1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 /** 12 * DOC: Readahead Overview 13 * 14 * Readahead is used to read content into the page cache before it is 15 * explicitly requested by the application. Readahead only ever 16 * attempts to read pages that are not yet in the page cache. If a 17 * page is present but not up-to-date, readahead will not try to read 18 * it. In that case a simple ->readpage() will be requested. 19 * 20 * Readahead is triggered when an application read request (whether a 21 * systemcall or a page fault) finds that the requested page is not in 22 * the page cache, or that it is in the page cache and has the 23 * %PG_readahead flag set. This flag indicates that the page was loaded 24 * as part of a previous read-ahead request and now that it has been 25 * accessed, it is time for the next read-ahead. 26 * 27 * Each readahead request is partly synchronous read, and partly async 28 * read-ahead. This is reflected in the struct file_ra_state which 29 * contains ->size being to total number of pages, and ->async_size 30 * which is the number of pages in the async section. The first page in 31 * this async section will have %PG_readahead set as a trigger for a 32 * subsequent read ahead. Once a series of sequential reads has been 33 * established, there should be no need for a synchronous component and 34 * all read ahead request will be fully asynchronous. 35 * 36 * When either of the triggers causes a readahead, three numbers need to 37 * be determined: the start of the region, the size of the region, and 38 * the size of the async tail. 39 * 40 * The start of the region is simply the first page address at or after 41 * the accessed address, which is not currently populated in the page 42 * cache. This is found with a simple search in the page cache. 43 * 44 * The size of the async tail is determined by subtracting the size that 45 * was explicitly requested from the determined request size, unless 46 * this would be less than zero - then zero is used. NOTE THIS 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED 48 * PAGE. 49 * 50 * The size of the region is normally determined from the size of the 51 * previous readahead which loaded the preceding pages. This may be 52 * discovered from the struct file_ra_state for simple sequential reads, 53 * or from examining the state of the page cache when multiple 54 * sequential reads are interleaved. Specifically: where the readahead 55 * was triggered by the %PG_readahead flag, the size of the previous 56 * readahead is assumed to be the number of pages from the triggering 57 * page to the start of the new readahead. In these cases, the size of 58 * the previous readahead is scaled, often doubled, for the new 59 * readahead, though see get_next_ra_size() for details. 60 * 61 * If the size of the previous read cannot be determined, the number of 62 * preceding pages in the page cache is used to estimate the size of 63 * a previous read. This estimate could easily be misled by random 64 * reads being coincidentally adjacent, so it is ignored unless it is 65 * larger than the current request, and it is not scaled up, unless it 66 * is at the start of file. 67 * 68 * In general read ahead is accelerated at the start of the file, as 69 * reads from there are often sequential. There are other minor 70 * adjustments to the read ahead size in various special cases and these 71 * are best discovered by reading the code. 72 * 73 * The above calculation determines the readahead, to which any requested 74 * read size may be added. 75 * 76 * Readahead requests are sent to the filesystem using the ->readahead() 77 * address space operation, for which mpage_readahead() is a canonical 78 * implementation. ->readahead() should normally initiate reads on all 79 * pages, but may fail to read any or all pages without causing an IO 80 * error. The page cache reading code will issue a ->readpage() request 81 * for any page which ->readahead() does not provided, and only an error 82 * from this will be final. 83 * 84 * ->readahead() will generally call readahead_page() repeatedly to get 85 * each page from those prepared for read ahead. It may fail to read a 86 * page by: 87 * 88 * * not calling readahead_page() sufficiently many times, effectively 89 * ignoring some pages, as might be appropriate if the path to 90 * storage is congested. 