1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read folios that are not yet in the page cache. If a 17 * folio is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->read_folio() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * system call or a page fault) finds that the requested folio is not in 22 * the page cache, or that it is in the page cache and has the 23 * readahead flag set. This flag indicates that the folio was read 24 * as part of a previous readahead request and now that it has been 25 * accessed, it is time for the next readahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * readahead. This is reflected in the struct file_ra_state which 29 * contains ->size being the total number of pages, and ->async_size 30 * which is the number of pages in the async section. The readahead 31 * flag will be set on the first folio in this async section to trigger 32 * a subsequent readahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all readahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need 37 * to be determined: the start of the region to read, the size of the 38 * region, and the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general readahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the readahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation, based on the previous readahead size, 74 * determines the size of the readahead, to which any requested read 75 * size may be added. 76 * 77 * Readahead requests are sent to the filesystem using the ->readahead() 78 * address space operation, for which mpage_readahead() is a canonical 79 * implementation. ->readahead() should normally initiate reads on all 80 * folios, but may fail to read any or all folios without causing an I/O 81 * error. The page cache reading code will issue a ->read_folio() request 82 * for any folio which ->readahead() did not read, and only an error 83 * from this will be final. 84 * 85 * ->readahead() will generally call readahead_folio() repeatedly to get 86 * each folio from those prepared for readahead. It may fail to read a 87 * folio by: 88 * 89 * * not calling readahead_folio() sufficiently many times, effectively 90 * ignoring some folios, as might be appropriate if the path to 91 * storage is congested. 92 * 93 * * failing to actually submit a read request for a given folio, 94 * possibly due to insufficient resources, or 95 * 96 * * getting an error during subsequent processing of a request. 97 * 98 * In the last two cases, the folio should be unlocked by the filesystem 99 * to indicate that the read attempt has failed. In the first case the 100 * folio will be unlocked by the VFS. 101 * 102 * Those folios not in the final ``async_size`` of the request should be 103 * considered to be important and ->readahead() should not fail them due 104 * to congestion or temporary resource unavailability, but should wait 105 * for necessary resources (e.g. memory or indexing information) to 106 * become available. Folios in the final ``async_size`` may be 107 * considered less urgent and failure to read them is more acceptable. 108 * In this case it is best to use filemap_remove_folio() to remove the 109 * folios from the page cache as is automatically done for folios that 110 * were not fetched with readahead_folio(). This will allow a 111 * subsequent synchronous readahead request to try them again. If they 112 * are left in the page cache, then they will be read individually using 113 * ->read_folio() which may be less efficient. 114 */ 115 116 #include <linux/blkdev.h> 117 #include <linux/kernel.h> 118 #include <linux/dax.h> 119 #include <linux/gfp.h> 120 #include <linux/export.h> 121 #include <linux/backing-dev.h> 122 #include <linux/task_io_accounting_ops.h> 123 #include <linux/pagevec.h> 124 #include <linux/pagemap.h> 125 #include <linux/psi.h> 126 #include <linux/syscalls.h> 127 #include <linux/file.h> 128 #include <linux/mm_inline.h> 129 #include <linux/blk-cgroup.h> 130 #include <linux/fadvise.h> 131 #include <linux/sched/mm.h> 132 133 #include "internal.h" 134 135 /* 136 * Initialise a struct file's readahead state. Assumes that the caller has 137 * memset *ra to zero. 138 */ 139 void 140 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 141 { 142 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 