xref: /openbmc/linux/mm/percpu.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41  * flag should be passed.  All memcg-aware allocations are sharing one set
42  * of chunks and all unaccounted allocations and allocations performed
43  * by processes belonging to the root memory cgroup are using the second set.
44  *
45  * The allocator tries to allocate from the fullest chunk first. Each chunk
46  * is managed by a bitmap with metadata blocks.  The allocation map is updated
47  * on every allocation and free to reflect the current state while the boundary
48  * map is only updated on allocation.  Each metadata block contains
49  * information to help mitigate the need to iterate over large portions
50  * of the bitmap.  The reverse mapping from page to chunk is stored in
51  * the page's index.  Lastly, units are lazily backed and grow in unison.
52  *
53  * There is a unique conversion that goes on here between bytes and bits.
54  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
55  * tracks the number of pages it is responsible for in nr_pages.  Helper
56  * functions are used to convert from between the bytes, bits, and blocks.
57  * All hints are managed in bits unless explicitly stated.
58  *
59  * To use this allocator, arch code should do the following:
60  *
61  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62  *   regular address to percpu pointer and back if they need to be
63  *   different from the default
64  *
65  * - use pcpu_setup_first_chunk() during percpu area initialization to
66  *   setup the first chunk containing the kernel static percpu area
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/lcm.h>
76 #include <linux/list.h>
77 #include <linux/log2.h>
78 #include <linux/mm.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/percpu.h>
82 #include <linux/pfn.h>
83 #include <linux/slab.h>
84 #include <linux/spinlock.h>
85 #include <linux/vmalloc.h>
86 #include <linux/workqueue.h>
87 #include <linux/kmemleak.h>
88 #include <linux/sched.h>
89 #include <linux/sched/mm.h>
90 #include <linux/memcontrol.h>
91 
92 #include <asm/cacheflush.h>
93 #include <asm/sections.h>
94 #include <asm/tlbflush.h>
95 #include <asm/io.h>
96 
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/percpu.h>
99 
100 #include "percpu-internal.h"
101 
102 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
103 #define PCPU_SLOT_BASE_SHIFT		5
104 /* chunks in slots below this are subject to being sidelined on failed alloc */
105 #define PCPU_SLOT_FAIL_THRESHOLD	3
106 
107 #define PCPU_EMPTY_POP_PAGES_LOW	2
108 #define PCPU_EMPTY_POP_PAGES_HIGH	4
109 
110 #ifdef CONFIG_SMP
111 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
112 #ifndef __addr_to_pcpu_ptr
113 #define __addr_to_pcpu_ptr(addr)					\
114 	(void __percpu *)((unsigned long)(addr) -			\
115 			  (unsigned long)pcpu_base_addr	+		\
116 			  (unsigned long)__per_cpu_start)
117 #endif
118 #ifndef __pcpu_ptr_to_addr
119 #define __pcpu_ptr_to_addr(ptr)						\
120 	(void __force *)((unsigned long)(ptr) +				\
121 			 (unsigned long)pcpu_base_addr -		\
122 			 (unsigned long)__per_cpu_start)
123 #endif
124 #else	/* CONFIG_SMP */
125 /* on UP, it's always identity mapped */
126 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
127 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
128 #endif	/* CONFIG_SMP */
129 
130 static int pcpu_unit_pages __ro_after_init;
131 static int pcpu_unit_size __ro_after_init;
132 static int pcpu_nr_units __ro_after_init;
133 static int pcpu_atom_size __ro_after_init;
134 int pcpu_nr_slots __ro_after_init;
135 static size_t pcpu_chunk_struct_size __ro_after_init;
136 
137 /* cpus with the lowest and highest unit addresses */
138 static unsigned int pcpu_low_unit_cpu __ro_after_init;
139 static unsigned int pcpu_high_unit_cpu __ro_after_init;
140 
141 /* the address of the first chunk which starts with the kernel static area */
142 void *pcpu_base_addr __ro_after_init;
143 EXPORT_SYMBOL_GPL(pcpu_base_addr);
144 
145 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
146 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
147 
148 /* group information, used for vm allocation */
149 static int pcpu_nr_groups __ro_after_init;
150 static const unsigned long *pcpu_group_offsets __ro_after_init;
151 static const size_t *pcpu_group_sizes __ro_after_init;
152 
153 /*
154  * The first chunk which always exists.  Note that unlike other
155  * chunks, this one can be allocated and mapped in several different
156  * ways and thus often doesn't live in the vmalloc area.
157  */
158 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
159 
160 /*
161  * Optional reserved chunk.  This chunk reserves part of the first
162  * chunk and serves it for reserved allocations.  When the reserved
163  * region doesn't exist, the following variable is NULL.
164  */
165 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
166 
167 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
168 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
169 
170 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
171 
172 /* chunks which need their map areas extended, protected by pcpu_lock */
173 static LIST_HEAD(pcpu_map_extend_chunks);
174 
175 /*
176  * The number of empty populated pages by chunk type, protected by pcpu_lock.
177  * The reserved chunk doesn't contribute to the count.
178  */
179 int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES];
180 
181 /*
182  * The number of populated pages in use by the allocator, protected by
183  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
184  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
185  * and increments/decrements this count by 1).
186  */
187 static unsigned long pcpu_nr_populated;
188 
189 /*
190  * Balance work is used to populate or destroy chunks asynchronously.  We
191  * try to keep the number of populated free pages between
192  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
193  * empty chunk.
194  */
195 static void pcpu_balance_workfn(struct work_struct *work);
196 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
197 static bool pcpu_async_enabled __read_mostly;
198 static bool pcpu_atomic_alloc_failed;
199 
200 static void pcpu_schedule_balance_work(void)
201 {
202 	if (pcpu_async_enabled)
203 		schedule_work(&pcpu_balance_work);
204 }
205 
206 /**
207  * pcpu_addr_in_chunk - check if the address is served from this chunk
208  * @chunk: chunk of interest
209  * @addr: percpu address
210  *
211  * RETURNS:
212  * True if the address is served from this chunk.
