xref: /openbmc/linux/mm/readahead.c (revision 29d97219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/readahead.c - address_space-level file readahead.
4  *
5  * Copyright (C) 2002, Linus Torvalds
6  *
7  * 09Apr2002	Andrew Morton
8  *		Initial version.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 #include <linux/sched/mm.h>
26 
27 #include "internal.h"
28 
29 /*
30  * Initialise a struct file's readahead state.  Assumes that the caller has
31  * memset *ra to zero.
32  */
33 void
34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
35 {
36 	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
37 	ra->prev_pos = -1;
38 }
39 EXPORT_SYMBOL_GPL(file_ra_state_init);
40 
41 /*
42  * see if a page needs releasing upon read_cache_pages() failure
43  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
44  *   before calling, such as the NFS fs marking pages that are cached locally
45  *   on disk, thus we need to give the fs a chance to clean up in the event of
46  *   an error
47  */
48 static void read_cache_pages_invalidate_page(struct address_space *mapping,
49 					     struct page *page)
50 {
51 	if (page_has_private(page)) {
52 		if (!trylock_page(page))
53 			BUG();
54 		page->mapping = mapping;
55 		do_invalidatepage(page, 0, PAGE_SIZE);
56 		page->mapping = NULL;
57 		unlock_page(page);
58 	}
59 	put_page(page);
60 }
61 
62 /*
63  * release a list of pages, invalidating them first if need be
64  */
65 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
66 					      struct list_head *pages)
67 {
68 	struct page *victim;
69 
70 	while (!list_empty(pages)) {
71 		victim = lru_to_page(pages);
72 		list_del(&victim->lru);
73 		read_cache_pages_invalidate_page(mapping, victim);
74 	}
75 }
76 
77 /**
78  * read_cache_pages - populate an address space with some pages & start reads against them
79  * @mapping: the address_space
80  * @pages: The address of a list_head which contains the target pages.  These
81  *   pages have their ->index populated and are otherwise uninitialised.
82  * @filler: callback routine for filling a single page.
83  * @data: private data for the callback routine.
84  *
85  * Hides the details of the LRU cache etc from the filesystems.
86  *
87  * Returns: %0 on success, error return by @filler otherwise
88  */
89 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
90 			int (*filler)(void *, struct page *), void *data)
91 {
92 	struct page *page;
93 	int ret = 0;
94 
95 	while (!list_empty(pages)) {
96 		page = lru_to_page(pages);
97 		list_del(&page->lru);
98 		if (add_to_page_cache_lru(page, mapping, page->index,
99 				readahead_gfp_mask(mapping))) {
100 			read_cache_pages_invalidate_page(mapping, page);
101 			continue;
102 		}
103 		put_page(page);
104 
105 		ret = filler(data, page);
106 		if (unlikely(ret)) {
107 			read_cache_pages_invalidate_pages(mapping, pages);
108 			break;
109 		}
110 		task_io_account_read(PAGE_SIZE);
111 	}
112 	return ret;
113 }
114 
115 EXPORT_SYMBOL(read_cache_pages);
116 
117 static void read_pages(struct readahead_control *rac, struct list_head *pages,
118 		bool skip_page)
119 {
120 	const struct address_space_operations *aops = rac->mapping->a_ops;
121 	struct page *page;
122 	struct blk_plug plug;
123 
124 	if (!readahead_count(rac))
125 		goto out;
126 
127 	blk_start_plug(&plug);
128 
129 	if (aops->readahead) {
130 		aops->readahead(rac);
131 		/* Clean up the remaining pages */
132 		while ((page = readahead_page(rac))) {
133 			unlock_page(page);
134 			put_page(page);
135 		}
136 	} else if (aops->readpages) {
137 		aops->readpages(rac->file, rac->mapping, pages,
138 				readahead_count(rac));
139 		/* Clean up the remaining pages */
140 		put_pages_list(pages);
141 		rac->_index += rac->_nr_pages;
142 		rac->_nr_pages = 0;
143 	} else {
144 		while ((page = readahead_page(rac))) {
145 			aops->readpage(rac->file, page);
146 			put_page(page);
147 		}
148 	}
149 
150 	blk_finish_plug(&plug);
151 
152 	BUG_ON(!list_empty(pages));
153 	BUG_ON(readahead_count(rac));
154 
155 out:
156 	if (skip_page)
157 		rac->_index++;
158 }
159 
160 /**
161  * page_cache_ra_unbounded - Start unchecked readahead.
162  * @ractl: Readahead control.
163  * @nr_to_read: The number of pages to read.
164  * @lookahead_size: Where to start the next readahead.