91 * 92 * * failing to actually submit a read request for a given page, 93 * possibly due to insufficient resources, or 94 * 95 * * getting an error during subsequent processing of a request. 96 * 97 * In the last two cases, the page should be unlocked to indicate that 98 * the read attempt has failed. In the first case the page will be 99 * unlocked by the caller. 100 * 101 * Those pages not in the final ``async_size`` of the request should be 102 * considered to be important and ->readahead() should not fail them due 103 * to congestion or temporary resource unavailability, but should wait 104 * for necessary resources (e.g. memory or indexing information) to 105 * become available. Pages in the final ``async_size`` may be 106 * considered less urgent and failure to read them is more acceptable. 107 * In this case it is best to use delete_from_page_cache() to remove the 108 * pages from the page cache as is automatically done for pages that 109 * were not fetched with readahead_page(). This will allow a 110 * subsequent synchronous read ahead request to try them again. If they 111 * are left in the page cache, then they will be read individually using 112 * ->readpage(). 113 * 114 */ 115 116 #include <linux/kernel.h> 117 #include <linux/dax.h> 118 #include <linux/gfp.h> 119 #include <linux/export.h> 120 #include <linux/backing-dev.h> 121 #include <linux/task_io_accounting_ops.h> 122 #include <linux/pagevec.h> 123 #include <linux/pagemap.h> 124 #include <linux/syscalls.h> 125 #include <linux/file.h> 126 #include <linux/mm_inline.h> 127 #include <linux/blk-cgroup.h> 128 #include <linux/fadvise.h> 129 #include <linux/sched/mm.h> 130 131 #include "internal.h" 132 133 /* 134 * Initialise a struct file's readahead state. Assumes that the caller has 135 * memset *ra to zero. 136 */ 137 void 138 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 139 { 140 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 141 ra->prev_pos = -1; 142 } 143 EXPORT_SYMBOL_GPL(file_ra_state_init); 144 145 /* 146 * see if a page needs releasing upon read_cache_pages() failure 147 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 148 * before calling, such as the NFS fs marking pages that are cached locally 149 * on disk, thus we need to give the fs a chance to clean up in the event of 150 * an error 151 */ 152 static void read_cache_pages_invalidate_page(struct address_space *mapping, 153 struct page *page) 154 { 155 if (page_has_private(page)) { 156 if (!trylock_page(page)) 157 BUG(); 158 page->mapping = mapping; 159 folio_invalidate(page_folio(page), 0, PAGE_SIZE); 160 page->mapping = NULL; 161 unlock_page(page); 162 } 163 put_page(page); 164 } 165 166 /* 167 * release a list of pages, invalidating them first if need be 168 */ 169 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 170 struct list_head *pages) 171 { 172 struct page *victim; 173 174 while (!list_empty(pages)) { 175 victim = lru_to_page(pages); 176 list_del(&victim->lru); 177 read_cache_pages_invalidate_page(mapping, victim); 178 } 179 } 180 181 /** 182 * read_cache_pages - populate an address space with some pages & start reads against them 183 * @mapping: the address_space 184 * @pages: The address of a list_head which contains the target pages. These 185 * pages have their ->index populated and are otherwise uninitialised. 186 * @filler: callback routine for filling a single page. 187 * @data: private data for the callback routine. 188 * 189 * Hides the details of the LRU cache etc from the filesystems. 