1 /* 2 * mm/readahead.c - address_space-level file readahead. 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 09Apr2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/dax.h> 12 #include <linux/gfp.h> 13 #include <linux/export.h> 14 #include <linux/blkdev.h> 15 #include <linux/backing-dev.h> 16 #include <linux/task_io_accounting_ops.h> 17 #include <linux/pagevec.h> 18 #include <linux/pagemap.h> 19 #include <linux/syscalls.h> 20 #include <linux/file.h> 21 #include <linux/mm_inline.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/fadvise.h> 24 25 #include "internal.h" 26 27 /* 28 * Initialise a struct file's readahead state. Assumes that the caller has 29 * memset *ra to zero. 30 */ 31 void 32 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 33 { 34 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 35 ra->prev_pos = -1; 36 } 37 EXPORT_SYMBOL_GPL(file_ra_state_init); 38 39 /* 40 * see if a page needs releasing upon read_cache_pages() failure 41 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 42 * before calling, such as the NFS fs marking pages that are cached locally 43 * on disk, thus we need to give the fs a chance to clean up in the event of 44 * an error 45 */ 46 static void read_cache_pages_invalidate_page(struct address_space *mapping, 47 struct page *page) 48 { 49 if (page_has_private(page)) { 50 if (!trylock_page(page)) 51 BUG(); 52 page->mapping = mapping; 53 do_invalidatepage(page, 0, PAGE_SIZE); 54 page->mapping = NULL; 55 unlock_page(page); 56 } 57 put_page(page); 58 } 59 60 /* 61 * release a list of pages, invalidating them first if need be 62 */ 63 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 64 struct list_head *pages) 65 { 66 struct page *victim; 67 68 while (!list_empty(pages)) { 69 victim = lru_to_page(pages); 70 list_del(&victim->lru); 71 read_cache_pages_invalidate_page(mapping, victim); 72 } 73 } 74 75 /** 76 * read_cache_pages - populate an address space with some pages & start reads against them 77 * @mapping: the address_space 78 * @pages: The address of a list_head which contains the target pages. These 79 * pages have their ->index populated and are otherwise uninitialised. 80 * @filler: callback routine for filling a single page. 81 * @data: private data for the callback routine. 82 * 83 * Hides the details of the LRU cache etc from the filesystems. 84 */ 85 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 86 int (*filler)(void *, struct page *), void *data) 87 { 88 struct page *page; 89 int ret = 0; 90 91 while (!list_empty(pages)) { 92 page = lru_to_page(pages); 93 list_del(&page->lru); 94 if (add_to_page_cache_lru(page, mapping, page->index, 95 readahead_gfp_mask(mapping))) { 96 read_cache_pages_invalidate_page(mapping, page); 97 continue; 98 } 99 put_page(page); 100 101 ret = filler(data, page); 102 if (unlikely(ret)) { 103 read_cache_pages_invalidate_pages(mapping, pages); 104 break; 105 } 106 task_io_account_read(PAGE_SIZE); 107 } 108 return ret; 109 } 110 111 EXPORT_SYMBOL(read_cache_pages); 112 113 static int read_pages(struct address_space *mapping, struct file *filp, 114 struct list_head *pages, unsigned int nr_pages, gfp_t gfp) 115 { 116 struct blk_plug plug; 117 unsigned page_idx; 118 int ret; 119 120 blk_start_plug(&plug); 121 122 if (mapping->a_ops->readpages) { 123 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 124 /* Clean up the remaining pages */ 125 put_pages_list(pages); 126 goto out; 127 } 128 129 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 130 struct page *page = lru_to_page(pages); 131 list_del(&page->lru); 132 if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) 133 mapping->a_ops->readpage(filp, page); 134 put_page(page); 135 } 136 ret = 0; 137 138 out: 139 blk_finish_plug(&plug); 140 141 return ret; 142 } 143 144 /* 145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates 146 * the pages first, then submits them for I/O. This avoids the very bad 147 * behaviour which would occur if page allocations are causing VM writeback. 148 * We really don't want to intermingle reads and writes like that. 149 * 150 * Returns the number of pages requested, or the maximum amount of I/O allowed. 