165  *
166  * This function is for filesystems to call when they want to start
167  * readahead beyond a file's stated i_size.  This is almost certainly
168  * not the function you want to call.  Use page_cache_async_readahead()
169  * or page_cache_sync_readahead() instead.
170  *
171  * Context: File is referenced by caller.  Mutexes may be held by caller.
172  * May sleep, but will not reenter filesystem to reclaim memory.
173  */
174 void page_cache_ra_unbounded(struct readahead_control *ractl,
175 		unsigned long nr_to_read, unsigned long lookahead_size)
176 {
177 	struct address_space *mapping = ractl->mapping;
178 	unsigned long index = readahead_index(ractl);
179 	LIST_HEAD(page_pool);
180 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
181 	unsigned long i;
182 
183 	/*
184 	 * Partway through the readahead operation, we will have added
185 	 * locked pages to the page cache, but will not yet have submitted
186 	 * them for I/O.  Adding another page may need to allocate memory,
187 	 * which can trigger memory reclaim.  Telling the VM we're in
188 	 * the middle of a filesystem operation will cause it to not
189 	 * touch file-backed pages, preventing a deadlock.  Most (all?)
190 	 * filesystems already specify __GFP_NOFS in their mapping's
191 	 * gfp_mask, but let's be explicit here.
192 	 */
193 	unsigned int nofs = memalloc_nofs_save();
194 
195 	/*
196 	 * Preallocate as many pages as we will need.
197 	 */
198 	for (i = 0; i < nr_to_read; i++) {
199 		struct page *page = xa_load(&mapping->i_pages, index + i);
200 
201 		if (page && !xa_is_value(page)) {
202 			/*
203 			 * Page already present?  Kick off the current batch
204 			 * of contiguous pages before continuing with the
205 			 * next batch.  This page may be the one we would
206 			 * have intended to mark as Readahead, but we don't
207 			 * have a stable reference to this page, and it's
208 			 * not worth getting one just for that.
209 			 */
210 			read_pages(ractl, &page_pool, true);
211 			i = ractl->_index + ractl->_nr_pages - index - 1;
212 			continue;
213 		}
214 
215 		page = __page_cache_alloc(gfp_mask);
216 		if (!page)
217 			break;
218 		if (mapping->a_ops->readpages) {
219 			page->index = index + i;
220 			list_add(&page->lru, &page_pool);
221 		} else if (add_to_page_cache_lru(page, mapping, index + i,
222 					gfp_mask) < 0) {
223 			put_page(page);
224 			read_pages(ractl, &page_pool, true);
225 			i = ractl->_index + ractl->_nr_pages - index - 1;
226 			continue;
227 		}
228 		if (i == nr_to_read - lookahead_size)
229 			SetPageReadahead(page);
230 		ractl->_nr_pages++;
231 	}
232 
233 	/*
234 	 * Now start the IO.  We ignore I/O errors - if the page is not
235 	 * uptodate then the caller will launch readpage again, and
236 	 * will then handle the error.
237 	 */
238 	read_pages(ractl, &page_pool, false);
239 	memalloc_nofs_restore(nofs);
240 }
241 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
242 
243 /*
244  * do_page_cache_ra() actually reads a chunk of disk.  It allocates
245  * the pages first, then submits them for I/O. This avoids the very bad
246  * behaviour which would occur if page allocations are causing VM writeback.
247  * We really don't want to intermingle reads and writes like that.
248  */
249 void do_page_cache_ra(struct readahead_control *ractl,
250 		unsigned long nr_to_read, unsigned long lookahead_size)
251 {
252 	struct inode *inode = ractl->mapping->host;
253 	unsigned long index = readahead_index(ractl);
254 	loff_t isize = i_size_read(inode);
255 	pgoff_t end_index;	/* The last page we want to read */
256 
257 	if (isize == 0)
258 		return;
259 
260 	end_index = (isize - 1) >> PAGE_SHIFT;
261 	if (index > end_index)
262 		return;
263 	/* Don't read past the page containing the last byte of the file */
264 	if (nr_to_read > end_index - index)
265 		nr_to_read = end_index - index + 1;
266 
267 	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
268 }
269 
270 /*
271  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
272  * memory at once.
