xref: /openbmc/linux/mm/readahead.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/fadvise.h>
24 
25 #include "internal.h"
26 
27 /*
28  * Initialise a struct file's readahead state.  Assumes that the caller has
29  * memset *ra to zero.
30  */
31 void
32 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
33 {
34 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
35 	ra->prev_pos = -1;
36 }
37 EXPORT_SYMBOL_GPL(file_ra_state_init);
38 
39 /*
40  * see if a page needs releasing upon read_cache_pages() failure
41  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
42  *   before calling, such as the NFS fs marking pages that are cached locally
43  *   on disk, thus we need to give the fs a chance to clean up in the event of
44  *   an error
45  */
46 static void read_cache_pages_invalidate_page(struct address_space *mapping,
47 					     struct page *page)
48 {
49 	if (page_has_private(page)) {
50 		if (!trylock_page(page))
51 			BUG();
52 		page->mapping = mapping;
53 		do_invalidatepage(page, 0, PAGE_SIZE);
54 		page->mapping = NULL;
55 		unlock_page(page);
56 	}
57 	put_page(page);
58 }
59 
60 /*
61  * release a list of pages, invalidating them first if need be
62  */
63 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
64 					      struct list_head *pages)
65 {
66 	struct page *victim;
67 
68 	while (!list_empty(pages)) {
69 		victim = lru_to_page(pages);
70 		list_del(&victim->lru);
71 		read_cache_pages_invalidate_page(mapping, victim);
72 	}
73 }
74 
75 /**
76  * read_cache_pages - populate an address space with some pages & start reads against them
77  * @mapping: the address_space
78  * @pages: The address of a list_head which contains the target pages.  These
79  *   pages have their ->index populated and are otherwise uninitialised.
80  * @filler: callback routine for filling a single page.
81  * @data: private data for the callback routine.
82  *
83  * Hides the details of the LRU cache etc from the filesystems.
84  */
85 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
86 			int (*filler)(void *, struct page *), void *data)
87 {
88 	struct page *page;
89 	int ret = 0;
90 
91 	while (!list_empty(pages)) {
92 		page = lru_to_page(pages);
93 		list_del(&page->lru);
94 		if (add_to_page_cache_lru(page, mapping, page->index,
95 				readahead_gfp_mask(mapping))) {
96 			read_cache_pages_invalidate_page(mapping, page);
97 			continue;
98 		}
99 		put_page(page);
100 
101 		ret = filler(data, page);
102 		if (unlikely(ret)) {
103 			read_cache_pages_invalidate_pages(mapping, pages);
104 			break;
105 		}
106 		task_io_account_read(PAGE_SIZE);
107 	}
108 	return ret;
109 }
110 
111 EXPORT_SYMBOL(read_cache_pages);
112 
113 static int read_pages(struct address_space *mapping, struct file *filp,
114 		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
115 {
116 	struct blk_plug plug;
117 	unsigned page_idx;
118 	int ret;
119 
120 	blk_start_plug(&plug);
121 
122 	if (mapping->a_ops->readpages) {
123 		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
124 		/* Clean up the remaining pages */
125 		put_pages_list(pages);
126 		goto out;
127 	}
128 
129 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
130 		struct page *page = lru_to_page(pages);
131 		list_del(&page->lru);
132 		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
133 			mapping->a_ops->readpage(filp, page);
134 		put_page(page);
135 	}
136 	ret = 0;
137 
138 out:
139 	blk_finish_plug(&plug);
140 
141 	return ret;
142 }
143 
144 /*
145  * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
146  * the pages first, then submits them for I/O. This avoids the very bad
147  * behaviour which would occur if page allocations are causing VM writeback.
148  * We really don't want to intermingle reads and writes like that.
149  *
150  * Returns the number of pages requested, or the maximum amount of I/O allowed.
151  */
152 unsigned int __do_page_cache_readahead(struct address_space *mapping,
153 		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
154 		unsigned long lookahead_size)
155 {
156 	struct inode *inode = mapping->host;
157 	struct page *page;
158 	unsigned long end_index;	/* The last page we want to read */
159 	LIST_HEAD(page_pool);
160 	int page_idx;
161 	unsigned int nr_pages = 0;
162 	loff_t isize = i_size_read(inode);
163 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
164 
165 	if (isize == 0)
166 		goto out;
167 
168 	end_index = ((isize - 1) >> PAGE_SHIFT);
169 
170 	/*
171 	 * Preallocate as many pages as we will need.
