 572 573 return force_page_cache_readahead(mapping, filp, index, nr); 574 } 575 576 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 577 { 578 ssize_t ret; 579 struct fd f; 580 581 ret = -EBADF; 582 f = fdget(fd); 583 if (f.file) { 584 if (f.file->f_mode & FMODE_READ) { 585 struct address_space *mapping = f.file->f_mapping; 586 pgoff_t start = offset >> PAGE_SHIFT; 587 pgoff_t end = (offset + count - 1) >> PAGE_SHIFT; 588 unsigned long len = end - start + 1; 589 ret = do_readahead(mapping, f.file, start, len); 590 } 591 fdput(f); 592 } 593 return ret; 594 } 595 596 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 597 { 598 return ksys_readahead(fd, offset, count); 599 } 600