273  */
274 void force_page_cache_ra(struct readahead_control *ractl,
275 		unsigned long nr_to_read)
276 {
277 	struct address_space *mapping = ractl->mapping;
278 	struct file_ra_state *ra = ractl->ra;
279 	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
280 	unsigned long max_pages, index;
281 
282 	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
283 			!mapping->a_ops->readahead))
284 		return;
285 
286 	/*
287 	 * If the request exceeds the readahead window, allow the read to
288 	 * be up to the optimal hardware IO size
289 	 */
290 	index = readahead_index(ractl);
291 	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
292 	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
293 	while (nr_to_read) {
294 		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
295 
296 		if (this_chunk > nr_to_read)
297 			this_chunk = nr_to_read;
298 		ractl->_index = index;
299 		do_page_cache_ra(ractl, this_chunk, 0);
300 
301 		index += this_chunk;
302 		nr_to_read -= this_chunk;
303 	}
304 }
305 
306 /*
307  * Set the initial window size, round to next power of 2 and square
308  * for small size, x 4 for medium, and x 2 for large
309  * for 128k (32 page) max ra
310  * 1-8 page = 32k initial, > 8 page = 128k initial
311  */
312 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
313 {
314 	unsigned long newsize = roundup_pow_of_two(size);
315 
316 	if (newsize <= max / 32)
317 		newsize = newsize * 4;
318 	else if (newsize <= max / 4)
319 		newsize = newsize * 2;
320 	else
321 		newsize = max;
322 
323 	return newsize;
324 }
325 
326 /*
327  *  Get the previous window size, ramp it up, and
328  *  return it as the new window size.
329  */
330 static unsigned long get_next_ra_size(struct file_ra_state *ra,
331 				      unsigned long max)
332 {
333 	unsigned long cur = ra->size;
334 
335 	if (cur < max / 16)
336 		return 4 * cur;
337 	if (cur <= max / 2)
338 		return 2 * cur;
339 	return max;
340 }
341 
342 /*
343  * On-demand readahead design.
344  *
345  * The fields in struct file_ra_state represent the most-recently-executed
346  * readahead attempt:
347  *
348  *                        |<----- async_size ---------|
349  *     |------------------- size -------------------->|
350  *     |==================#===========================|
351  *     ^start             ^page marked with PG_readahead
352  *
353  * To overlap application thinking time and disk I/O time, we do
354  * `readahead pipelining': Do not wait until the application consumed all
355  * readahead pages and stalled on the missing page at readahead_index;
356  * Instead, submit an asynchronous readahead I/O as soon as there are
357  * only async_size pages left in the readahead window. Normally async_size
358  * will be equal to size, for maximum pipelining.
359  *
360  * In interleaved sequential reads, concurrent streams on the same fd can
361  * be invalidating each other's readahead state. So we flag the new readahead
362  * page at (start+size-async_size) with PG_readahead, and use it as readahead
363  * indicator. The flag won't be set on already cached pages, to avoid the
364  * readahead-for-nothing fuss, saving pointless page cache lookups.
365  *
366  * prev_pos tracks the last visited byte in the _previous_ read request.
367  * It should be maintained by the caller, and will be used for detecting
368  * small random reads. Note that the readahead algorithm checks loosely
369  * for sequential patterns. Hence interleaved reads might be served as
370  * sequential ones.
371  *
372  * There is a special-case: if the first page which the application tries to
373  * read happens to be the first page of the file, it is assumed that a linear
374  * read is about to happen and the window is immediately set to the initial size
375  * based on I/O request size and the max_readahead.
376  *
377  * The code ramps up the readahead size aggressively at first, but slow down as
378  * it approaches max_readhead.
379  */
380 
381 /*
382  * Count contiguously cached pages from @index-1 to @index-@max,
383  * this count is a conservative estimation of
384  * 	- length of the sequential read sequence, or
385  * 	- thrashing threshold in memory tight systems
386  */
387 static pgoff_t count_history_pages(struct address_space *mapping,
388 				   pgoff_t index, unsigned long max)
389 {
390 	pgoff_t head;
391 
392 	rcu_read_lock();
393 	head = page_cache_prev_miss(mapping, index - 1, max);
394 	rcu_read_unlock();
395 
396 	return index - 1 - head;
397 }
398 
399 /*
400  * page cache context based read-ahead
401  */
402 static int try_context_readahead(struct address_space *mapping,
403 				 struct file_ra_state *ra,
404 				 pgoff_t index,
405 				 unsigned long req_size,
406 				 unsigned long max)
407 {
408 	pgoff_t size;
409 
410 	size = count_history_pages(mapping, index, max);
411 
412 	/*
413 	 * not enough history pages:
414 	 * it could be a random read
415 	 */
416 	if (size <= req_size)
417 		return 0;
418 
419 	/*
420 	 * starts from beginning of file:
421 	 * it is a strong indication of long-run stream (or whole-file-read)
422 	 */
423 	if (size >= index)
424 		size *= 2;
425 
426 	ra->start = index;
427 	ra->size = min(size + req_size, max);
428 	ra->async_size = 1;
429 
430 	return 1;
431 }
432 
433 /*
434  * A minimal readahead algorithm for trivial sequential/random reads.