213  */
214 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
215 {
216 	void *start_addr, *end_addr;
217 
218 	if (!chunk)
219 		return false;
220 
221 	start_addr = chunk->base_addr + chunk->start_offset;
222 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
223 		   chunk->end_offset;
224 
225 	return addr >= start_addr && addr < end_addr;
226 }
227 
228 static int __pcpu_size_to_slot(int size)
229 {
230 	int highbit = fls(size);	/* size is in bytes */
231 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
232 }
233 
234 static int pcpu_size_to_slot(int size)
235 {
236 	if (size == pcpu_unit_size)
237 		return pcpu_nr_slots - 1;
238 	return __pcpu_size_to_slot(size);
239 }
240 
241 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
242 {
243 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
244 
245 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
246 	    chunk_md->contig_hint == 0)
247 		return 0;
248 
249 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
250 }
251 
252 /* set the pointer to a chunk in a page struct */
253 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
254 {
255 	page->index = (unsigned long)pcpu;
256 }
257 
258 /* obtain pointer to a chunk from a page struct */
259 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
260 {
261 	return (struct pcpu_chunk *)page->index;
262 }
263 
264 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
265 {
266 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
267 }
268 
269 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
270 {
271 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
272 }
273 
274 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
275 				     unsigned int cpu, int page_idx)
276 {
277 	return (unsigned long)chunk->base_addr +
278 	       pcpu_unit_page_offset(cpu, page_idx);
279 }
280 
281 /*
282  * The following are helper functions to help access bitmaps and convert
283  * between bitmap offsets to address offsets.
284  */
285 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
286 {
287 	return chunk->alloc_map +
288 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
289 }
290 
291 static unsigned long pcpu_off_to_block_index(int off)
292 {
293 	return off / PCPU_BITMAP_BLOCK_BITS;
294 }
295 
296 static unsigned long pcpu_off_to_block_off(int off)
297 {
298 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
299 }
300 
301 static unsigned long pcpu_block_off_to_off(int index, int off)
302 {
303 	return index * PCPU_BITMAP_BLOCK_BITS + off;
304 }
305 
306 /*
307  * pcpu_next_hint - determine which hint to use
308  * @block: block of interest
309  * @alloc_bits: size of allocation
310  *
311  * This determines if we should scan based on the scan_hint or first_free.
312  * In general, we want to scan from first_free to fulfill allocations by
313  * first fit.  However, if we know a scan_hint at position scan_hint_start
314  * cannot fulfill an allocation, we can begin scanning from there knowing
315  * the contig_hint will be our fallback.
316  */
317 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
318 {
319 	/*
320 	 * The three conditions below determine if we can skip past the
321 	 * scan_hint.  First, does the scan hint exist.  Second, is the
322 	 * contig_hint after the scan_hint (possibly not true iff
323 	 * contig_hint == scan_hint).  Third, is the allocation request
324 	 * larger than the scan_hint.
325 	 */
326 	if (block->scan_hint &&
327 	    block->contig_hint_start > block->scan_hint_start &&
328 	    alloc_bits > block->scan_hint)
329 		return block->scan_hint_start + block->scan_hint;
330 
331 	return block->first_free;
332 }
333 
334 /**
335  * pcpu_next_md_free_region - finds the next hint free area
336  * @chunk: chunk of interest
337  * @bit_off: chunk offset
338  * @bits: size of free area
339  *
340  * Helper function for pcpu_for_each_md_free_region.  It checks
341  * block->contig_hint and performs aggregation across blocks to find the
342  * next hint.  It modifies bit_off and bits in-place to be consumed in the
343  * loop.
344  */
345 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
346 				     int *bits)
347 {
348 	int i = pcpu_off_to_block_index(*bit_off);
349 	int block_off = pcpu_off_to_block_off(*bit_off);
350 	struct pcpu_block_md *block;
351 
352 	*bits = 0;
353 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
354 	     block++, i++) {
355 		/* handles contig area across blocks */
356 		if (*bits) {
357 			*bits += block->left_free;
358 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
359 				continue;
360 			return;
361 		}
362 
363 		/*
364 		 * This checks three things.  First is there a contig_hint to
365 		 * check.  Second, have we checked this hint before by
366 		 * comparing the block_off.  Third, is this the same as the
367 		 * right contig hint.  In the last case, it spills over into
368 		 * the next block and should be handled by the contig area
369 		 * across blocks code.
370 		 */
371 		*bits = block->contig_hint;
372 		if (*bits && block->contig_hint_start >= block_off &&
373 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
374 			*bit_off = pcpu_block_off_to_off(i,
375 					block->contig_hint_start);
376 			return;
377 		}
378 		/* reset to satisfy the second predicate above */
379 		block_off = 0;
380 
381 		*bits = block->right_free;
382 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
383 	}
384 }
385 
386 /**
387  * pcpu_next_fit_region - finds fit areas for a given allocation request
388  * @chunk: chunk of interest
389  * @alloc_bits: size of allocation
390  * @align: alignment of area (max PAGE_SIZE)
391  * @bit_off: chunk offset
392  * @bits: size of free area
393  *
394  * Finds the next free region that is viable for use with a given size and
395  * alignment.  This only returns if there is a valid area to be used for this
396  * allocation.  block->first_free is returned if the allocation request fits
397  * within the block to see if the request can be fulfilled prior to the contig
398  * hint.
