1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/readahead.c - address_space-level file readahead. 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 09Apr2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/export.h> 15 #include <linux/blkdev.h> 16 #include <linux/backing-dev.h> 17 #include <linux/task_io_accounting_ops.h> 18 #include <linux/pagevec.h> 19 #include <linux/pagemap.h> 20 #include <linux/syscalls.h> 21 #include <linux/file.h> 22 #include <linux/mm_inline.h> 23 #include <linux/blk-cgroup.h> 24 #include <linux/fadvise.h> 25 #include <linux/sched/mm.h> 26 27 #include "internal.h" 28 29 /* 30 * Initialise a struct file's readahead state. Assumes that the caller has 31 * memset *ra to zero. 32 */ 33 void 34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 35 { 36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; 37 ra->prev_pos = -1; 38 } 39 EXPORT_SYMBOL_GPL(file_ra_state_init); 40 41 /* 42 * see if a page needs releasing upon read_cache_pages() failure 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 44 * before calling, such as the NFS fs marking pages that are cached locally 45 * on disk, thus we need to give the fs a chance to clean up in the event of 46 * an error 47 */ 48 static void read_cache_pages_invalidate_page(struct address_space *mapping, 49 struct page *page) 50 { 51 if (page_has_private(page)) { 52 if (!trylock_page(page)) 53 BUG(); 54 page->mapping = mapping; 55 do_invalidatepage(page, 0, PAGE_SIZE); 56 page->mapping = NULL; 57 unlock_page(page); 58 } 59 put_page(page); 60 } 61 62 /* 63 * release a list of pages, invalidating them first if need be 64 */ 65 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 66 struct list_head *pages) 67 { 68 struct page *victim; 69 70 while (!list_empty(pages)) { 71 victim = lru_to_page(pages); 72 list_del(&victim->lru); 73 read_cache_pages_invalidate_page(mapping, victim); 74 } 75 } 76 77 /** 78 * read_cache_pages - populate an address space with some pages & start reads against them 79 * @mapping: the address_space 80 * @pages: The address of a list_head which contains the target pages. These 81 * pages have their ->index populated and are otherwise uninitialised. 82 * @filler: callback routine for filling a single page. 83 * @data: private data for the callback routine. 84 * 85 * Hides the details of the LRU cache etc from the filesystems. 86 * 87 * Returns: %0 on success, error return by @filler otherwise 88 */ 89 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 90 int (*filler)(void *, struct page *), void *data) 91 { 92 struct page *page; 93 int ret = 0; 94 95 while (!list_empty(pages)) { 96 page = lru_to_page(pages); 97 list_del(&page->lru); 98 if (add_to_page_cache_lru(page, mapping, page->index, 99 readahead_gfp_mask(mapping))) { 100 read_cache_pages_invalidate_page(mapping, page); 101 continue; 102 } 103 put_page(page); 104 105 ret = filler(data, page); 106 if (unlikely(ret)) { 107 read_cache_pages_invalidate_pages(mapping, pages); 108 break; 109 } 110 task_io_account_read(PAGE_SIZE); 111 } 112 return ret; 113 } 114 115 EXPORT_SYMBOL(read_cache_pages); 116 117 static void read_pages(struct readahead_control *rac, struct list_head *pages, 118 bool skip_page) 119 { 120 const struct address_space_operations *aops = rac->mapping->a_ops; 121 struct page *page; 122 struct blk_plug plug; 123 124 if (!readahead_count(rac)) 125 goto out; 126 127 blk_start_plug(&plug); 128 129 if (aops->readahead) { 130 aops->readahead(rac); 131 /* Clean up the remaining pages */ 132 while ((page = readahead_page(rac))) { 133 unlock_page(page); 134 put_page(page); 135 } 136 } else if (aops->readpages) { 137 aops->readpages(rac->file, rac->mapping, pages, 138 readahead_count(rac)); 139 /* Clean up the remaining pages */ 140 put_pages_list(pages); 141 rac->_index += rac->_nr_pages; 142 rac->_nr_pages = 0; 143 } else { 144 while ((page = readahead_page(rac))) { 145 aops->readpage(rac->file, page); 146 put_page(page); 147 } 148 } 149 150 blk_finish_plug(&plug); 151 152 BUG_ON(!list_empty(pages)); 153 BUG_ON(readahead_count(rac)); 154 155 out: 156 if (skip_page) 157 rac->_index++; 158 } 159 160 /** 161 * page_cache_readahead_unbounded - Start unchecked readahead. 