190 * 191 * Returns: %0 on success, error return by @filler otherwise 192 */ 193 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 194 int (*filler)(void *, struct page *), void *data) 195 { 196 struct page *page; 197 int ret = 0; 198 199 while (!list_empty(pages)) { 200 page = lru_to_page(pages); 201 list_del(&page->lru); 202 if (add_to_page_cache_lru(page, mapping, page->index, 203 readahead_gfp_mask(mapping))) { 204 read_cache_pages_invalidate_page(mapping, page); 205 continue; 206 } 207 put_page(page); 208 209 ret = filler(data, page); 210 if (unlikely(ret)) { 211 read_cache_pages_invalidate_pages(mapping, pages); 212 break; 213 } 214 task_io_account_read(PAGE_SIZE); 215 } 216 return ret; 217 } 218 219 EXPORT_SYMBOL(read_cache_pages); 220 221 static void read_pages(struct readahead_control *rac, struct list_head *pages, 222 bool skip_page) 223 { 224 const struct address_space_operations *aops = rac->mapping->a_ops; 225 struct page *page; 226 struct blk_plug plug; 227 228 if (!readahead_count(rac)) 229 goto out; 230 231 blk_start_plug(&plug); 232 233 if (aops->readahead) { 234 aops->readahead(rac); 235 /* 236 * Clean up the remaining pages. The sizes in ->ra 237 * maybe be used to size next read-ahead, so make sure 238 * they accurately reflect what happened. 239 */ 240 while ((page = readahead_page(rac))) { 241 rac->ra->size -= 1; 242 if (rac->ra->async_size > 0) { 243 rac->ra->async_size -= 1; 244 delete_from_page_cache(page); 245 } 246 unlock_page(page); 247 put_page(page); 248 } 249 } else if (aops->readpages) { 250 aops->readpages(rac->file, rac->mapping, pages, 251 readahead_count(rac)); 252 /* Clean up the remaining pages */ 253 put_pages_list(pages); 254 rac->_index += rac->_nr_pages; 255 rac->_nr_pages = 0; 256 } else { 257 while ((page = readahead_page(rac))) { 258 aops->readpage(rac->file, page); 259 put_page(page); 260 } 261 } 262 263 blk_finish_plug(&plug); 264 265 BUG_ON(pages && !list_empty(pages)); 266 BUG_ON(readahead_count(rac)); 267 268 out: 269 if (skip_page) 270 rac->_index++; 271 } 272 273 /** 274 * page_cache_ra_unbounded - Start unchecked readahead. 275 * @ractl: Readahead control. 276 * @nr_to_read: The number of pages to read. 277 * @lookahead_size: Where to start the next readahead. 278 * 279 * This function is for filesystems to call when they want to start 280 * readahead beyond a file's stated i_size. This is almost certainly 281 * not the function you want to call. Use page_cache_async_readahead() 282 * or page_cache_sync_readahead() instead. 283 * 284 * Context: File is referenced by caller. Mutexes may be held by caller. 285 * May sleep, but will not reenter filesystem to reclaim memory. 286 */ 287 void page_cache_ra_unbounded(struct readahead_control *ractl, 288 unsigned long nr_to_read, unsigned long lookahead_size) 289 { 290 struct address_space *mapping = ractl->mapping; 291 unsigned long index = readahead_index(ractl); 292 LIST_HEAD(page_pool); 293 gfp_t gfp_mask = readahead_gfp_mask(mapping); 294 unsigned long i; 295 296 /* 297 * Partway through the readahead operation, we will have added 298 * locked pages to the page cache, but will not yet have submitted 299 * them for I/O. Adding another page may need to allocate memory, 300 * which can trigger memory reclaim. Telling the VM we're in 301 * the middle of a filesystem operation will cause it to not 302 * touch file-backed pages, preventing a deadlock. Most (all?) 303 * filesystems already specify __GFP_NOFS in their mapping's 304 * gfp_mask, but let's be explicit here. 305 */ 306 unsigned int nofs = memalloc_nofs_save(); 307 308 filemap_invalidate_lock_shared(mapping); 309 /* 310 * Preallocate as many pages as we will need. 311 */ 312 for (i = 0; i < nr_to_read; i++) { 313 struct folio *folio = xa_load(&mapping->i_pages, index + i); 314 315 if (folio && !xa_is_value(folio)) { 316 /* 317 * Page already present? Kick off the current batch 318 * of contiguous pages before continuing with the 319 * next batch. This page may be the one we would 320 * have intended to mark as Readahead, but we don't 321 * have a stable reference to this page, and it's 322 * not worth getting one just for that. 323 */ 324 read_pages(ractl, &page_pool, true); 325 i = ractl->_index + ractl->_nr_pages - index - 1; 326 continue; 327 } 328 329 folio = filemap_alloc_folio(gfp_mask, 0); 330 if (!folio) 331 break; 332 if (mapping->a_ops->readpages) { 333 folio->index = index + i; 334 list_add(&folio->lru, &page_pool); 335 } else if (filemap_add_folio(mapping, folio, index + i, 336 gfp_mask) < 0) { 337 folio_put(folio); 338 read_pages(ractl, &page_pool, true); 339 i = ractl->_index + ractl->_nr_pages - index - 1; 340 continue; 341 } 342 if (i == nr_to_read - lookahead_size) 343 folio_set_readahead(folio); 344 ractl->_nr_pages++; 345 } 346 347 /* 348 * Now start the IO. We ignore I/O errors - if the page is not 349 * uptodate then the caller will launch readpage again, and 350 * will then handle the error. 