399  */
400 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
401 				 int align, int *bit_off, int *bits)
402 {
403 	int i = pcpu_off_to_block_index(*bit_off);
404 	int block_off = pcpu_off_to_block_off(*bit_off);
405 	struct pcpu_block_md *block;
406 
407 	*bits = 0;
408 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
409 	     block++, i++) {
410 		/* handles contig area across blocks */
411 		if (*bits) {
412 			*bits += block->left_free;
413 			if (*bits >= alloc_bits)
414 				return;
415 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
416 				continue;
417 		}
418 
419 		/* check block->contig_hint */
420 		*bits = ALIGN(block->contig_hint_start, align) -
421 			block->contig_hint_start;
422 		/*
423 		 * This uses the block offset to determine if this has been
424 		 * checked in the prior iteration.
425 		 */
426 		if (block->contig_hint &&
427 		    block->contig_hint_start >= block_off &&
428 		    block->contig_hint >= *bits + alloc_bits) {
429 			int start = pcpu_next_hint(block, alloc_bits);
430 
431 			*bits += alloc_bits + block->contig_hint_start -
432 				 start;
433 			*bit_off = pcpu_block_off_to_off(i, start);
434 			return;
435 		}
436 		/* reset to satisfy the second predicate above */
437 		block_off = 0;
438 
439 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
440 				 align);
441 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
442 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
443 		if (*bits >= alloc_bits)
444 			return;
445 	}
446 
447 	/* no valid offsets were found - fail condition */
448 	*bit_off = pcpu_chunk_map_bits(chunk);
449 }
450 
451 /*
452  * Metadata free area iterators.  These perform aggregation of free areas
453  * based on the metadata blocks and return the offset @bit_off and size in
454  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
455  * a fit is found for the allocation request.
456  */
457 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
458 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
459 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
460 	     (bit_off) += (bits) + 1,					\
461 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
462 
463 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
464 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
465 				  &(bits));				      \
466 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
467 	     (bit_off) += (bits),					      \
468 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
469 				  &(bits)))
470 
471 /**
472  * pcpu_mem_zalloc - allocate memory
473  * @size: bytes to allocate
474  * @gfp: allocation flags
475  *
476  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
477  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
478  * This is to facilitate passing through whitelisted flags.  The
479  * returned memory is always zeroed.
480  *
481  * RETURNS:
482  * Pointer to the allocated area on success, NULL on failure.
483  */
484 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
485 {
486 	if (WARN_ON_ONCE(!slab_is_available()))
487 		return NULL;
488 
489 	if (size <= PAGE_SIZE)
490 		return kzalloc(size, gfp);
491 	else
492 		return __vmalloc(size, gfp | __GFP_ZERO);
493 }
494 
495 /**
496  * pcpu_mem_free - free memory
497  * @ptr: memory to free
498  *
499  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
500  */
501 static void pcpu_mem_free(void *ptr)
502 {
503 	kvfree(ptr);
504 }
505 
506 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
507 			      bool move_front)
508 {
509 	if (chunk != pcpu_reserved_chunk) {
510 		struct list_head *pcpu_slot;
511 
512 		pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
513 		if (move_front)
514 			list_move(&chunk->list, &pcpu_slot[slot]);
515 		else
516 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
517 	}
518 }
519 
520 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
521 {
522 	__pcpu_chunk_move(chunk, slot, true);
523 }
524 
525 /**
526  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
527  * @chunk: chunk of interest
528  * @oslot: the previous slot it was on
529  *
530  * This function is called after an allocation or free changed @chunk.
531  * New slot according to the changed state is determined and @chunk is
532  * moved to the slot.  Note that the reserved chunk is never put on
533  * chunk slots.
534  *
535  * CONTEXT:
536  * pcpu_lock.
537  */
538 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
539 {
540 	int nslot = pcpu_chunk_slot(chunk);
541 
542 	if (oslot != nslot)
543 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
544 }
545 
546 /*
547  * pcpu_update_empty_pages - update empty page counters
548  * @chunk: chunk of interest
549  * @nr: nr of empty pages
550  *
551  * This is used to keep track of the empty pages now based on the premise
552  * a md_block covers a page.  The hint update functions recognize if a block
553  * is made full or broken to calculate deltas for keeping track of free pages.
554  */
555 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
556 {
557 	chunk->nr_empty_pop_pages += nr;
558 	if (chunk != pcpu_reserved_chunk)
559 		pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr;
560 }
561 
562 /*
563  * pcpu_region_overlap - determines if two regions overlap
564  * @a: start of first region, inclusive
565  * @b: end of first region, exclusive
566  * @x: start of second region, inclusive
567  * @y: end of second region, exclusive
568  *
569  * This is used to determine if the hint region [a, b) overlaps with the
570  * allocated region [x, y).
571  */
572 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
573 {
574 	return (a < y) && (x < b);
575 }
576 
577 /**
578  * pcpu_block_update - updates a block given a free area
579  * @block: block of interest
580  * @start: start offset in block
581  * @end: end offset in block
582  *
583  * Updates a block given a known free area.  The region [start, end) is
584  * expected to be the entirety of the free area within a block.  Chooses
585  * the best starting offset if the contig hints are equal.
586  */
587 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
588 {
589 	int contig = end - start;
590 
591 	block->first_free = min(block->first_free, start);
592 	if (start == 0)
593 		block->left_free = contig;
594 
595 	if (end == block->nr_bits)
596 		block->right_free = contig;
597 
598 	if (contig > block->contig_hint) {
599 		/* promote the old contig_hint to be the new scan_hint */
600 		if (start > block->contig_hint_start) {
601 			if (block->contig_hint > block->scan_hint) {
602 				block->scan_hint_start =
603 					block->contig_hint_start;
604 				block->scan_hint = block->contig_hint;
605 			} else if (start < block->scan_hint_start) {
606 				/*
607 				 * The old contig_hint == scan_hint.  But, the
608 				 * new contig is larger so hold the invariant
609 				 * scan_hint_start < contig_hint_start.