162 * @mapping: File address space. 163 * @file: This instance of the open file; used for authentication. 164 * @index: First page index to read. 165 * @nr_to_read: The number of pages to read. 166 * @lookahead_size: Where to start the next readahead. 167 * 168 * This function is for filesystems to call when they want to start 169 * readahead beyond a file's stated i_size. This is almost certainly 170 * not the function you want to call. Use page_cache_async_readahead() 171 * or page_cache_sync_readahead() instead. 172 * 173 * Context: File is referenced by caller. Mutexes may be held by caller. 174 * May sleep, but will not reenter filesystem to reclaim memory. 175 */ 176 void page_cache_readahead_unbounded(struct address_space *mapping, 177 struct file *file, pgoff_t index, unsigned long nr_to_read, 178 unsigned long lookahead_size) 179 { 180 LIST_HEAD(page_pool); 181 gfp_t gfp_mask = readahead_gfp_mask(mapping); 182 struct readahead_control rac = { 183 .mapping = mapping, 184 .file = file, 185 ._index = index, 186 }; 187 unsigned long i; 188 189 /* 190 * Partway through the readahead operation, we will have added 191 * locked pages to the page cache, but will not yet have submitted 192 * them for I/O. Adding another page may need to allocate memory, 193 * which can trigger memory reclaim. Telling the VM we're in 194 * the middle of a filesystem operation will cause it to not 195 * touch file-backed pages, preventing a deadlock. Most (all?) 196 * filesystems already specify __GFP_NOFS in their mapping's 197 * gfp_mask, but let's be explicit here. 198 */ 199 unsigned int nofs = memalloc_nofs_save(); 200 201 /* 202 * Preallocate as many pages as we will need. 203 */ 204 for (i = 0; i < nr_to_read; i++) { 205 struct page *page = xa_load(&mapping->i_pages, index + i); 206 207 BUG_ON(index + i != rac._index + rac._nr_pages); 208 209 if (page && !xa_is_value(page)) { 210 /* 211 * Page already present? Kick off the current batch 212 * of contiguous pages before continuing with the 213 * next batch. This page may be the one we would 214 * have intended to mark as Readahead, but we don't 215 * have a stable reference to this page, and it's 216 * not worth getting one just for that. 217 */ 218 read_pages(&rac, &page_pool, true); 219 continue; 220 } 221 222 page = __page_cache_alloc(gfp_mask); 223 if (!page) 224 break; 225 if (mapping->a_ops->readpages) { 226 page->index = index + i; 227 list_add(&page->lru, &page_pool); 228 } else if (add_to_page_cache_lru(page, mapping, index + i, 229 gfp_mask) < 0) { 230 put_page(page); 231 read_pages(&rac, &page_pool, true); 232 continue; 233 } 234 if (i == nr_to_read - lookahead_size) 235 SetPageReadahead(page); 236 rac._nr_pages++; 237 } 238 239 /* 240 * Now start the IO. We ignore I/O errors - if the page is not 241 * uptodate then the caller will launch readpage again, and 242 * will then handle the error. 243 */ 244 read_pages(&rac, &page_pool, false); 245 memalloc_nofs_restore(nofs); 246 } 247 EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded); 248 249 /* 250 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates 251 * the pages first, then submits them for I/O. This avoids the very bad 252 * behaviour which would occur if page allocations are causing VM writeback. 