151 */ 152 unsigned int __do_page_cache_readahead(struct address_space *mapping, 153 struct file *filp, pgoff_t offset, unsigned long nr_to_read, 154 unsigned long lookahead_size) 155 { 156 struct inode *inode = mapping->host; 157 struct page *page; 158 unsigned long end_index; /* The last page we want to read */ 159 LIST_HEAD(page_pool); 160 int page_idx; 161 unsigned int nr_pages = 0; 162 loff_t isize = i_size_read(inode); 163 gfp_t gfp_mask = readahead_gfp_mask(mapping); 164 165 if (isize == 0) 166 goto out; 167 168 end_index = ((isize - 1) >> PAGE_SHIFT); 169 170 /* 171 * Preallocate as many pages as we will need. 172 */ 173 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 174 pgoff_t page_offset = offset + page_idx; 175 176 if (page_offset > end_index) 177 break; 178 179 rcu_read_lock(); 180 page = radix_tree_lookup(&mapping->i_pages, page_offset); 181 rcu_read_unlock(); 182 if (page && !radix_tree_exceptional_entry(page)) { 183 /* 184 * Page already present? Kick off the current batch of 185 * contiguous pages before continuing with the next 186 * batch. 187 */ 188 if (nr_pages) 189 read_pages(mapping, filp, &page_pool, nr_pages, 190 gfp_mask); 191 nr_pages = 0; 192 continue; 193 } 194 195 page = __page_cache_alloc(gfp_mask); 196 if (!page) 197 break; 198 page->index = page_offset; 199 list_add(&page->lru, &page_pool); 200 if (page_idx == nr_to_read - lookahead_size) 201 SetPageReadahead(page); 202 nr_pages++; 203 } 204 205 /* 206 * Now start the IO. We ignore I/O errors - if the page is not 207 * uptodate then the caller will launch readpage again, and 208 * will then handle the error. 209 */ 210 if (nr_pages) 211 read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask); 212 BUG_ON(!list_empty(&page_pool)); 213 out: 214 return nr_pages; 215 } 216 217 /* 218 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 219 * memory at once. 220 */ 221 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 222 pgoff_t offset, unsigned long nr_to_read) 223 { 224 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 225 struct file_ra_state *ra = &filp->f_ra; 226 unsigned long max_pages; 227 228 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 229 return -EINVAL; 230 231 /* 232 * If the request exceeds the readahead window, allow the read to 233 * be up to the optimal hardware IO size 234 */ 235 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 236 nr_to_read = min(nr_to_read, max_pages); 237 while (nr_to_read) { 238 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 239 240 if (this_chunk > nr_to_read) 241 this_chunk = nr_to_read; 242 __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); 243 244 offset += this_chunk; 245 nr_to_read -= this_chunk; 246 } 247 return 0; 248 } 249 250 /* 251 * Set the initial window size, round to next power of 2 and square 252 * for small size, x 4 for medium, and x 2 for large 253 * for 128k (32 page) max ra 254 * 1-8 page = 32k initial, > 8 page = 128k initial 255 */ 256 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 257 { 258 unsigned long newsize = roundup_pow_of_two(size); 259 260 if (newsize <= max / 32) 261 newsize = newsize * 4; 262 else if (newsize <= max / 4) 263 newsize = newsize * 2; 264 else 265 newsize = max; 266 267 return newsize; 268 } 269 270 /* 271 * Get the previous window size, ramp it up, and 272 * return it as the new window size. 273 */ 274 static unsigned long get_next_ra_size(struct file_ra_state *ra, 275 unsigned long max) 276 { 277 unsigned long cur = ra->size; 278 unsigned long newsize; 279 280 if (cur < max / 16) 281 newsize = 4 * cur; 282 else 283 newsize = 2 * cur; 284 285 return min(newsize, max); 286 } 287 288 /* 289 * On-demand readahead design. 290 * 291 * The fields in struct file_ra_state represent the most-recently-executed 292 * readahead attempt: 293 * 294 * |<----- async_size ---------| 295 * |------------------- size -------------------->| 296 * |==================#===========================| 297 * ^start ^page marked with PG_readahead 298 * 299 * To overlap application thinking time and disk I/O time, we do 300 * `readahead pipelining': Do not wait until the application consumed all 301 * readahead pages and stalled on the missing page at readahead_index; 302 * Instead, submit an asynchronous readahead I/O as soon as there are 303 * only async_size pages left in the readahead window. Normally async_size 304 * will be equal to size, for maximum pipelining. 305 * 306 * In interleaved sequential reads, concurrent streams on the same fd can 307 * be invalidating each other's readahead state. So we flag the new readahead 308 * page at (start+size-async_size) with PG_readahead, and use it as readahead 309 * indicator. The flag won't be set on already cached pages, to avoid the 310 * readahead-for-nothing fuss, saving pointless page cache lookups. 