143 ra->prev_pos = -1; 144 } 145 EXPORT_SYMBOL_GPL(file_ra_state_init); 146 147 static void read_pages(struct readahead_control *rac) 148 { 149 const struct address_space_operations *aops = rac->mapping->a_ops; 150 struct folio *folio; 151 struct blk_plug plug; 152 153 if (!readahead_count(rac)) 154 return; 155 156 if (unlikely(rac->_workingset)) 157 psi_memstall_enter(&rac->_pflags); 158 blk_start_plug(&plug); 159 160 if (aops->readahead) { 161 aops->readahead(rac); 162 /* 163 * Clean up the remaining folios. The sizes in ->ra 164 * may be used to size the next readahead, so make sure 165 * they accurately reflect what happened. 166 */ 167 while ((folio = readahead_folio(rac)) != NULL) { 168 unsigned long nr = folio_nr_pages(folio); 169 170 folio_get(folio); 171 rac->ra->size -= nr; 172 if (rac->ra->async_size >= nr) { 173 rac->ra->async_size -= nr; 174 filemap_remove_folio(folio); 175 } 176 folio_unlock(folio); 177 folio_put(folio); 178 } 179 } else { 180 while ((folio = readahead_folio(rac)) != NULL) 181 aops->read_folio(rac->file, folio); 182 } 183 184 blk_finish_plug(&plug); 185 if (unlikely(rac->_workingset)) 186 psi_memstall_leave(&rac->_pflags); 187 rac->_workingset = false; 188 189 BUG_ON(readahead_count(rac)); 190 } 191 192 /** 193 * page_cache_ra_unbounded - Start unchecked readahead. 194 * @ractl: Readahead control. 195 * @nr_to_read: The number of pages to read. 196 * @lookahead_size: Where to start the next readahead. 197 * 198 * This function is for filesystems to call when they want to start 199 * readahead beyond a file's stated i_size. This is almost certainly 200 * not the function you want to call. Use page_cache_async_readahead() 201 * or page_cache_sync_readahead() instead. 202 * 203 * Context: File is referenced by caller. Mutexes may be held by caller. 204 * May sleep, but will not reenter filesystem to reclaim memory. 205 */ 206 void page_cache_ra_unbounded(struct readahead_control *ractl, 207 unsigned long nr_to_read, unsigned long lookahead_size) 208 { 209 struct address_space *mapping = ractl->mapping; 210 unsigned long index = readahead_index(ractl); 211 gfp_t gfp_mask = readahead_gfp_mask(mapping); 212 unsigned long i; 213 214 /* 215 * Partway through the readahead operation, we will have added 216 * locked pages to the page cache, but will not yet have submitted 217 * them for I/O. Adding another page may need to allocate memory, 218 * which can trigger memory reclaim. Telling the VM we're in 219 * the middle of a filesystem operation will cause it to not 220 * touch file-backed pages, preventing a deadlock. Most (all?) 221 * filesystems already specify __GFP_NOFS in their mapping's 222 * gfp_mask, but let's be explicit here. 223 */ 224 unsigned int nofs = memalloc_nofs_save(); 225 226 filemap_invalidate_lock_shared(mapping); 227 /* 228 * Preallocate as many pages as we will need. 229 */ 230 for (i = 0; i < nr_to_read; i++) { 231 struct folio *folio = xa_load(&mapping->i_pages, index + i); 232 233 if (folio && !xa_is_value(folio)) { 234 /* 235 * Page already present? Kick off the current batch 236 * of contiguous pages before continuing with the 237 * next batch. This page may be the one we would 238 * have intended to mark as Readahead, but we don't 239 * have a stable reference to this page, and it's 240 * not worth getting one just for that. 241 */ 242 read_pages(ractl); 243 ractl->_index++; 244 i = ractl->_index + ractl->_nr_pages - index - 1; 245 continue; 246 } 247 248 folio = filemap_alloc_folio(gfp_mask, 0); 249 if (!folio) 250 break; 251 if (filemap_add_folio(mapping, folio, index + i, 252 gfp_mask) < 0) { 253 folio_put(folio); 254 read_pages(ractl); 255 ractl->_index++; 256 i = ractl->_index + ractl->_nr_pages - index - 1; 257 continue; 258 } 259 if (i == nr_to_read - lookahead_size) 260 folio_set_readahead(folio); 261 ractl->_workingset |= folio_test_workingset(folio); 262 ractl->_nr_pages++; 263 } 264 265 /* 266 * Now start the IO. We ignore I/O errors - if the folio is not 267 * uptodate then the caller will launch read_folio again, and 268 * will then handle the error. 