253 * We really don't want to intermingle reads and writes like that. 254 */ 255 void __do_page_cache_readahead(struct address_space *mapping, 256 struct file *file, pgoff_t index, unsigned long nr_to_read, 257 unsigned long lookahead_size) 258 { 259 struct inode *inode = mapping->host; 260 loff_t isize = i_size_read(inode); 261 pgoff_t end_index; /* The last page we want to read */ 262 263 if (isize == 0) 264 return; 265 266 end_index = (isize - 1) >> PAGE_SHIFT; 267 if (index > end_index) 268 return; 269 /* Don't read past the page containing the last byte of the file */ 270 if (nr_to_read > end_index - index) 271 nr_to_read = end_index - index + 1; 272 273 page_cache_readahead_unbounded(mapping, file, index, nr_to_read, 274 lookahead_size); 275 } 276 277 /* 278 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 279 * memory at once. 280 */ 281 void force_page_cache_readahead(struct address_space *mapping, 282 struct file *filp, pgoff_t index, unsigned long nr_to_read) 283 { 284 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 285 struct file_ra_state *ra = &filp->f_ra; 286 unsigned long max_pages; 287 288 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages && 289 !mapping->a_ops->readahead)) 290 return; 291 292 /* 293 * If the request exceeds the readahead window, allow the read to 294 * be up to the optimal hardware IO size 295 */ 296 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); 297 nr_to_read = min(nr_to_read, max_pages); 298 while (nr_to_read) { 299 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; 300 301 if (this_chunk > nr_to_read) 302 this_chunk = nr_to_read; 303 __do_page_cache_readahead(mapping, filp, index, this_chunk, 0); 304 305 index += this_chunk; 306 nr_to_read -= this_chunk; 307 } 308 } 309 310 /* 311 * Set the initial window size, round to next power of 2 and square 312 * for small size, x 4 for medium, and x 2 for large 313 * for 128k (32 page) max ra 314 * 1-8 page = 32k initial, > 8 page = 128k initial 315 */ 316 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 317 { 318 unsigned long newsize = roundup_pow_of_two(size); 319 320 if (newsize <= max / 32) 321 newsize = newsize * 4; 322 else if (newsize <= max / 4) 323 newsize = newsize * 2; 324 else 325 newsize = max; 326 327 return newsize; 328 } 329 330 /* 331 * Get the previous window size, ramp it up, and 332 * return it as the new window size. 333 */ 334 static unsigned long get_next_ra_size(struct file_ra_state *ra, 335 unsigned long max) 336 { 337 unsigned long cur = ra->size; 338 339 if (cur < max / 16) 340 return 4 * cur; 341 if (cur <= max / 2) 342 return 2 * cur; 343 return max; 344 } 345 346 /* 347 * On-demand readahead design. 348 * 349 * The fields in struct file_ra_state represent the most-recently-executed 350 * readahead attempt: 351 * 352 * |<----- async_size ---------| 353 * |------------------- size -------------------->| 354 * |==================#===========================| 355 * ^start ^page marked with PG_readahead 356 * 357 * To overlap application thinking time and disk I/O time, we do 358 * `readahead pipelining': Do not wait until the application consumed all 359 * readahead pages and stalled on the missing page at readahead_index; 360 * Instead, submit an asynchronous readahead I/O as soon as there are 361 * only async_size pages left in the readahead window. Normally async_size 362 * will be equal to size, for maximum pipelining. 363 * 364 * In interleaved sequential reads, concurrent streams on the same fd can 365 * be invalidating each other's readahead state. So we flag the new readahead 366 * page at (start+size-async_size) with PG_readahead, and use it as readahead 367 * indicator. The flag won't be set on already cached pages, to avoid the 368 * readahead-for-nothing fuss, saving pointless page cache lookups. 369 * 370 * prev_pos tracks the last visited byte in the _previous_ read request. 371 * It should be maintained by the caller, and will be used for detecting 372 * small random reads. Note that the readahead algorithm checks loosely 373 * for sequential patterns. Hence interleaved reads might be served as 374 * sequential ones. 375 * 376 * There is a special-case: if the first page which the application tries to 377 * read happens to be the first page of the file, it is assumed that a linear 378 * read is about to happen and the window is immediately set to the initial size 379 * based on I/O request size and the max_readahead. 380 * 381 * The code ramps up the readahead size aggressively at first, but slow down as 382 * it approaches max_readhead. 