172 	 */
173 	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
174 		pgoff_t page_offset = offset + page_idx;
175 
176 		if (page_offset > end_index)
177 			break;
178 
179 		rcu_read_lock();
180 		page = radix_tree_lookup(&mapping->i_pages, page_offset);
181 		rcu_read_unlock();
182 		if (page && !radix_tree_exceptional_entry(page)) {
183 			/*
184 			 * Page already present?  Kick off the current batch of
185 			 * contiguous pages before continuing with the next
186 			 * batch.
187 			 */
188 			if (nr_pages)
189 				read_pages(mapping, filp, &page_pool, nr_pages,
190 						gfp_mask);
191 			nr_pages = 0;
192 			continue;
193 		}
194 
195 		page = __page_cache_alloc(gfp_mask);
196 		if (!page)
197 			break;
198 		page->index = page_offset;
199 		list_add(&page->lru, &page_pool);
200 		if (page_idx == nr_to_read - lookahead_size)
201 			SetPageReadahead(page);
202 		nr_pages++;
203 	}
204 
205 	/*
206 	 * Now start the IO.  We ignore I/O errors - if the page is not
207 	 * uptodate then the caller will launch readpage again, and
208 	 * will then handle the error.
209 	 */
210 	if (nr_pages)
211 		read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
212 	BUG_ON(!list_empty(&page_pool));
213 out:
214 	return nr_pages;
215 }
216 
217 /*
218  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
219  * memory at once.
220  */
221 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
222 			       pgoff_t offset, unsigned long nr_to_read)
223 {
224 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
225 	struct file_ra_state *ra = &filp->f_ra;
226 	unsigned long max_pages;
227 
228 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
229 		return -EINVAL;
230 
231 	/*
232 	 * If the request exceeds the readahead window, allow the read to
233 	 * be up to the optimal hardware IO size
234 	 */
235 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
236 	nr_to_read = min(nr_to_read, max_pages);
237 	while (nr_to_read) {
238 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
239 
240 		if (this_chunk > nr_to_read)
241 			this_chunk = nr_to_read;
242 		__do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
243 
244 		offset += this_chunk;
245 		nr_to_read -= this_chunk;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * Set the initial window size, round to next power of 2 and square
252  * for small size, x 4 for medium, and x 2 for large
253  * for 128k (32 page) max ra
254  * 1-8 page = 32k initial, > 8 page = 128k initial
255  */
256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
257 {
258 	unsigned long newsize = roundup_pow_of_two(size);
259 
260 	if (newsize <= max / 32)
261 		newsize = newsize * 4;
262 	else if (newsize <= max / 4)
263 		newsize = newsize * 2;
264 	else
265 		newsize = max;
266 
267 	return newsize;
268 }
269 
270 /*
271  *  Get the previous window size, ramp it up, and
272  *  return it as the new window size.
273  */
274 static unsigned long get_next_ra_size(struct file_ra_state *ra,
275 						unsigned long max)
276 {
277 	unsigned long cur = ra->size;
278 	unsigned long newsize;
279 
280 	if (cur < max / 16)
281 		newsize = 4 * cur;
282 	else
283 		newsize = 2 * cur;
284 
285 	return min(newsize, max);
286 }
287 
288 /*
289  * On-demand readahead design.
290  *
291  * The fields in struct file_ra_state represent the most-recently-executed
292  * readahead attempt:
293  *
294  *                        |<----- async_size ---------|
295  *     |------------------- size -------------------->|
296  *     |==================#===========================|
297  *     ^start             ^page marked with PG_readahead
298  *
299  * To overlap application thinking time and disk I/O time, we do
300  * `readahead pipelining': Do not wait until the application consumed all
301  * readahead pages and stalled on the missing page at readahead_index;
302  * Instead, submit an asynchronous readahead I/O as soon as there are
303  * only async_size pages left in the readahead window. Normally async_size
304  * will be equal to size, for maximum pipelining.
305  *
306  * In interleaved sequential reads, concurrent streams on the same fd can
307  * be invalidating each other's readahead state. So we flag the new readahead
308  * page at (start+size-async_size) with PG_readahead, and use it as readahead
309  * indicator. The flag won't be set on already cached pages, to avoid the
310  * readahead-for-nothing fuss, saving pointless page cache lookups.
311  *
312  * prev_pos tracks the last visited byte in the _previous_ read request.
313  * It should be maintained by the caller, and will be used for detecting
314  * small random reads. Note that the readahead algorithm checks loosely
315  * for sequential patterns. Hence interleaved reads might be served as
316  * sequential ones.