610 				 */
611 				block->scan_hint = 0;
612 			}
613 		} else {
614 			block->scan_hint = 0;
615 		}
616 		block->contig_hint_start = start;
617 		block->contig_hint = contig;
618 	} else if (contig == block->contig_hint) {
619 		if (block->contig_hint_start &&
620 		    (!start ||
621 		     __ffs(start) > __ffs(block->contig_hint_start))) {
622 			/* start has a better alignment so use it */
623 			block->contig_hint_start = start;
624 			if (start < block->scan_hint_start &&
625 			    block->contig_hint > block->scan_hint)
626 				block->scan_hint = 0;
627 		} else if (start > block->scan_hint_start ||
628 			   block->contig_hint > block->scan_hint) {
629 			/*
630 			 * Knowing contig == contig_hint, update the scan_hint
631 			 * if it is farther than or larger than the current
632 			 * scan_hint.
633 			 */
634 			block->scan_hint_start = start;
635 			block->scan_hint = contig;
636 		}
637 	} else {
638 		/*
639 		 * The region is smaller than the contig_hint.  So only update
640 		 * the scan_hint if it is larger than or equal and farther than
641 		 * the current scan_hint.
642 		 */
643 		if ((start < block->contig_hint_start &&
644 		     (contig > block->scan_hint ||
645 		      (contig == block->scan_hint &&
646 		       start > block->scan_hint_start)))) {
647 			block->scan_hint_start = start;
648 			block->scan_hint = contig;
649 		}
650 	}
651 }
652 
653 /*
654  * pcpu_block_update_scan - update a block given a free area from a scan
655  * @chunk: chunk of interest
656  * @bit_off: chunk offset
657  * @bits: size of free area
658  *
659  * Finding the final allocation spot first goes through pcpu_find_block_fit()
660  * to find a block that can hold the allocation and then pcpu_alloc_area()
661  * where a scan is used.  When allocations require specific alignments,
662  * we can inadvertently create holes which will not be seen in the alloc
663  * or free paths.
664  *
665  * This takes a given free area hole and updates a block as it may change the
666  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
667  * from alignment.
668  */
669 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
670 				   int bits)
671 {
672 	int s_off = pcpu_off_to_block_off(bit_off);
673 	int e_off = s_off + bits;
674 	int s_index, l_bit;
675 	struct pcpu_block_md *block;
676 
677 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
678 		return;
679 
680 	s_index = pcpu_off_to_block_index(bit_off);
681 	block = chunk->md_blocks + s_index;
682 
683 	/* scan backwards in case of alignment skipping free bits */
684 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
685 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
686 
687 	pcpu_block_update(block, s_off, e_off);
688 }
689 
690 /**
691  * pcpu_chunk_refresh_hint - updates metadata about a chunk
692  * @chunk: chunk of interest
693  * @full_scan: if we should scan from the beginning
694  *
695  * Iterates over the metadata blocks to find the largest contig area.
696  * A full scan can be avoided on the allocation path as this is triggered
697  * if we broke the contig_hint.  In doing so, the scan_hint will be before
698  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
699  * be prevented on freeing as we want to find the largest area possibly
700  * spanning blocks.
701  */
702 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
703 {
704 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
705 	int bit_off, bits;
706 
707 	/* promote scan_hint to contig_hint */
708 	if (!full_scan && chunk_md->scan_hint) {
709 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
710 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
711 		chunk_md->contig_hint = chunk_md->scan_hint;
712 		chunk_md->scan_hint = 0;
713 	} else {
714 		bit_off = chunk_md->first_free;
715 		chunk_md->contig_hint = 0;
716 	}
717 
718 	bits = 0;
719 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
720 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
721 }
722 
723 /**
724  * pcpu_block_refresh_hint
725  * @chunk: chunk of interest
726  * @index: index of the metadata block
727  *
728  * Scans over the block beginning at first_free and updates the block
729  * metadata accordingly.
730  */
731 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
732 {
733 	struct pcpu_block_md *block = chunk->md_blocks + index;
734 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
735 	unsigned int rs, re, start;	/* region start, region end */
736 
737 	/* promote scan_hint to contig_hint */
738 	if (block->scan_hint) {
739 		start = block->scan_hint_start + block->scan_hint;
740 		block->contig_hint_start = block->scan_hint_start;
741 		block->contig_hint = block->scan_hint;
742 		block->scan_hint = 0;
743 	} else {
744 		start = block->first_free;
745 		block->contig_hint = 0;
746 	}
747 
748 	block->right_free = 0;
749 
750 	/* iterate over free areas and update the contig hints */
751 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
752 				     PCPU_BITMAP_BLOCK_BITS)
753 		pcpu_block_update(block, rs, re);
754 }
755 
756 /**
757  * pcpu_block_update_hint_alloc - update hint on allocation path
758  * @chunk: chunk of interest
759  * @bit_off: chunk offset
760  * @bits: size of request
761  *
762  * Updates metadata for the allocation path.  The metadata only has to be
763  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
764  * scans are required if the block's contig hint is broken.
765  */
766 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
767 					 int bits)
768 {
769 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
770 	int nr_empty_pages = 0;
771 	struct pcpu_block_md *s_block, *e_block, *block;
772 	int s_index, e_index;	/* block indexes of the freed allocation */
773 	int s_off, e_off;	/* block offsets of the freed allocation */
774 
775 	/*
776 	 * Calculate per block offsets.
777 	 * The calculation uses an inclusive range, but the resulting offsets
778 	 * are [start, end).  e_index always points to the last block in the
779 	 * range.
780 	 */
781 	s_index = pcpu_off_to_block_index(bit_off);
782 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
783 	s_off = pcpu_off_to_block_off(bit_off);
784 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
785 
786 	s_block = chunk->md_blocks + s_index;
787 	e_block = chunk->md_blocks + e_index;
788 
789 	/*
790 	 * Update s_block.
791 	 * block->first_free must be updated if the allocation takes its place.