311 * 312 * prev_pos tracks the last visited byte in the _previous_ read request. 313 * It should be maintained by the caller, and will be used for detecting 314 * small random reads. Note that the readahead algorithm checks loosely 315 * for sequential patterns. Hence interleaved reads might be served as 316 * sequential ones. 317 * 318 * There is a special-case: if the first page which the application tries to 319 * read happens to be the first page of the file, it is assumed that a linear 320 * read is about to happen and the window is immediately set to the initial size 321 * based on I/O request size and the max_readahead. 322 * 323 * The code ramps up the readahead size aggressively at first, but slow down as 324 * it approaches max_readhead. 325 */ 326 327 /* 328 * Count contiguously cached pages from @offset-1 to @offset-@max, 329 * this count is a conservative estimation of 330 * - length of the sequential read sequence, or 331 * - thrashing threshold in memory tight systems 332 */ 333 static pgoff_t count_history_pages(struct address_space *mapping, 334 pgoff_t offset, unsigned long max) 335 { 336 pgoff_t head; 337 338 rcu_read_lock(); 339 head = page_cache_prev_hole(mapping, offset - 1, max); 340 rcu_read_unlock(); 341 342 return offset - 1 - head; 343 } 344 345 /* 346 * page cache context based read-ahead 347 */ 348 static int try_context_readahead(struct address_space *mapping, 349 struct file_ra_state *ra, 350 pgoff_t offset, 351 unsigned long req_size, 352 unsigned long max) 353 { 354 pgoff_t size; 355 356 size = count_history_pages(mapping, offset, max); 357 358 /* 359 * not enough history pages: 360 * it could be a random read 361 */ 362 if (size <= req_size) 363 return 0; 364 365 /* 366 * starts from beginning of file: 367 * it is a strong indication of long-run stream (or whole-file-read) 368 */ 369 if (size >= offset) 370 size *= 2; 371 372 ra->start = offset; 373 ra->size = min(size + req_size, max); 374 ra->async_size = 1; 375 376 return 1; 377 } 378 379 /* 380 * A minimal readahead algorithm for trivial sequential/random reads. 381 */ 382 static unsigned long 383 ondemand_readahead(struct address_space *mapping, 384 struct file_ra_state *ra, struct file *filp, 385 bool hit_readahead_marker, pgoff_t offset, 386 unsigned long req_size) 387 { 388 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 389 unsigned long max_pages = ra->ra_pages; 390 unsigned long add_pages; 391 pgoff_t prev_offset; 392 393 /* 394 * If the request exceeds the readahead window, allow the read to 395 * be up to the optimal hardware IO size 396 */ 397 if (req_size > max_pages && bdi->io_pages > max_pages) 398 max_pages = min(req_size, bdi->io_pages); 399 400 /* 401 * start of file 402 */ 403 if (!offset) 404 goto initial_readahead; 405 406 /* 407 * It's the expected callback offset, assume sequential access. 408 * Ramp up sizes, and push forward the readahead window. 409 */ 410 if ((offset == (ra->start + ra->size - ra->async_size) || 411 offset == (ra->start + ra->size))) { 412 ra->start += ra->size; 413 ra->size = get_next_ra_size(ra, max_pages); 414 ra->async_size = ra->size; 415 goto readit; 416 } 417 418 /* 419 * Hit a marked page without valid readahead state. 420 * E.g. interleaved reads. 421 * Query the pagecache for async_size, which normally equals to 422 * readahead size. Ramp it up and use it as the new readahead size. 423 */ 424 if (hit_readahead_marker) { 425 pgoff_t start; 426 427 rcu_read_lock(); 428 start = page_cache_next_hole(mapping, offset + 1, max_pages); 429 rcu_read_unlock(); 430 431 if (!start || start - offset > max_pages) 432 return 0; 433 434 ra->start = start; 435 ra->size = start - offset; /* old async_size */ 436 ra->size += req_size; 437 ra->size = get_next_ra_size(ra, max_pages); 438 ra->async_size = ra->size; 439 goto readit; 440 } 441 442 /* 443 * oversize read 444 */ 445 if (req_size > max_pages) 446 goto initial_readahead; 447 448 /* 449 * sequential cache miss 450 * trivial case: (offset - prev_offset) == 1 451 * unaligned reads: (offset - prev_offset) == 0 452 */ 453 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 454 if (offset - prev_offset <= 1UL) 455 goto initial_readahead; 456 457 /* 458 * Query the page cache and look for the traces(cached history pages) 459 * that a sequential stream would leave behind. 460 */ 461 if (try_context_readahead(mapping, ra, offset, req_size, max_pages)) 462 goto readit; 463 464 /* 465 * standalone, small random read 466 * Read as is, and do not pollute the readahead state. 