435  */
436 static void ondemand_readahead(struct readahead_control *ractl,
437 		bool hit_readahead_marker, unsigned long req_size)
438 {
439 	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
440 	struct file_ra_state *ra = ractl->ra;
441 	unsigned long max_pages = ra->ra_pages;
442 	unsigned long add_pages;
443 	unsigned long index = readahead_index(ractl);
444 	pgoff_t prev_index;
445 
446 	/*
447 	 * If the request exceeds the readahead window, allow the read to
448 	 * be up to the optimal hardware IO size
449 	 */
450 	if (req_size > max_pages && bdi->io_pages > max_pages)
451 		max_pages = min(req_size, bdi->io_pages);
452 
453 	/*
454 	 * start of file
455 	 */
456 	if (!index)
457 		goto initial_readahead;
458 
459 	/*
460 	 * It's the expected callback index, assume sequential access.
461 	 * Ramp up sizes, and push forward the readahead window.
462 	 */
463 	if ((index == (ra->start + ra->size - ra->async_size) ||
464 	     index == (ra->start + ra->size))) {
465 		ra->start += ra->size;
466 		ra->size = get_next_ra_size(ra, max_pages);
467 		ra->async_size = ra->size;
468 		goto readit;
469 	}
470 
471 	/*
472 	 * Hit a marked page without valid readahead state.
473 	 * E.g. interleaved reads.
474 	 * Query the pagecache for async_size, which normally equals to
475 	 * readahead size. Ramp it up and use it as the new readahead size.
476 	 */
477 	if (hit_readahead_marker) {
478 		pgoff_t start;
479 
480 		rcu_read_lock();
481 		start = page_cache_next_miss(ractl->mapping, index + 1,
482 				max_pages);
483 		rcu_read_unlock();
484 
485 		if (!start || start - index > max_pages)
486 			return;
487 
488 		ra->start = start;
489 		ra->size = start - index;	/* old async_size */
490 		ra->size += req_size;
491 		ra->size = get_next_ra_size(ra, max_pages);
492 		ra->async_size = ra->size;
493 		goto readit;
494 	}
495 
496 	/*
497 	 * oversize read
498 	 */
499 	if (req_size > max_pages)
500 		goto initial_readahead;
501 
502 	/*
503 	 * sequential cache miss
504 	 * trivial case: (index - prev_index) == 1
505 	 * unaligned reads: (index - prev_index) == 0
506 	 */
507 	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
508 	if (index - prev_index <= 1UL)
509 		goto initial_readahead;
510 
511 	/*
512 	 * Query the page cache and look for the traces(cached history pages)
513 	 * that a sequential stream would leave behind.
514 	 */
515 	if (try_context_readahead(ractl->mapping, ra, index, req_size,
516 			max_pages))
517 		goto readit;
518 
519 	/*
520 	 * standalone, small random read
521 	 * Read as is, and do not pollute the readahead state.
522 	 */
523 	do_page_cache_ra(ractl, req_size, 0);
524 	return;
525 
526 initial_readahead:
527 	ra->start = index;
528 	ra->size = get_init_ra_size(req_size, max_pages);
529 	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
530 
531 readit:
532 	/*
533 	 * Will this read hit the readahead marker made by itself?
534 	 * If so, trigger the readahead marker hit now, and merge
535 	 * the resulted next readahead window into the current one.
536 	 * Take care of maximum IO pages as above.
537 	 */
538 	if (index == ra->start && ra->size == ra->async_size) {
539 		add_pages = get_next_ra_size(ra, max_pages);
540 		if (ra->size + add_pages <= max_pages) {
541 			ra->async_size = add_pages;
542 			ra->size += add_pages;
543 		} else {
544 			ra->size = max_pages;
545 			ra->async_size = max_pages >> 1;
546 		}
547 	}
548 
549 	ractl->_index = ra->start;
550 	do_page_cache_ra(ractl, ra->size, ra->async_size);
551 }
552 
553 void page_cache_sync_ra(struct readahead_control *ractl,
554 		unsigned long req_count)
555 {
556 	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
557 
558 	/*
559 	 * Even if read-ahead is disabled, issue this request as read-ahead
560 	 * as we'll need it to satisfy the requested range. The forced
561 	 * read-ahead will do the right thing and limit the read to just the
562 	 * requested range, which we'll set to 1 page for this case.