792 	 * If the allocation breaks the contig_hint, a scan is required to
793 	 * restore this hint.
794 	 */
795 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
796 		nr_empty_pages++;
797 
798 	if (s_off == s_block->first_free)
799 		s_block->first_free = find_next_zero_bit(
800 					pcpu_index_alloc_map(chunk, s_index),
801 					PCPU_BITMAP_BLOCK_BITS,
802 					s_off + bits);
803 
804 	if (pcpu_region_overlap(s_block->scan_hint_start,
805 				s_block->scan_hint_start + s_block->scan_hint,
806 				s_off,
807 				s_off + bits))
808 		s_block->scan_hint = 0;
809 
810 	if (pcpu_region_overlap(s_block->contig_hint_start,
811 				s_block->contig_hint_start +
812 				s_block->contig_hint,
813 				s_off,
814 				s_off + bits)) {
815 		/* block contig hint is broken - scan to fix it */
816 		if (!s_off)
817 			s_block->left_free = 0;
818 		pcpu_block_refresh_hint(chunk, s_index);
819 	} else {
820 		/* update left and right contig manually */
821 		s_block->left_free = min(s_block->left_free, s_off);
822 		if (s_index == e_index)
823 			s_block->right_free = min_t(int, s_block->right_free,
824 					PCPU_BITMAP_BLOCK_BITS - e_off);
825 		else
826 			s_block->right_free = 0;
827 	}
828 
829 	/*
830 	 * Update e_block.
831 	 */
832 	if (s_index != e_index) {
833 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
834 			nr_empty_pages++;
835 
836 		/*
837 		 * When the allocation is across blocks, the end is along
838 		 * the left part of the e_block.
839 		 */
840 		e_block->first_free = find_next_zero_bit(
841 				pcpu_index_alloc_map(chunk, e_index),
842 				PCPU_BITMAP_BLOCK_BITS, e_off);
843 
844 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
845 			/* reset the block */
846 			e_block++;
847 		} else {
848 			if (e_off > e_block->scan_hint_start)
849 				e_block->scan_hint = 0;
850 
851 			e_block->left_free = 0;
852 			if (e_off > e_block->contig_hint_start) {
853 				/* contig hint is broken - scan to fix it */
854 				pcpu_block_refresh_hint(chunk, e_index);
855 			} else {
856 				e_block->right_free =
857 					min_t(int, e_block->right_free,
858 					      PCPU_BITMAP_BLOCK_BITS - e_off);
859 			}
860 		}
861 
862 		/* update in-between md_blocks */
863 		nr_empty_pages += (e_index - s_index - 1);
864 		for (block = s_block + 1; block < e_block; block++) {
865 			block->scan_hint = 0;
866 			block->contig_hint = 0;
867 			block->left_free = 0;
868 			block->right_free = 0;
869 		}
870 	}
871 
872 	if (nr_empty_pages)
873 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
874 
875 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
876 				chunk_md->scan_hint_start +
877 				chunk_md->scan_hint,
878 				bit_off,
879 				bit_off + bits))
880 		chunk_md->scan_hint = 0;
881 
882 	/*
883 	 * The only time a full chunk scan is required is if the chunk
884 	 * contig hint is broken.  Otherwise, it means a smaller space
885 	 * was used and therefore the chunk contig hint is still correct.
886 	 */
887 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
888 				chunk_md->contig_hint_start +
889 				chunk_md->contig_hint,
890 				bit_off,
891 				bit_off + bits))
892 		pcpu_chunk_refresh_hint(chunk, false);
893 }
894 
895 /**
896  * pcpu_block_update_hint_free - updates the block hints on the free path
897  * @chunk: chunk of interest
898  * @bit_off: chunk offset
899  * @bits: size of request
900  *
901  * Updates metadata for the allocation path.  This avoids a blind block
902  * refresh by making use of the block contig hints.  If this fails, it scans
903  * forward and backward to determine the extent of the free area.  This is
904  * capped at the boundary of blocks.
905  *
906  * A chunk update is triggered if a page becomes free, a block becomes free,
907  * or the free spans across blocks.  This tradeoff is to minimize iterating
908  * over the block metadata to update chunk_md->contig_hint.
909  * chunk_md->contig_hint may be off by up to a page, but it will never be more
910  * than the available space.  If the contig hint is contained in one block, it
911  * will be accurate.
912  */
913 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
914 					int bits)
915 {
916 	int nr_empty_pages = 0;
917 	struct pcpu_block_md *s_block, *e_block, *block;
918 	int s_index, e_index;	/* block indexes of the freed allocation */
919 	int s_off, e_off;	/* block offsets of the freed allocation */
920 	int start, end;		/* start and end of the whole free area */
921 
922 	/*
923 	 * Calculate per block offsets.
924 	 * The calculation uses an inclusive range, but the resulting offsets
925 	 * are [start, end).  e_index always points to the last block in the
926 	 * range.
927 	 */
928 	s_index = pcpu_off_to_block_index(bit_off);
929 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
930 	s_off = pcpu_off_to_block_off(bit_off);
931 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
932 
933 	s_block = chunk->md_blocks + s_index;
934 	e_block = chunk->md_blocks + e_index;
935 
936 	/*
937 	 * Check if the freed area aligns with the block->contig_hint.
938 	 * If it does, then the scan to find the beginning/end of the
939 	 * larger free area can be avoided.
940 	 *
941 	 * start and end refer to beginning and end of the free area
942 	 * within each their respective blocks.  This is not necessarily
943 	 * the entire free area as it may span blocks past the beginning
944 	 * or end of the block.
945 	 */
946 	start = s_off;
947 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
948 		start = s_block->contig_hint_start;
949 	} else {
950 		/*
951 		 * Scan backwards to find the extent of the free area.