351 */ 352 read_pages(ractl, &page_pool, false); 353 filemap_invalidate_unlock_shared(mapping); 354 memalloc_nofs_restore(nofs); 355 } 356 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded); 357 358 /* 359 * do_page_cache_ra() actually reads a chunk of disk. It allocates 360 * the pages first, then submits them for I/O. This avoids the very bad 361 * behaviour which would occur if page allocations are causing VM writeback. 362 * We really don't want to intermingle reads and writes like that. 363 */ 364 static void do_page_cache_ra(struct readahead_control *ractl, 365 unsigned long nr_to_read, unsigned long lookahead_size) 366 { 367 struct inode *inode = ractl->mapping->host; 368 unsigned long index = readahead_index(ractl); 369 loff_t isize = i_size_read(inode); 370 pgoff_t end_index; /* The last page we want to read */ 371 372 if (isize == 0) 373 return; 374 375 end_index = (isize - 1) >> PAGE_SHIFT; 376 if (index > end_index) 377 return; 378 /* Don't read past the page containing the last byte of the file */ 379 if (nr_to_read > end_index - index) 380 nr_to_read = end_index - index + 1; 381 382 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size); 383 } 384 385 /* 386 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 387 * memory at once. 388 */ 389 void force_page_cache_ra(struct readahead_control *ractl, 390 unsigned long nr_to_read) 391 { 392 struct address_space *mapping = ractl->mapping; 393 struct file_ra_state *ra = ractl->ra; 394 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 395 unsigned long max_pages, index; 396 397 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages && 398 !mapping->a_ops->readahead)) 399 return; 400 401 /* 402 * If the request exceeds the readahead window, allow the read to 403 * be up to the optimal hardware IO size 404 */ 405 index = readahead_index(ractl); 406 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 407 nr_to_read = min_t(unsigned long, nr_to_read, max_pages); 408 while (nr_to_read) { 409 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 410 411 if (this_chunk > nr_to_read) 412 this_chunk = nr_to_read; 413 ractl->_index = index; 414 do_page_cache_ra(ractl, this_chunk, 0); 415 416 index += this_chunk; 417 nr_to_read -= this_chunk; 418 } 419 } 420 421 /* 422 * Set the initial window size, round to next power of 2 and square 423 * for small size, x 4 for medium, and x 2 for large 424 * for 128k (32 page) max ra 425 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial 426 */ 427 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 428 { 429 unsigned long newsize = roundup_pow_of_two(size); 430 431 if (newsize <= max / 32) 432 newsize = newsize * 4; 433 else if (newsize <= max / 4) 434 newsize = newsize * 2; 435 else 436 newsize = max; 437 438 return newsize; 439 } 440 441 /* 442 * Get the previous window size, ramp it up, and 443 * return it as the new window size. 444 */ 445 static unsigned long get_next_ra_size(struct file_ra_state *ra, 446 unsigned long max) 447 { 448 unsigned long cur = ra->size; 449 450 if (cur < max / 16) 451 return 4 * cur; 452 if (cur <= max / 2) 453 return 2 * cur; 454 return max; 455 } 456 457 /* 458 * On-demand readahead design. 459 * 460 * The fields in struct file_ra_state represent the most-recently-executed 461 * readahead attempt: 462 * 463 * |<----- async_size ---------| 464 * |------------------- size -------------------->| 465 * |==================#===========================| 466 * ^start ^page marked with PG_readahead 467 * 468 * To overlap application thinking time and disk I/O time, we do 469 * `readahead pipelining': Do not wait until the application consumed all 470 * readahead pages and stalled on the missing page at readahead_index; 471 * Instead, submit an asynchronous readahead I/O as soon as there are 472 * only async_size pages left in the readahead window. Normally async_size 473 * will be equal to size, for maximum pipelining. 474 * 475 * In interleaved sequential reads, concurrent streams on the same fd can 476 * be invalidating each other's readahead state. So we flag the new readahead 477 * page at (start+size-async_size) with PG_readahead, and use it as readahead 478 * indicator. The flag won't be set on already cached pages, to avoid the 479 * readahead-for-nothing fuss, saving pointless page cache lookups. 