317  *
318  * There is a special-case: if the first page which the application tries to
319  * read happens to be the first page of the file, it is assumed that a linear
320  * read is about to happen and the window is immediately set to the initial size
321  * based on I/O request size and the max_readahead.
322  *
323  * The code ramps up the readahead size aggressively at first, but slow down as
324  * it approaches max_readhead.
325  */
326 
327 /*
328  * Count contiguously cached pages from @offset-1 to @offset-@max,
329  * this count is a conservative estimation of
330  * 	- length of the sequential read sequence, or
331  * 	- thrashing threshold in memory tight systems
332  */
333 static pgoff_t count_history_pages(struct address_space *mapping,
334 				   pgoff_t offset, unsigned long max)
335 {
336 	pgoff_t head;
337 
338 	rcu_read_lock();
339 	head = page_cache_prev_hole(mapping, offset - 1, max);
340 	rcu_read_unlock();
341 
342 	return offset - 1 - head;
343 }
344 
345 /*
346  * page cache context based read-ahead
347  */
348 static int try_context_readahead(struct address_space *mapping,
349 				 struct file_ra_state *ra,
350 				 pgoff_t offset,
351 				 unsigned long req_size,
352 				 unsigned long max)
353 {
354 	pgoff_t size;
355 
356 	size = count_history_pages(mapping, offset, max);
357 
358 	/*
359 	 * not enough history pages:
360 	 * it could be a random read
361 	 */
362 	if (size <= req_size)
363 		return 0;
364 
365 	/*
366 	 * starts from beginning of file:
367 	 * it is a strong indication of long-run stream (or whole-file-read)
368 	 */
369 	if (size >= offset)
370 		size *= 2;
371 
372 	ra->start = offset;
373 	ra->size = min(size + req_size, max);
374 	ra->async_size = 1;
375 
376 	return 1;
377 }
378 
379 /*
380  * A minimal readahead algorithm for trivial sequential/random reads.
381  */
382 static unsigned long
383 ondemand_readahead(struct address_space *mapping,
384 		   struct file_ra_state *ra, struct file *filp,
385 		   bool hit_readahead_marker, pgoff_t offset,
386 		   unsigned long req_size)
387 {
388 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
389 	unsigned long max_pages = ra->ra_pages;
390 	unsigned long add_pages;
391 	pgoff_t prev_offset;
392 
393 	/*
394 	 * If the request exceeds the readahead window, allow the read to
395 	 * be up to the optimal hardware IO size
396 	 */
397 	if (req_size > max_pages && bdi->io_pages > max_pages)
398 		max_pages = min(req_size, bdi->io_pages);
399 
400 	/*
401 	 * start of file
402 	 */
403 	if (!offset)
404 		goto initial_readahead;
405 
406 	/*
407 	 * It's the expected callback offset, assume sequential access.
408 	 * Ramp up sizes, and push forward the readahead window.
409 	 */
410 	if ((offset == (ra->start + ra->size - ra->async_size) ||
411 	     offset == (ra->start + ra->size))) {
412 		ra->start += ra->size;
413 		ra->size = get_next_ra_size(ra, max_pages);
414 		ra->async_size = ra->size;
415 		goto readit;
416 	}
417 
418 	/*
419 	 * Hit a marked page without valid readahead state.
420 	 * E.g. interleaved reads.
421 	 * Query the pagecache for async_size, which normally equals to
422 	 * readahead size. Ramp it up and use it as the new readahead size.
423 	 */
424 	if (hit_readahead_marker) {
425 		pgoff_t start;
426 
427 		rcu_read_lock();
428 		start = page_cache_next_hole(mapping, offset + 1, max_pages);
429 		rcu_read_unlock();
430 
431 		if (!start || start - offset > max_pages)
432 			return 0;
433 
434 		ra->start = start;
435 		ra->size = start - offset;	/* old async_size */
436 		ra->size += req_size;
437 		ra->size = get_next_ra_size(ra, max_pages);
438 		ra->async_size = ra->size;
439 		goto readit;
440 	}
441 
442 	/*
443 	 * oversize read
444 	 */
445 	if (req_size > max_pages)
446 		goto initial_readahead;
447 
448 	/*
449 	 * sequential cache miss
450 	 * trivial case: (offset - prev_offset) == 1
451 	 * unaligned reads: (offset - prev_offset) == 0
452 	 */
453 	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
454 	if (offset - prev_offset <= 1UL)
455 		goto initial_readahead;
456 
457 	/*
458 	 * Query the page cache and look for the traces(cached history pages)
459 	 * that a sequential stream would leave behind.
460 	 */
461 	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
462 		goto readit;
463 
464 	/*
465 	 * standalone, small random read
466 	 * Read as is, and do not pollute the readahead state.