952 		 * find_last_bit returns the starting bit, so if the start bit
953 		 * is returned, that means there was no last bit and the
954 		 * remainder of the chunk is free.
955 		 */
956 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
957 					  start);
958 		start = (start == l_bit) ? 0 : l_bit + 1;
959 	}
960 
961 	end = e_off;
962 	if (e_off == e_block->contig_hint_start)
963 		end = e_block->contig_hint_start + e_block->contig_hint;
964 	else
965 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
966 				    PCPU_BITMAP_BLOCK_BITS, end);
967 
968 	/* update s_block */
969 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
970 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
971 		nr_empty_pages++;
972 	pcpu_block_update(s_block, start, e_off);
973 
974 	/* freeing in the same block */
975 	if (s_index != e_index) {
976 		/* update e_block */
977 		if (end == PCPU_BITMAP_BLOCK_BITS)
978 			nr_empty_pages++;
979 		pcpu_block_update(e_block, 0, end);
980 
981 		/* reset md_blocks in the middle */
982 		nr_empty_pages += (e_index - s_index - 1);
983 		for (block = s_block + 1; block < e_block; block++) {
984 			block->first_free = 0;
985 			block->scan_hint = 0;
986 			block->contig_hint_start = 0;
987 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
988 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
989 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
990 		}
991 	}
992 
993 	if (nr_empty_pages)
994 		pcpu_update_empty_pages(chunk, nr_empty_pages);
995 
996 	/*
997 	 * Refresh chunk metadata when the free makes a block free or spans
998 	 * across blocks.  The contig_hint may be off by up to a page, but if
999 	 * the contig_hint is contained in a block, it will be accurate with
1000 	 * the else condition below.
1001 	 */
1002 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1003 		pcpu_chunk_refresh_hint(chunk, true);
1004 	else
1005 		pcpu_block_update(&chunk->chunk_md,
1006 				  pcpu_block_off_to_off(s_index, start),
1007 				  end);
1008 }
1009 
1010 /**
1011  * pcpu_is_populated - determines if the region is populated
1012  * @chunk: chunk of interest
1013  * @bit_off: chunk offset
1014  * @bits: size of area
1015  * @next_off: return value for the next offset to start searching
1016  *
1017  * For atomic allocations, check if the backing pages are populated.
1018  *
1019  * RETURNS:
1020  * Bool if the backing pages are populated.
1021  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1022  */
1023 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1024 			      int *next_off)
1025 {
1026 	unsigned int page_start, page_end, rs, re;
1027 
1028 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1029 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1030 
1031 	rs = page_start;
1032 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1033 	if (rs >= page_end)
1034 		return true;
1035 
1036 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1037 	return false;
1038 }
1039 
1040 /**
1041  * pcpu_find_block_fit - finds the block index to start searching
1042  * @chunk: chunk of interest
1043  * @alloc_bits: size of request in allocation units
1044  * @align: alignment of area (max PAGE_SIZE bytes)
1045  * @pop_only: use populated regions only
1046  *
1047  * Given a chunk and an allocation spec, find the offset to begin searching
1048  * for a free region.  This iterates over the bitmap metadata blocks to
1049  * find an offset that will be guaranteed to fit the requirements.  It is
1050  * not quite first fit as if the allocation does not fit in the contig hint
1051  * of a block or chunk, it is skipped.  This errs on the side of caution
1052  * to prevent excess iteration.  Poor alignment can cause the allocator to
1053  * skip over blocks and chunks that have valid free areas.
1054  *
1055  * RETURNS:
1056  * The offset in the bitmap to begin searching.
1057  * -1 if no offset is found.
1058  */
1059 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1060 			       size_t align, bool pop_only)
1061 {
1062 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1063 	int bit_off, bits, next_off;
1064 
1065 	/*
1066 	 * Check to see if the allocation can fit in the chunk's contig hint.
1067 	 * This is an optimization to prevent scanning by assuming if it
1068 	 * cannot fit in the global hint, there is memory pressure and creating
1069 	 * a new chunk would happen soon.
1070 	 */
1071 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1072 		  chunk_md->contig_hint_start;
1073 	if (bit_off + alloc_bits > chunk_md->contig_hint)
1074 		return -1;
1075 
1076 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1077 	bits = 0;
1078 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1079 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1080 						   &next_off))
1081 			break;
1082 
1083 		bit_off = next_off;
1084 		bits = 0;
1085 	}
1086 
1087 	if (bit_off == pcpu_chunk_map_bits(chunk))
1088 		return -1;
1089 
1090 	return bit_off;
1091 }
1092 
1093 /*
1094  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1095  * @map: the address to base the search on
1096  * @size: the bitmap size in bits
1097  * @start: the bitnumber to start searching at
1098  * @nr: the number of zeroed bits we're looking for
1099  * @align_mask: alignment mask for zero area
1100  * @largest_off: offset of the largest area skipped
1101  * @largest_bits: size of the largest area skipped
1102  *
1103  * The @align_mask should be one less than a power of 2.
1104  *
1105  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1106  * the largest area that was skipped.  This is imperfect, but in general is
1107  * good enough.  The largest remembered region is the largest failed region
1108  * seen.  This does not include anything we possibly skipped due to alignment.
1109  * pcpu_block_update_scan() does scan backwards to try and recover what was
1110  * lost to alignment.  While this can cause scanning to miss earlier possible
1111  * free areas, smaller allocations will eventually fill those holes.