480 * 481 * prev_pos tracks the last visited byte in the _previous_ read request. 482 * It should be maintained by the caller, and will be used for detecting 483 * small random reads. Note that the readahead algorithm checks loosely 484 * for sequential patterns. Hence interleaved reads might be served as 485 * sequential ones. 486 * 487 * There is a special-case: if the first page which the application tries to 488 * read happens to be the first page of the file, it is assumed that a linear 489 * read is about to happen and the window is immediately set to the initial size 490 * based on I/O request size and the max_readahead. 491 * 492 * The code ramps up the readahead size aggressively at first, but slow down as 493 * it approaches max_readhead. 494 */ 495 496 /* 497 * Count contiguously cached pages from @index-1 to @index-@max, 498 * this count is a conservative estimation of 499 * - length of the sequential read sequence, or 500 * - thrashing threshold in memory tight systems 501 */ 502 static pgoff_t count_history_pages(struct address_space *mapping, 503 pgoff_t index, unsigned long max) 504 { 505 pgoff_t head; 506 507 rcu_read_lock(); 508 head = page_cache_prev_miss(mapping, index - 1, max); 509 rcu_read_unlock(); 510 511 return index - 1 - head; 512 } 513 514 /* 515 * page cache context based read-ahead 516 */ 517 static int try_context_readahead(struct address_space *mapping, 518 struct file_ra_state *ra, 519 pgoff_t index, 520 unsigned long req_size, 521 unsigned long max) 522 { 523 pgoff_t size; 524 525 size = count_history_pages(mapping, index, max); 526 527 /* 528 * not enough history pages: 529 * it could be a random read 530 */ 531 if (size <= req_size) 532 return 0; 533 534 /* 535 * starts from beginning of file: 536 * it is a strong indication of long-run stream (or whole-file-read) 537 */ 538 if (size >= index) 539 size *= 2; 540 541 ra->start = index; 542 ra->size = min(size + req_size, max); 543 ra->async_size = 1; 544 545 return 1; 546 } 547 548 /* 549 * There are some parts of the kernel which assume that PMD entries 550 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 551 * limit the maximum allocation order to PMD size. I'm not aware of any 552 * assumptions about maximum order if THP are disabled, but 8 seems like 553 * a good order (that's 1MB if you're using 4kB pages) 554 */ 555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 556 #define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 557 #else 558 #define MAX_PAGECACHE_ORDER 8 559 #endif 560 561 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index, 562 pgoff_t mark, unsigned int order, gfp_t gfp) 563 { 564 int err; 565 struct folio *folio = filemap_alloc_folio(gfp, order); 566 567 if (!folio) 568 return -ENOMEM; 569 if (mark - index < (1UL << order)) 570 folio_set_readahead(folio); 571 err = filemap_add_folio(ractl->mapping, folio, index, gfp); 572 if (err) 573 folio_put(folio); 574 else 575 ractl->_nr_pages += 1UL << order; 576 return err; 577 } 578 579 void page_cache_ra_order(struct readahead_control *ractl, 580 struct file_ra_state *ra, unsigned int new_order) 581 { 582 struct address_space *mapping = ractl->mapping; 583 pgoff_t index = readahead_index(ractl); 584 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT; 585 pgoff_t mark = index + ra->size - ra->async_size; 586 int err = 0; 587 gfp_t gfp = readahead_gfp_mask(mapping); 588 589 if (!mapping_large_folio_support(mapping) || ra->size < 4) 590 goto fallback; 591 592 limit = min(limit, index + ra->size - 1); 593 594 if (new_order < MAX_PAGECACHE_ORDER) { 595 new_order += 2; 596 if (new_order > MAX_PAGECACHE_ORDER) 597 new_order = MAX_PAGECACHE_ORDER; 598 while ((1 << new_order) > ra->size) 599 new_order--; 600 } 601 602 while (index <= limit) { 603 unsigned int order = new_order; 604 605 /* Align with smaller pages if needed */ 606 if (index & ((1UL << order) - 1)) { 607 order = __ffs(index); 608 if (order == 1) 609 order = 0; 610 } 611 /* Don't allocate pages past EOF */ 612 while (index + (1UL << order) - 1 > limit) { 613 if (--order == 1) 614 order = 0; 615 } 616 err = ra_alloc_folio(ractl, index, mark, order, gfp); 617 if (err) 618 break; 619 index += 1UL << order; 620 } 621 622 if (index > limit) { 623 ra->size += index - limit - 1; 624 ra->async_size += index - limit - 1; 625 } 626 627 read_pages(ractl, NULL, false); 628 629 /* 630 * If there were already pages in the page cache, then we may have 631 * left some gaps. Let the regular readahead code take care of this 632 * situation. 