467 	 */
468 	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
469 
470 initial_readahead:
471 	ra->start = offset;
472 	ra->size = get_init_ra_size(req_size, max_pages);
473 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
474 
475 readit:
476 	/*
477 	 * Will this read hit the readahead marker made by itself?
478 	 * If so, trigger the readahead marker hit now, and merge
479 	 * the resulted next readahead window into the current one.
480 	 * Take care of maximum IO pages as above.
481 	 */
482 	if (offset == ra->start && ra->size == ra->async_size) {
483 		add_pages = get_next_ra_size(ra, max_pages);
484 		if (ra->size + add_pages <= max_pages) {
485 			ra->async_size = add_pages;
486 			ra->size += add_pages;
487 		} else {
488 			ra->size = max_pages;
489 			ra->async_size = max_pages >> 1;
490 		}
491 	}
492 
493 	return ra_submit(ra, mapping, filp);
494 }
495 
496 /**
497  * page_cache_sync_readahead - generic file readahead
498  * @mapping: address_space which holds the pagecache and I/O vectors
499  * @ra: file_ra_state which holds the readahead state
500  * @filp: passed on to ->readpage() and ->readpages()
501  * @offset: start offset into @mapping, in pagecache page-sized units
502  * @req_size: hint: total size of the read which the caller is performing in
503  *            pagecache pages
504  *
505  * page_cache_sync_readahead() should be called when a cache miss happened:
506  * it will submit the read.  The readahead logic may decide to piggyback more
507  * pages onto the read request if access patterns suggest it will improve
508  * performance.
509  */
510 void page_cache_sync_readahead(struct address_space *mapping,
511 			       struct file_ra_state *ra, struct file *filp,
512 			       pgoff_t offset, unsigned long req_size)
513 {
514 	/* no read-ahead */
515 	if (!ra->ra_pages)
516 		return;
517 
518 	if (blk_cgroup_congested())
519 		return;
520 
521 	/* be dumb */
522 	if (filp && (filp->f_mode & FMODE_RANDOM)) {
523 		force_page_cache_readahead(mapping, filp, offset, req_size);
524 		return;
525 	}
526 
527 	/* do read-ahead */
528 	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
529 }
530 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
531 
532 /**
533  * page_cache_async_readahead - file readahead for marked pages
534  * @mapping: address_space which holds the pagecache and I/O vectors
535  * @ra: file_ra_state which holds the readahead state
536  * @filp: passed on to ->readpage() and ->readpages()
537  * @page: the page at @offset which has the PG_readahead flag set
538  * @offset: start offset into @mapping, in pagecache page-sized units
539  * @req_size: hint: total size of the read which the caller is performing in
540  *            pagecache pages
541  *
542  * page_cache_async_readahead() should be called when a page is used which
543  * has the PG_readahead flag; this is a marker to suggest that the application
544  * has used up enough of the readahead window that we should start pulling in
545  * more pages.
546  */
547 void
548 page_cache_async_readahead(struct address_space *mapping,
549 			   struct file_ra_state *ra, struct file *filp,
550 			   struct page *page, pgoff_t offset,
551 			   unsigned long req_size)
552 {
553 	/* no read-ahead */
554 	if (!ra->ra_pages)
555 		return;
556 
557 	/*
558 	 * Same bit is used for PG_readahead and PG_reclaim.
559 	 */
560 	if (PageWriteback(page))
561 		return;
562 
563 	ClearPageReadahead(page);
564 
565 	/*
566 	 * Defer asynchronous read-ahead on IO congestion.
567 	 */
568 	if (inode_read_congested(mapping->host))
569 		return;
570 
571 	if (blk_cgroup_congested())
572 		return;
573 
574 	/* do read-ahead */
575 	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
576 }
577 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
578 
579 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
580 {
581 	ssize_t ret;
582 	struct fd f;
583 
584 	ret = -EBADF;
585 	f = fdget(fd);
586 	if (!f.file || !(f.file->f_mode & FMODE_READ))
587 		goto out;
588 
589 	/*
590 	 * The readahead() syscall is intended to run only on files
591 	 * that can execute readahead. If readahead is not possible
592 	 * on this file, then we must return -EINVAL.
593 	 */
594 	ret = -EINVAL;
595 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
596 	    !S_ISREG(file_inode(f.file)->i_mode))
597 		goto out;
598 
599 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
600 out:
601 	fdput(f);
602 	return ret;
603 }
604 
605 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
606 {
607 	return ksys_readahead(fd, offset, count);
608 }
609