269 */ 270 read_pages(ractl); 271 filemap_invalidate_unlock_shared(mapping); 272 memalloc_nofs_restore(nofs); 273 } 274 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 275 276 /* 277 * do_page_cache_ra() actually reads a chunk of disk. It allocates 278 * the pages first, then submits them for I/O. This avoids the very bad 279 * behaviour which would occur if page allocations are causing VM writeback. 280 * We really don't want to intermingle reads and writes like that. 281 */ 282 static void do_page_cache_ra(struct readahead_control *ractl, 283 unsigned long nr_to_read, unsigned long lookahead_size) 284 { 285 struct inode *inode = ractl->mapping->host; 286 unsigned long index = readahead_index(ractl); 287 loff_t isize = i_size_read(inode); 288 pgoff_t end_index; /* The last page we want to read */ 289 290 if (isize == 0) 291 return; 292 293 end_index = (isize - 1) >> PAGE_SHIFT; 294 if (index > end_index) 295 return; 296 /* Don't read past the page containing the last byte of the file */ 297 if (nr_to_read > end_index - index) 298 nr_to_read = end_index - index + 1; 299 300 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 301 } 302 303 /* 304 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 305 * memory at once. 306 */ 307 void force_page_cache_ra(struct readahead_control *ractl, 308 unsigned long nr_to_read) 309 { 310 struct address_space *mapping = ractl->mapping; 311 struct file_ra_state *ra = ractl->ra; 312 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 313 unsigned long max_pages, index; 314 315 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead)) 316 return; 317 318 /* 319 * If the request exceeds the readahead window, allow the read to 320 * be up to the optimal hardware IO size 321 */ 322 index = readahead_index(ractl); 323 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 324 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 325 while (nr_to_read) { 326 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 327 328 if (this_chunk > nr_to_read) 329 this_chunk = nr_to_read; 330 ractl->_index = index; 331 do_page_cache_ra(ractl, this_chunk, 0); 332 333 index += this_chunk; 334 nr_to_read -= this_chunk; 335 } 336 } 337 338 /* 339 * Set the initial window size, round to next power of 2 and square 340 * for small size, x 4 for medium, and x 2 for large 341 * for 128k (32 page) max ra 342 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 343 */ 344 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 345 { 346 unsigned long newsize = roundup_pow_of_two(size); 347 348 if (newsize <= max / 32) 349 newsize = newsize * 4; 350 else if (newsize <= max / 4) 351 newsize = newsize * 2; 352 else 353 newsize = max; 354 355 return newsize; 356 } 357 358 /* 359 * Get the previous window size, ramp it up, and 360 * return it as the new window size. 361 */ 362 static unsigned long get_next_ra_size(struct file_ra_state *ra, 363 unsigned long max) 364 { 365 unsigned long cur = ra->size; 366 367 if (cur < max / 16) 368 return 4 * cur; 369 if (cur <= max / 2) 370 return 2 * cur; 371 return max; 372 } 373 374 /* 375 * On-demand readahead design. 376 * 377 * The fields in struct file_ra_state represent the most-recently-executed 378 * readahead attempt: 379 * 380 * |<----- async_size ---------| 381 * |------------------- size -------------------->| 382 * |==================#===========================| 383 * ^start ^page marked with PG_readahead 384 * 385 * To overlap application thinking time and disk I/O time, we do 386 * `readahead pipelining': Do not wait until the application consumed all 387 * readahead pages and stalled on the missing page at readahead_index; 388 * Instead, submit an asynchronous readahead I/O as soon as there are 389 * only async_size pages left in the readahead window. Normally async_size 390 * will be equal to size, for maximum pipelining. 391 * 392 * In interleaved sequential reads, concurrent streams on the same fd can 393 * be invalidating each other's readahead state. So we flag the new readahead 394 * page at (start+size-async_size) with PG_readahead, and use it as readahead 395 * indicator. The flag won't be set on already cached pages, to avoid the 396 * readahead-for-nothing fuss, saving pointless page cache lookups. 397 * 398 * prev_pos tracks the last visited byte in the _previous_ read request. 