467 */ 468 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 469 470 initial_readahead: 471 ra->start = offset; 472 ra->size = get_init_ra_size(req_size, max_pages); 473 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 474 475 readit: 476 /* 477 * Will this read hit the readahead marker made by itself? 478 * If so, trigger the readahead marker hit now, and merge 479 * the resulted next readahead window into the current one. 480 * Take care of maximum IO pages as above. 481 */ 482 if (offset == ra->start && ra->size == ra->async_size) { 483 add_pages = get_next_ra_size(ra, max_pages); 484 if (ra->size + add_pages <= max_pages) { 485 ra->async_size = add_pages; 486 ra->size += add_pages; 487 } else { 488 ra->size = max_pages; 489 ra->async_size = max_pages >> 1; 490 } 491 } 492 493 return ra_submit(ra, mapping, filp); 494 } 495 496 /** 497 * page_cache_sync_readahead - generic file readahead 498 * @mapping: address_space which holds the pagecache and I/O vectors 499 * @ra: file_ra_state which holds the readahead state 500 * @filp: passed on to ->readpage() and ->readpages() 501 * @offset: start offset into @mapping, in pagecache page-sized units 502 * @req_size: hint: total size of the read which the caller is performing in 503 * pagecache pages 504 * 505 * page_cache_sync_readahead() should be called when a cache miss happened: 506 * it will submit the read. The readahead logic may decide to piggyback more 507 * pages onto the read request if access patterns suggest it will improve 508 * performance. 509 */ 510 void page_cache_sync_readahead(struct address_space *mapping, 511 struct file_ra_state *ra, struct file *filp, 512 pgoff_t offset, unsigned long req_size) 513 { 514 /* no read-ahead */ 515 if (!ra->ra_pages) 516 return; 517 518 if (blk_cgroup_congested()) 519 return; 520 521 /* be dumb */ 522 if (filp && (filp->f_mode & FMODE_RANDOM)) { 523 force_page_cache_readahead(mapping, filp, offset, req_size); 524 return; 525 } 526 527 /* do read-ahead */ 528 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 529 } 530 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 531 532 /** 533 * page_cache_async_readahead - file readahead for marked pages 534 * @mapping: address_space which holds the pagecache and I/O vectors 535 * @ra: file_ra_state which holds the readahead state 536 * @filp: passed on to ->readpage() and ->readpages() 537 * @page: the page at @offset which has the PG_readahead flag set 538 * @offset: start offset into @mapping, in pagecache page-sized units 539 * @req_size: hint: total size of the read which the caller is performing in 540 * pagecache pages 541 * 542 * page_cache_async_readahead() should be called when a page is used which 543 * has the PG_readahead flag; this is a marker to suggest that the application 544 * has used up enough of the readahead window that we should start pulling in 545 * more pages. 546 */ 547 void 548 page_cache_async_readahead(struct address_space *mapping, 549 struct file_ra_state *ra, struct file *filp, 550 struct page *page, pgoff_t offset, 551 unsigned long req_size) 552 { 553 /* no read-ahead */ 554 if (!ra->ra_pages) 555 return; 556 557 /* 558 * Same bit is used for PG_readahead and PG_reclaim. 559 */ 560 if (PageWriteback(page)) 561 return; 562 563 ClearPageReadahead(page); 564 565 /* 566 * Defer asynchronous read-ahead on IO congestion. 567 */ 568 if (inode_read_congested(mapping->host)) 569 return; 570 571 if (blk_cgroup_congested()) 572 return; 573 574 /* do read-ahead */ 575 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 576 } 577 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 578 579 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 580 { 581 ssize_t ret; 582 struct fd f; 583 584 ret = -EBADF; 585 f = fdget(fd); 586 if (!f.file || !(f.file->f_mode & FMODE_READ)) 587 goto out; 588 589 /* 590 * The readahead() syscall is intended to run only on files 591 * that can execute readahead. If readahead is not possible 592 * on this file, then we must return -EINVAL. 593 */ 594 ret = -EINVAL; 595 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 596 !S_ISREG(file_inode(f.file)->i_mode)) 597 goto out; 598 599 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 600 out: 601 fdput(f); 602 return ret; 603 } 604 605 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 606 { 607 return ksys_readahead(fd, offset, count); 608 } 609