383 */ 384 385 /* 386 * Count contiguously cached pages from @index-1 to @index-@max, 387 * this count is a conservative estimation of 388 * - length of the sequential read sequence, or 389 * - thrashing threshold in memory tight systems 390 */ 391 static pgoff_t count_history_pages(struct address_space *mapping, 392 pgoff_t index, unsigned long max) 393 { 394 pgoff_t head; 395 396 rcu_read_lock(); 397 head = page_cache_prev_miss(mapping, index - 1, max); 398 rcu_read_unlock(); 399 400 return index - 1 - head; 401 } 402 403 /* 404 * page cache context based read-ahead 405 */ 406 static int try_context_readahead(struct address_space *mapping, 407 struct file_ra_state *ra, 408 pgoff_t index, 409 unsigned long req_size, 410 unsigned long max) 411 { 412 pgoff_t size; 413 414 size = count_history_pages(mapping, index, max); 415 416 /* 417 * not enough history pages: 418 * it could be a random read 419 */ 420 if (size <= req_size) 421 return 0; 422 423 /* 424 * starts from beginning of file: 425 * it is a strong indication of long-run stream (or whole-file-read) 426 */ 427 if (size >= index) 428 size *= 2; 429 430 ra->start = index; 431 ra->size = min(size + req_size, max); 432 ra->async_size = 1; 433 434 return 1; 435 } 436 437 /* 438 * A minimal readahead algorithm for trivial sequential/random reads. 439 */ 440 static void ondemand_readahead(struct address_space *mapping, 441 struct file_ra_state *ra, struct file *filp, 442 bool hit_readahead_marker, pgoff_t index, 443 unsigned long req_size) 444 { 445 struct backing_dev_info *bdi = inode_to_bdi(mapping->host); 446 unsigned long max_pages = ra->ra_pages; 447 unsigned long add_pages; 448 pgoff_t prev_index; 449 450 /* 451 * If the request exceeds the readahead window, allow the read to 452 * be up to the optimal hardware IO size 453 */ 454 if (req_size > max_pages && bdi->io_pages > max_pages) 455 max_pages = min(req_size, bdi->io_pages); 456 457 /* 458 * start of file 459 */ 460 if (!index) 461 goto initial_readahead; 462 463 /* 464 * It's the expected callback index, assume sequential access. 465 * Ramp up sizes, and push forward the readahead window. 466 */ 467 if ((index == (ra->start + ra->size - ra->async_size) || 468 index == (ra->start + ra->size))) { 469 ra->start += ra->size; 470 ra->size = get_next_ra_size(ra, max_pages); 471 ra->async_size = ra->size; 472 goto readit; 473 } 474 475 /* 476 * Hit a marked page without valid readahead state. 477 * E.g. interleaved reads. 478 * Query the pagecache for async_size, which normally equals to 479 * readahead size. Ramp it up and use it as the new readahead size. 480 */ 481 if (hit_readahead_marker) { 482 pgoff_t start; 483 484 rcu_read_lock(); 485 start = page_cache_next_miss(mapping, index + 1, max_pages); 486 rcu_read_unlock(); 487 488 if (!start || start - index > max_pages) 489 return; 490 491 ra->start = start; 492 ra->size = start - index; /* old async_size */ 493 ra->size += req_size; 494 ra->size = get_next_ra_size(ra, max_pages); 495 ra->async_size = ra->size; 496 goto readit; 497 } 498 499 /* 500 * oversize read 501 */ 502 if (req_size > max_pages) 503 goto initial_readahead; 504 505 /* 506 * sequential cache miss 507 * trivial case: (index - prev_index) == 1 508 * unaligned reads: (index - prev_index) == 0 509 */ 510 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; 511 if (index - prev_index <= 1UL) 512 goto initial_readahead; 513 514 /* 515 * Query the page cache and look for the traces(cached history pages) 516 * that a sequential stream would leave behind. 517 */ 518 if (try_context_readahead(mapping, ra, index, req_size, max_pages)) 519 goto readit; 520 521 /* 522 * standalone, small random read 523 * Read as is, and do not pollute the readahead state. 524 */ 525 __do_page_cache_readahead(mapping, filp, index, req_size, 0); 526 return; 527 528 initial_readahead: 529 ra->start = index; 530 ra->size = get_init_ra_size(req_size, max_pages); 531 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 532 533 readit: 534 /* 535 * Will this read hit the readahead marker made by itself? 