399 * It should be maintained by the caller, and will be used for detecting 400 * small random reads. Note that the readahead algorithm checks loosely 401 * for sequential patterns. Hence interleaved reads might be served as 402 * sequential ones. 403 * 404 * There is a special-case: if the first page which the application tries to 405 * read happens to be the first page of the file, it is assumed that a linear 406 * read is about to happen and the window is immediately set to the initial size 407 * based on I/O request size and the max_readahead. 408 * 409 * The code ramps up the readahead size aggressively at first, but slow down as 410 * it approaches max_readhead. 411 */ 412 413 /* 414 * Count contiguously cached pages from @index-1 to @index-@max, 415 * this count is a conservative estimation of 416 * - length of the sequential read sequence, or 417 * - thrashing threshold in memory tight systems 418 */ 419 static pgoff_t count_history_pages(struct address_space *mapping, 420 pgoff_t index, unsigned long max) 421 { 422 pgoff_t head; 423 424 rcu_read_lock(); 425 head = page_cache_prev_miss(mapping, index - 1, max); 426 rcu_read_unlock(); 427 428 return index - 1 - head; 429 } 430 431 /* 432 * page cache context based readahead 433 */ 434 static int try_context_readahead(struct address_space *mapping, 435 struct file_ra_state *ra, 436 pgoff_t index, 437 unsigned long req_size, 438 unsigned long max) 439 { 440 pgoff_t size; 441 442 size = count_history_pages(mapping, index, max); 443 444 /* 445 * not enough history pages: 446 * it could be a random read 447 */ 448 if (size <= req_size) 449 return 0; 450 451 /* 452 * starts from beginning of file: 453 * it is a strong indication of long-run stream (or whole-file-read) 454 */ 455 if (size >= index) 456 size *= 2; 457 458 ra->start = index; 459 ra->size = min(size + req_size, max); 460 ra->async_size = 1; 461 462 return 1; 463 } 464 465 /* 466 * There are some parts of the kernel which assume that PMD entries 467 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 468 * limit the maximum allocation order to PMD size. I'm not aware of any 469 * assumptions about maximum order if THP are disabled, but 8 seems like 470 * a good order (that's 1MB if you're using 4kB pages) 471 */ 472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 473 #define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 474 #else 475 #define MAX_PAGECACHE_ORDER 8 476 #endif 477 478 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 479 pgoff_t mark, unsigned int order, gfp_t gfp) 480 { 481 int err; 482 struct folio *folio = filemap_alloc_folio(gfp, order); 483 484 if (!folio) 485 return -ENOMEM; 486 mark = round_up(mark, 1UL << order); 487 if (index == mark) 488 folio_set_readahead(folio); 489 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 490 if (err) { 491 folio_put(folio); 492 return err; 493 } 494 495 ractl->_nr_pages += 1UL << order; 496 ractl->_workingset |= folio_test_workingset(folio); 497 return 0; 498 } 499 500 void page_cache_ra_order(struct readahead_control *ractl, 501 struct file_ra_state *ra, unsigned int new_order) 502 { 503 struct address_space *mapping = ractl->mapping; 504 pgoff_t index = readahead_index(ractl); 505 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 506 pgoff_t mark = index + ra->size - ra->async_size; 507 int err = 0; 508 gfp_t gfp = readahead_gfp_mask(mapping); 509 510 if (!mapping_large_folio_support(mapping) || ra->size < 4) 511 goto fallback; 512 513 limit = min(limit, index + ra->size - 1); 514 515 if (new_order < MAX_PAGECACHE_ORDER) { 516 new_order += 2; 517 if (new_order > MAX_PAGECACHE_ORDER) 518 new_order = MAX_PAGECACHE_ORDER; 519 while ((1 << new_order) > ra->size) 520 new_order--; 521 } 522 523 filemap_invalidate_lock_shared(mapping); 524 while (index <= limit) { 525 unsigned int order = new_order; 526 527 /* Align with smaller pages if needed */ 528 if (index & ((1UL << order) - 1)) { 529 order = __ffs(index); 530 if (order == 1) 531 order = 0; 532 } 533 /* Don't allocate pages past EOF */ 534 while (index + (1UL << order) - 1 > limit) { 535 if (--order == 1) 536 order = 0; 537 } 538 err = ra_alloc_folio(ractl, index, mark, order, gfp); 539 if (err) 540 break; 541 index += 1UL << order; 542 } 543 544 if (index > limit) { 545 ra->size += index - limit - 1; 546 ra->async_size += index - limit - 1; 547 } 548 549 read_pages(ractl); 550 filemap_invalidate_unlock_shared(mapping); 551 552 /* 553 * If there were already pages in the page cache, then we may have 554 * left some gaps. Let the regular readahead code take care of this 555 * situation. 