633 */ 634 if (!err) 635 return; 636 fallback: 637 do_page_cache_ra(ractl, ra->size, ra->async_size); 638 } 639 640 /* 641 * A minimal readahead algorithm for trivial sequential/random reads. 642 */ 643 static void ondemand_readahead(struct readahead_control *ractl, 644 struct folio *folio, unsigned long req_size) 645 { 646 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host); 647 struct file_ra_state *ra = ractl->ra; 648 unsigned long max_pages = ra->ra_pages; 649 unsigned long add_pages; 650 unsigned long index = readahead_index(ractl); 651 pgoff_t prev_index; 652 653 /* 654 * If the request exceeds the readahead window, allow the read to 655 * be up to the optimal hardware IO size 656 */ 657 if (req_size > max_pages && bdi->io_pages > max_pages) 658 max_pages = min(req_size, bdi->io_pages); 659 660 /* 661 * start of file 662 */ 663 if (!index) 664 goto initial_readahead; 665 666 /* 667 * It's the expected callback index, assume sequential access. 668 * Ramp up sizes, and push forward the readahead window. 669 */ 670 if ((index == (ra->start + ra->size - ra->async_size) || 671 index == (ra->start + ra->size))) { 672 ra->start += ra->size; 673 ra->size = get_next_ra_size(ra, max_pages); 674 ra->async_size = ra->size; 675 goto readit; 676 } 677 678 /* 679 * Hit a marked folio without valid readahead state. 680 * E.g. interleaved reads. 681 * Query the pagecache for async_size, which normally equals to 682 * readahead size. Ramp it up and use it as the new readahead size. 683 */ 684 if (folio) { 685 pgoff_t start; 686 687 rcu_read_lock(); 688 start = page_cache_next_miss(ractl->mapping, index + 1, 689 max_pages); 690 rcu_read_unlock(); 691 692 if (!start || start - index > max_pages) 693 return; 694 695 ra->start = start; 696 ra->size = start - index; /* old async_size */ 697 ra->size += req_size; 698 ra->size = get_next_ra_size(ra, max_pages); 699 ra->async_size = ra->size; 700 goto readit; 701 } 702 703 /* 704 * oversize read 705 */ 706 if (req_size > max_pages) 707 goto initial_readahead; 708 709 /* 710 * sequential cache miss 711 * trivial case: (index - prev_index) == 1 712 * unaligned reads: (index - prev_index) == 0 713 */ 714 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 715 if (index - prev_index <= 1UL) 716 goto initial_readahead; 717 718 /* 719 * Query the page cache and look for the traces(cached history pages) 720 * that a sequential stream would leave behind. 721 */ 722 if (try_context_readahead(ractl->mapping, ra, index, req_size, 723 max_pages)) 724 goto readit; 725 726 /* 727 * standalone, small random read 728 * Read as is, and do not pollute the readahead state. 729 */ 730 do_page_cache_ra(ractl, req_size, 0); 731 return; 732 733 initial_readahead: 734 ra->start = index; 735 ra->size = get_init_ra_size(req_size, max_pages); 736 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 737 738 readit: 739 /* 740 * Will this read hit the readahead marker made by itself? 741 * If so, trigger the readahead marker hit now, and merge 742 * the resulted next readahead window into the current one. 743 * Take care of maximum IO pages as above. 744 */ 745 if (index == ra->start && ra->size == ra->async_size) { 746 add_pages = get_next_ra_size(ra, max_pages); 747 if (ra->size + add_pages <= max_pages) { 748 ra->async_size = add_pages; 749 ra->size += add_pages; 750 } else { 751 ra->size = max_pages; 752 ra->async_size = max_pages >> 1; 753 } 754 } 755 756 ractl->_index = ra->start; 757 page_cache_ra_order(ractl, ra, folio ? folio_order(folio) : 0); 758 } 759 760 void page_cache_sync_ra(struct readahead_control *ractl, 761 unsigned long req_count) 762 { 763 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM); 764 765 /* 766 * Even if read-ahead is disabled, issue this request as