536 * If so, trigger the readahead marker hit now, and merge 537 * the resulted next readahead window into the current one. 538 * Take care of maximum IO pages as above. 539 */ 540 if (index == ra->start && ra->size == ra->async_size) { 541 add_pages = get_next_ra_size(ra, max_pages); 542 if (ra->size + add_pages <= max_pages) { 543 ra->async_size = add_pages; 544 ra->size += add_pages; 545 } else { 546 ra->size = max_pages; 547 ra->async_size = max_pages >> 1; 548 } 549 } 550 551 ra_submit(ra, mapping, filp); 552 } 553 554 /** 555 * page_cache_sync_readahead - generic file readahead 556 * @mapping: address_space which holds the pagecache and I/O vectors 557 * @ra: file_ra_state which holds the readahead state 558 * @filp: passed on to ->readpage() and ->readpages() 559 * @index: Index of first page to be read. 560 * @req_count: Total number of pages being read by the caller. 561 * 562 * page_cache_sync_readahead() should be called when a cache miss happened: 563 * it will submit the read. The readahead logic may decide to piggyback more 564 * pages onto the read request if access patterns suggest it will improve 565 * performance. 566 */ 567 void page_cache_sync_readahead(struct address_space *mapping, 568 struct file_ra_state *ra, struct file *filp, 569 pgoff_t index, unsigned long req_count) 570 { 571 /* no read-ahead */ 572 if (!ra->ra_pages) 573 return; 574 575 if (blk_cgroup_congested()) 576 return; 577 578 /* be dumb */ 579 if (filp && (filp->f_mode & FMODE_RANDOM)) { 580 force_page_cache_readahead(mapping, filp, index, req_count); 581 return; 582 } 583 584 /* do read-ahead */ 585 ondemand_readahead(mapping, ra, filp, false, index, req_count); 586 } 587 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 588 589 /** 590 * page_cache_async_readahead - file readahead for marked pages 591 * @mapping: address_space which holds the pagecache and I/O vectors 592 * @ra: file_ra_state which holds the readahead state 593 * @filp: passed on to ->readpage() and ->readpages() 594 * @page: The page at @index which triggered the readahead call. 595 * @index: Index of first page to be read. 596 * @req_count: Total number of pages being read by the caller. 597 * 598 * page_cache_async_readahead() should be called when a page is used which 599 * is marked as PageReadahead; this is a marker to suggest that the application 600 * has used up enough of the readahead window that we should start pulling in 601 * more pages. 602 */ 603 void 604 page_cache_async_readahead(struct address_space *mapping, 605 struct file_ra_state *ra, struct file *filp, 606 struct page *page, pgoff_t index, 607 unsigned long req_count) 608 { 609 /* no read-ahead */ 610 if (!ra->ra_pages) 611 return; 612 613 /* 614 * Same bit is used for PG_readahead and PG_reclaim. 615 */ 616 if (PageWriteback(page)) 617 return; 618 619 ClearPageReadahead(page); 620 621 /* 622 * Defer asynchronous read-ahead on IO congestion. 623 */ 624 if (inode_read_congested(mapping->host)) 625 return; 626 627 if (blk_cgroup_congested()) 628 return; 629 630 /* do read-ahead */ 631 ondemand_readahead(mapping, ra, filp, true, index, req_count); 632 } 633 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 634 635 ssize_t ksys_readahead(int fd, loff_t offset, size_t count) 636 { 637 ssize_t ret; 638 struct fd f; 639 640 ret = -EBADF; 641 f = fdget(fd); 642 if (!f.file || !(f.file->f_mode & FMODE_READ)) 643 goto out; 644 645 /* 646 * The readahead() syscall is intended to run only on files 647 * that can execute readahead. If readahead is not possible 648 * on this file, then we must return -EINVAL. 649 */ 650 ret = -EINVAL; 651 if (!f.file->f_mapping || !f.file->f_mapping->a_ops || 652 !S_ISREG(file_inode(f.file)->i_mode)) 653 goto out; 654 655 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); 656 out: 657 fdput(f); 658 return ret; 659 } 660 661 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 662 { 663 return ksys_readahead(fd, offset, count); 664 } 665