1112  */
1113 static unsigned long pcpu_find_zero_area(unsigned long *map,
1114 					 unsigned long size,
1115 					 unsigned long start,
1116 					 unsigned long nr,
1117 					 unsigned long align_mask,
1118 					 unsigned long *largest_off,
1119 					 unsigned long *largest_bits)
1120 {
1121 	unsigned long index, end, i, area_off, area_bits;
1122 again:
1123 	index = find_next_zero_bit(map, size, start);
1124 
1125 	/* Align allocation */
1126 	index = __ALIGN_MASK(index, align_mask);
1127 	area_off = index;
1128 
1129 	end = index + nr;
1130 	if (end > size)
1131 		return end;
1132 	i = find_next_bit(map, end, index);
1133 	if (i < end) {
1134 		area_bits = i - area_off;
1135 		/* remember largest unused area with best alignment */
1136 		if (area_bits > *largest_bits ||
1137 		    (area_bits == *largest_bits && *largest_off &&
1138 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1139 			*largest_off = area_off;
1140 			*largest_bits = area_bits;
1141 		}
1142 
1143 		start = i + 1;
1144 		goto again;
1145 	}
1146 	return index;
1147 }
1148 
1149 /**
1150  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1151  * @chunk: chunk of interest
1152  * @alloc_bits: size of request in allocation units
1153  * @align: alignment of area (max PAGE_SIZE)
1154  * @start: bit_off to start searching
1155  *
1156  * This function takes in a @start offset to begin searching to fit an
1157  * allocation of @alloc_bits with alignment @align.  It needs to scan
1158  * the allocation map because if it fits within the block's contig hint,
1159  * @start will be block->first_free. This is an attempt to fill the
1160  * allocation prior to breaking the contig hint.  The allocation and
1161  * boundary maps are updated accordingly if it confirms a valid
1162  * free area.
1163  *
1164  * RETURNS:
1165  * Allocated addr offset in @chunk on success.
1166  * -1 if no matching area is found.
1167  */
1168 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1169 			   size_t align, int start)
1170 {
1171 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1172 	size_t align_mask = (align) ? (align - 1) : 0;
1173 	unsigned long area_off = 0, area_bits = 0;
1174 	int bit_off, end, oslot;
1175 
1176 	lockdep_assert_held(&pcpu_lock);
1177 
1178 	oslot = pcpu_chunk_slot(chunk);
1179 
1180 	/*
1181 	 * Search to find a fit.
1182 	 */
1183 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1184 		    pcpu_chunk_map_bits(chunk));
1185 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1186 				      align_mask, &area_off, &area_bits);
1187 	if (bit_off >= end)
1188 		return -1;
1189 
1190 	if (area_bits)
1191 		pcpu_block_update_scan(chunk, area_off, area_bits);
1192 
1193 	/* update alloc map */
1194 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1195 
1196 	/* update boundary map */
1197 	set_bit(bit_off, chunk->bound_map);
1198 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1199 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1200 
1201 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1202 
1203 	/* update first free bit */
1204 	if (bit_off == chunk_md->first_free)
1205 		chunk_md->first_free = find_next_zero_bit(
1206 					chunk->alloc_map,
1207 					pcpu_chunk_map_bits(chunk),
1208 					bit_off + alloc_bits);
1209 
1210 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1211 
1212 	pcpu_chunk_relocate(chunk, oslot);
1213 
1214 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1215 }
1216 
1217 /**
1218  * pcpu_free_area - frees the corresponding offset
1219  * @chunk: chunk of interest
1220  * @off: addr offset into chunk
1221  *
1222  * This function determines the size of an allocation to free using
1223  * the boundary bitmap and clears the allocation map.
1224  *
1225  * RETURNS:
1226  * Number of freed bytes.
1227  */
1228 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1229 {
1230 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1231 	int bit_off, bits, end, oslot, freed;
1232 
1233 	lockdep_assert_held(&pcpu_lock);
1234 	pcpu_stats_area_dealloc(chunk);
1235 
1236 	oslot = pcpu_chunk_slot(chunk);
1237 
1238 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1239 
1240 	/* find end index */
1241 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1242 			    bit_off + 1);
1243 	bits = end - bit_off;
1244 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1245 
1246 	freed = bits * PCPU_MIN_ALLOC_SIZE;
1247 
1248 	/* update metadata */
1249 	chunk->free_bytes += freed;
1250 
1251 	/* update first free bit */
1252 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1253 
1254 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1255 
1256 	pcpu_chunk_relocate(chunk, oslot);
1257 
1258 	return freed;
1259 }
1260 
1261 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1262 {
1263 	block->scan_hint = 0;
1264 	block->contig_hint = nr_bits;
1265 	block->left_free = nr_bits;
1266 	block->right_free = nr_bits;
1267 	block->first_free = 0;
1268 	block->nr_bits = nr_bits;
1269 }
1270 
1271 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1272 {
1273 	struct pcpu_block_md *md_block;
1274 
1275 	/* init the chunk's block */
1276 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1277 
1278 	for (md_block = chunk->md_blocks;
1279 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1280 	     md_block++)
1281 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1282 }
1283 
1284 /**
1285  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1286  * @tmp_addr: the start of the region served
1287  * @map_size: size of the region served
1288  *
1289  * This is responsible for creating the chunks that serve the first chunk.  The
1290  * base_addr is page aligned down of @tmp_addr while the region end is page
1291  * aligned up.  Offsets are kept track of to determine the region served. All
1292  * this is done to appease the bitmap allocator in avoiding partial blocks.
1293  *
1294  * RETURNS:
1295  * Chunk serving the region at @tmp_addr of @map_size.
1296  */
1297 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1298 							 int map_size)
1299 {
1300 	struct pcpu_chunk *chunk;
1301 	unsigned long aligned_addr, lcm_align;
1302 	int start_offset, offset_bits, region_size, region_bits;
1303 	size_t alloc_size;
1304 
1305 	/* region calculations */
1306 	aligned_addr = tmp_addr & PAGE_MASK;
1307 
1308 	start_offset = tmp_addr - aligned_addr;
1309 
1310 	/*
1311 	 * Align the end of the region with the LCM of PAGE_SIZE and
1312 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1313 	 * the other.