read-ahead 767 * as we'll need it to satisfy the requested range. The forced 768 * read-ahead will do the right thing and limit the read to just the 769 * requested range, which we'll set to 1 page for this case. 770 */ 771 if (!ractl->ra->ra_pages || blk_cgroup_congested()) { 772 if (!ractl->file) 773 return; 774 req_count = 1; 775 do_forced_ra = true; 776 } 777 778 /* be dumb */ 779 if (do_forced_ra) { 780 force_page_cache_ra(ractl, req_count); 781 return; 782 } 783 784 /* do read-ahead */ 785 ondemand_readahead(ractl, NULL, req_count); 786 } 787 EXPORT_SYMBOL_GPL(page_cache_sync_ra); 788 789 void page_cache_async_ra(struct readahead_control *ractl, 790 struct folio *folio, unsigned long req_count) 791 { 792 /* no read-ahead */ 793 if (!ractl->ra->ra_pages) 794 return; 795 796 /* 797 * Same bit is used for PG_readahead and PG_reclaim. 798 */ 799 if (folio_test_writeback(folio)) 800 return; 801 802 folio_clear_readahead(folio); 803 804 if (blk_cgroup_congested()) 805 return; 806 807 /* do read-ahead */ 808 ondemand_readahead(ractl, folio, req_count); 809 } 810 EXPORT_SYMBOL_GPL(page_cache_async_ra); 811 812 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 813 { 814 ssize_t ret; 815 struct fd f; 816 817 ret = -EBADF; 818 f = fdget(fd); 819 if (!f.file || !(f.file->f_mode & FMODE_READ)) 820 goto out; 821 822 /* 823 * The readahead() syscall is intended to run only on files 824 * that can execute readahead. If readahead is not possible 825 * on this file, then we must return -EINVAL. 826 */ 827 ret = -EINVAL; 828 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 829 !S_ISREG(file_inode(f.file)->i_mode)) 830 goto out; 831 832 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 833 out: 834 fdput(f); 835 return ret; 836 } 837 838 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 839 { 840 return ksys_readahead(fd, offset, count); 841 } 842 843 /** 844 * readahead_expand - Expand a readahead request 845 * @ractl: The request to be expanded 846 * @new_start: The revised start 847 * @new_len: The revised size of the request 848 * 849 * Attempt to expand a readahead request outwards from the current size to the 850 * specified size by inserting locked pages before and after the current window 851 * to increase the size to the new window. This may involve the insertion of 852 * THPs, in which case the window may get expanded even beyond what was 853 * requested. 854 * 855 * The algorithm will stop if it encounters a conflicting page already in the 856 * pagecache and leave a smaller expansion than requested. 857 * 858 * The caller must check for this by examining the revised @ractl object for a 859 * different expansion than was requested. 860 */ 861 void readahead_expand(struct readahead_control *ractl, 862 loff_t new_start, size_t new_len) 863 { 864 struct address_space *mapping = ractl->mapping; 865 struct file_ra_state *ra = ractl->ra; 866 pgoff_t new_index, new_nr_pages; 867 gfp_t gfp_mask = readahead_gfp_mask(mapping); 868 869 new_index = new_start / PAGE_SIZE; 870 871 /* Expand the leading edge downwards */ 872 while (ractl->_index > new_index) { 873 unsigned long index = ractl->_index - 1; 874 struct page *page = xa_load(&mapping->i_pages, index); 875 876 if (page && !xa_is_value(page)) 877 return; /* Page apparently present */ 878 879 page = __page_cache_alloc(gfp_mask); 880 if (!page) 881 return; 882 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 883 put_page(page); 884 return; 885 } 886 887 ractl->_nr_pages++; 888 ractl->_index = page->index; 889 } 890 891 new_len += new_start - readahead_pos(ractl); 892 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE); 893 894 /* Expand the trailing edge upwards */ 895 while (ractl->_nr_pages < new_nr_pages) { 896 unsigned long index = ractl->_index + ractl->_nr_pages; 897 struct page *page = xa_load(&mapping->i_pages, index); 898 899 if (page && !xa_is_value(page)) 900 return; /* Page apparently present */ 901 902 page = __page_cache_alloc(gfp_mask); 903 if (!page) 904 return; 905 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) { 906 put_page(page); 907 return; 908 } 909 ractl->_nr_pages++; 910 if (ra) { 911 ra->size++; 912 ra->async_size++; 913 } 914 } 915 } 916 EXPORT_SYMBOL(readahead_expand); 917