556 */ 557 if (!err) 558 return; 559 fallback: 560 do_page_cache_ra(ractl, ra->size, ra->async_size); 561 } 562 563 /* 564 * A minimal readahead algorithm for trivial sequential/random reads. 565 */ 566 static void ondemand_readahead(struct readahead_control *ractl, 567 struct folio *folio, unsigned long req_size) 568 { 569 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 570 struct file_ra_state *ra = ractl->ra; 571 unsigned long max_pages = ra->ra_pages; 572 unsigned long add_pages; 573 pgoff_t index = readahead_index(ractl); 574 pgoff_t expected, prev_index; 575 unsigned int order = folio ? folio_order(folio) : 0; 576 577 /* 578 * If the request exceeds the readahead window, allow the read to 579 * be up to the optimal hardware IO size 580 */ 581 if (req_size > max_pages && bdi->io_pages > max_pages) 582 max_pages = min(req_size, bdi->io_pages); 583 584 /* 585 * start of file 586 */ 587 if (!index) 588 goto initial_readahead; 589 590 /* 591 * It's the expected callback index, assume sequential access. 592 * Ramp up sizes, and push forward the readahead window. 593 */ 594 expected = round_up(ra->start + ra->size - ra->async_size, 595 1UL << order); 596 if (index == expected || index == (ra->start + ra->size)) { 597 ra->start += ra->size; 598 ra->size = get_next_ra_size(ra, max_pages); 599 ra->async_size = ra->size; 600 goto readit; 601 } 602 603 /* 604 * Hit a marked folio without valid readahead state. 605 * E.g. interleaved reads. 606 * Query the pagecache for async_size, which normally equals to 607 * readahead size. Ramp it up and use it as the new readahead size. 608 */ 609 if (folio) { 610 pgoff_t start; 611 612 rcu_read_lock(); 613 start = page_cache_next_miss(ractl->mapping, index + 1, 614 max_pages); 615 rcu_read_unlock(); 616 617 if (!start || start - index > max_pages) 618 return; 619 620 ra->start = start; 621 ra->size = start - index; /* old async_size */ 622 ra->size += req_size; 623 ra->size = get_next_ra_size(ra, max_pages); 624 ra->async_size = ra->size; 625 goto readit; 626 } 627 628 /* 629 * oversize read 630 */ 631 if (req_size > max_pages) 632 goto initial_readahead; 633 634 /* 635 * sequential cache miss 636 * trivial case: (index - prev_index) == 1 637 * unaligned reads: (index - prev_index) == 0 638 */ 639 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 640 if (index - prev_index <= 1UL) 641 goto initial_readahead; 642 643 /* 644 * Query the page cache and look for the traces(cached history pages) 645 * that a sequential stream would leave behind. 646 */ 647 if (try_context_readahead(ractl->mapping, ra, index, req_size, 648 max_pages)) 649 goto readit; 650 651 /* 652 * standalone, small random read 653 * Read as is, and do not pollute the readahead state. 654 */ 655 do_page_cache_ra(ractl, req_size, 0); 656 return; 657 658 initial_readahead: 659 ra->start = index; 660 ra->size = get_init_ra_size(req_size, max_pages); 661 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 662 663 readit: 664 /* 665 * Will this read hit the readahead marker made by itself? 666 * If so, trigger the readahead marker hit now, and merge 667 * the resulted next readahead window into the current one. 668 * Take care of maximum IO pages as above. 669 */ 670 if (index == ra->start && ra->size == ra->async_size) { 671 add_pages = get_next_ra_size(ra, max_pages); 672 if (ra->size + add_pages <= max_pages) { 673 ra->async_size = add_pages; 674 ra->size += add_pages; 675 } else { 676 ra->size = max_pages; 677 ra->async_size = max_pages >> 1; 678 } 679 } 680 681 ractl->_index = ra->start; 682 page_cache_ra_order(ractl, ra, order); 683 } 684 685 void page_cache_sync_ra(struct readahead_control *ractl, 686 unsigned long req_count) 687 { 688 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 689 690 /* 691 * Even if readahead is disabled, issue this request as readahead 692 * as we'll need it to satisfy the requested range. The forced 693 * readahead will do the right thing and limit the read to just the 694 * requested range, which we'll set to 1 page for this case. 695 */ 696 if (!ractl->ra->ra_pages || blk_cgroup_congested()) { 697 if (!ractl->file) 698 return; 699 req_count = 1; 700 do_forced_ra = true; 701 } 702 703 /* be dumb */ 704 if (do_forced_ra) { 705 force_page_cache_ra(ractl, req_count); 706 return; 707 } 708 709 ondemand_readahead(ractl, NULL, req_count); 710 } 711 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 712 713 void page_cache_async_ra(struct readahead_control *ractl, 714 struct folio *folio, unsigned long req_count) 715 { 716 /* no readahead */ 717 if (!ractl->ra->ra_pages) 718 return; 719 720 /* 721 * Same bit is used for PG_readahead and PG_reclaim. 