563 	 */
564 	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
565 		if (!ractl->file)
566 			return;
567 		req_count = 1;
568 		do_forced_ra = true;
569 	}
570 
571 	/* be dumb */
572 	if (do_forced_ra) {
573 		force_page_cache_ra(ractl, req_count);
574 		return;
575 	}
576 
577 	/* do read-ahead */
578 	ondemand_readahead(ractl, false, req_count);
579 }
580 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
581 
582 void page_cache_async_ra(struct readahead_control *ractl,
583 		struct page *page, unsigned long req_count)
584 {
585 	/* no read-ahead */
586 	if (!ractl->ra->ra_pages)
587 		return;
588 
589 	/*
590 	 * Same bit is used for PG_readahead and PG_reclaim.
591 	 */
592 	if (PageWriteback(page))
593 		return;
594 
595 	ClearPageReadahead(page);
596 
597 	/*
598 	 * Defer asynchronous read-ahead on IO congestion.
599 	 */
600 	if (inode_read_congested(ractl->mapping->host))
601 		return;
602 
603 	if (blk_cgroup_congested())
604 		return;
605 
606 	/* do read-ahead */
607 	ondemand_readahead(ractl, true, req_count);
608 }
609 EXPORT_SYMBOL_GPL(page_cache_async_ra);
610 
611 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
612 {
613 	ssize_t ret;
614 	struct fd f;
615 
616 	ret = -EBADF;
617 	f = fdget(fd);
618 	if (!f.file || !(f.file->f_mode & FMODE_READ))
619 		goto out;
620 
621 	/*
622 	 * The readahead() syscall is intended to run only on files
623 	 * that can execute readahead. If readahead is not possible
624 	 * on this file, then we must return -EINVAL.
625 	 */
626 	ret = -EINVAL;
627 	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
628 	    !S_ISREG(file_inode(f.file)->i_mode))
629 		goto out;
630 
631 	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
632 out:
633 	fdput(f);
634 	return ret;
635 }
636 
637 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
638 {
639 	return ksys_readahead(fd, offset, count);
640 }
641 
642 /**
643  * readahead_expand - Expand a readahead request
644  * @ractl: The request to be expanded
645  * @new_start: The revised start
646  * @new_len: The revised size of the request
647  *
648  * Attempt to expand a readahead request outwards from the current size to the
649  * specified size by inserting locked pages before and after the current window
650  * to increase the size to the new window.  This may involve the insertion of
651  * THPs, in which case the window may get expanded even beyond what was
652  * requested.
653  *
654  * The algorithm will stop if it encounters a conflicting page already in the
655  * pagecache and leave a smaller expansion than requested.
656  *
657  * The caller must check for this by examining the revised @ractl object for a
658  * different expansion than was requested.
659  */
660 void readahead_expand(struct readahead_control *ractl,
661 		      loff_t new_start, size_t new_len)
662 {
663 	struct address_space *mapping = ractl->mapping;
664 	struct file_ra_state *ra = ractl->ra;
665 	pgoff_t new_index, new_nr_pages;
666 	gfp_t gfp_mask = readahead_gfp_mask(mapping);
667 
668 	new_index = new_start / PAGE_SIZE;
669 
670 	/* Expand the leading edge downwards */
671 	while (ractl->_index > new_index) {
672 		unsigned long index = ractl->_index - 1;
673 		struct page *page = xa_load(&mapping->i_pages, index);
674 
675 		if (page && !xa_is_value(page))
676 			return; /* Page apparently present */
677 
678 		page = __page_cache_alloc(gfp_mask);
679 		if (!page)
680 			return;
681 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
682 			put_page(page);
683 			return;
684 		}
685 
686 		ractl->_nr_pages++;
687 		ractl->_index = page->index;
688 	}
689 
690 	new_len += new_start - readahead_pos(ractl);
691 	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
692 
693 	/* Expand the trailing edge upwards */
694 	while (ractl->_nr_pages < new_nr_pages) {
695 		unsigned long index = ractl->_index + ractl->_nr_pages;
696 		struct page *page = xa_load(&mapping->i_pages, index);
697 
698 		if (page && !xa_is_value(page))
699 			return; /* Page apparently present */
700 
701 		page = __page_cache_alloc(gfp_mask);
702 		if (!page)
703 			return;
704 		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
705 			put_page(page);
706 			return;
707 		}
708 		ractl->_nr_pages++;
709 		if (ra) {
710 			ra->size++;
711 			ra->async_size++;
712 		}
713 	}
714 }
715 EXPORT_SYMBOL(readahead_expand);
716