722 */ 723 if (folio_test_writeback(folio)) 724 return; 725 726 folio_clear_readahead(folio); 727 728 if (blk_cgroup_congested()) 729 return; 730 731 ondemand_readahead(ractl, folio, req_count); 732 } 733 EXPORT_SYMBOL_GPL(page_cache_async_ra); 734 735 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 736 { 737 ssize_t ret; 738 struct fd f; 739 740 ret = -EBADF; 741 f = fdget(fd); 742 if (!f.file || !(f.file->f_mode & FMODE_READ)) 743 goto out; 744 745 /* 746 * The readahead() syscall is intended to run only on files 747 * that can execute readahead. If readahead is not possible 748 * on this file, then we must return -EINVAL. 749 */ 750 ret = -EINVAL; 751 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 752 !S_ISREG(file_inode(f.file)->i_mode)) 753 goto out; 754 755 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 756 out: 757 fdput(f); 758 return ret; 759 } 760 761 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 762 { 763 return ksys_readahead(fd, offset, count); 764 } 765 766 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD) 767 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count) 768 { 769 return ksys_readahead(fd, compat_arg_u64_glue(offset), count); 770 } 771 #endif 772 773 /** 774 * readahead_expand - Expand a readahead request 775 * @ractl: The request to be expanded 776 * @new_start: The revised start 777 * @new_len: The revised size of the request 778 * 779 * Attempt to expand a readahead request outwards from the current size to the 780 * specified size by inserting locked pages before and after the current window 781 * to increase the size to the new window. This may involve the insertion of 782 * THPs, in which case the window may get expanded even beyond what was 783 * requested. 784 * 785 * The algorithm will stop if it encounters a conflicting page already in the 786 * pagecache and leave a smaller expansion than requested. 787 * 788 * The caller must check for this by examining the revised @ractl object for a 789 * different expansion than was requested. 790 */ 791 void readahead_expand(struct readahead_control *ractl, 792 loff_t new_start, size_t new_len) 793 { 794 struct address_space *mapping = ractl->mapping; 795 struct file_ra_state *ra = ractl->ra; 796 pgoff_t new_index, new_nr_pages; 797 gfp_t gfp_mask = readahead_gfp_mask(mapping); 798 799 new_index = new_start / PAGE_SIZE; 800 801 /* Expand the leading edge downwards */ 802 while (ractl->_index > new_index) { 803 unsigned long index = ractl->_index - 1; 804 struct page *page = xa_load(&mapping->i_pages, index); 805 806 if (page && !xa_is_value(page)) 807 return; /* Page apparently present */ 808 809 page = __page_cache_alloc(gfp_mask); 810 if (!page) 811 return; 812 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 813 put_page(page); 814 return; 815 } 816 817 ractl->_nr_pages++; 818 ractl->_index = page->index; 819 } 820 821 new_len += new_start - readahead_pos(ractl); 822 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 823 824 /* Expand the trailing edge upwards */ 825 while (ractl->_nr_pages < new_nr_pages) { 826 unsigned long index = ractl->_index + ractl->_nr_pages; 827 struct page *page = xa_load(&mapping->i_pages, index); 828 829 if (page && !xa_is_value(page)) 830 return; /* Page apparently present */ 831 832 page = __page_cache_alloc(gfp_mask); 833 if (!page) 834 return; 835 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 836 put_page(page); 837 return; 838 } 839 if (unlikely(PageWorkingset(page)) && !ractl->_workingset) { 840 ractl->_workingset = true; 841 psi_memstall_enter(&ractl->_pflags); 842 } 843 ractl->_nr_pages++; 844 if (ra) { 845 ra->size++; 846 ra->async_size++; 847 } 848 } 849 } 850 EXPORT_SYMBOL(readahead_expand); 851