1314 	 */
1315 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1316 	region_size = ALIGN(start_offset + map_size, lcm_align);
1317 
1318 	/* allocate chunk */
1319 	alloc_size = struct_size(chunk, populated,
1320 				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1321 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1322 	if (!chunk)
1323 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1324 		      alloc_size);
1325 
1326 	INIT_LIST_HEAD(&chunk->list);
1327 
1328 	chunk->base_addr = (void *)aligned_addr;
1329 	chunk->start_offset = start_offset;
1330 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1331 
1332 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1333 	region_bits = pcpu_chunk_map_bits(chunk);
1334 
1335 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1336 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1337 	if (!chunk->alloc_map)
1338 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1339 		      alloc_size);
1340 
1341 	alloc_size =
1342 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1343 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1344 	if (!chunk->bound_map)
1345 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1346 		      alloc_size);
1347 
1348 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1349 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1350 	if (!chunk->md_blocks)
1351 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1352 		      alloc_size);
1353 
1354 #ifdef CONFIG_MEMCG_KMEM
1355 	/* first chunk isn't memcg-aware */
1356 	chunk->obj_cgroups = NULL;
1357 #endif
1358 	pcpu_init_md_blocks(chunk);
1359 
1360 	/* manage populated page bitmap */
1361 	chunk->immutable = true;
1362 	bitmap_fill(chunk->populated, chunk->nr_pages);
1363 	chunk->nr_populated = chunk->nr_pages;
1364 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1365 
1366 	chunk->free_bytes = map_size;
1367 
1368 	if (chunk->start_offset) {
1369 		/* hide the beginning of the bitmap */
1370 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1371 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1372 		set_bit(0, chunk->bound_map);
1373 		set_bit(offset_bits, chunk->bound_map);
1374 
1375 		chunk->chunk_md.first_free = offset_bits;
1376 
1377 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1378 	}
1379 
1380 	if (chunk->end_offset) {
1381 		/* hide the end of the bitmap */
1382 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1383 		bitmap_set(chunk->alloc_map,
1384 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1385 			   offset_bits);
1386 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1387 			chunk->bound_map);
1388 		set_bit(region_bits, chunk->bound_map);
1389 
1390 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1391 					     - offset_bits, offset_bits);
1392 	}
1393 
1394 	return chunk;
1395 }
1396 
1397 static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
1398 {
1399 	struct pcpu_chunk *chunk;
1400 	int region_bits;
1401 
1402 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1403 	if (!chunk)
1404 		return NULL;
1405 
1406 	INIT_LIST_HEAD(&chunk->list);
1407 	chunk->nr_pages = pcpu_unit_pages;
1408 	region_bits = pcpu_chunk_map_bits(chunk);
1409 
1410 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1411 					   sizeof(chunk->alloc_map[0]), gfp);
1412 	if (!chunk->alloc_map)
1413 		goto alloc_map_fail;
1414 
1415 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1416 					   sizeof(chunk->bound_map[0]), gfp);
1417 	if (!chunk->bound_map)
1418 		goto bound_map_fail;
1419 
1420 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1421 					   sizeof(chunk->md_blocks[0]), gfp);
1422 	if (!chunk->md_blocks)
1423 		goto md_blocks_fail;
1424 
1425 #ifdef CONFIG_MEMCG_KMEM
1426 	if (pcpu_is_memcg_chunk(type)) {
1427 		chunk->obj_cgroups =
1428 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1429 					sizeof(struct obj_cgroup *), gfp);
1430 		if (!chunk->obj_cgroups)
1431 			goto objcg_fail;
1432 	}
1433 #endif
1434 
1435 	pcpu_init_md_blocks(chunk);
1436 
1437 	/* init metadata */
1438 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1439 
1440 	return chunk;
1441 
1442 #ifdef CONFIG_MEMCG_KMEM
1443 objcg_fail:
1444 	pcpu_mem_free(chunk->md_blocks);
1445 #endif
1446 md_blocks_fail:
1447 	pcpu_mem_free(chunk->bound_map);
1448 bound_map_fail:
1449 	pcpu_mem_free(chunk->alloc_map);
1450 alloc_map_fail:
1451 	pcpu_mem_free(chunk);
1452 
1453 	return NULL;
1454 }
1455 
1456 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1457 {
1458 	if (!chunk)
1459 		return;
1460 #ifdef CONFIG_MEMCG_KMEM
1461 	pcpu_mem_free(chunk->obj_cgroups);
1462 #endif
1463 	pcpu_mem_free(chunk->md_blocks);
1464 	pcpu_mem_free(chunk->bound_map);
1465 	pcpu_mem_free(chunk->alloc_map);
1466 	pcpu_mem_free(chunk);
1467 }
1468 
1469 /**
1470  * pcpu_chunk_populated - post-population bookkeeping
1471  * @chunk: pcpu_chunk which got populated
1472  * @page_start: the start page
1473  * @page_end: the end page
1474  *
1475  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1476  * the bookkeeping information accordingly.  Must be called after each
1477  * successful population.
1478  *
1479  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1480  * is to serve an allocation in that area.
1481  */
1482 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1483 				 int page_end)
1484 {
1485 	int nr = page_end - page_start;
1486 
1487 	lockdep_assert_held(&pcpu_lock);
1488 
1489 	bitmap_set(chunk->populated, page_start, nr);
1490 	chunk->nr_populated += nr;
1491 	pcpu_nr_populated += nr;
1492 
1493 	pcpu_update_empty_pages(chunk, nr);
1494 }
1495 
1496 /**
1497  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1498  * @chunk: pcpu_chunk which got depopulated
1499  * @page_start: the start page
1500  * @page_end: the end page
1501  *
1502  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1503  * Update the bookkeeping information accordingly.  Must be called after
1504  * each successful depopulation.
1505  */
1506 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1507 				   int page_start, int page_end)
1508 {
1509 	int nr = page_end - page_start;
1510 
1511 	lockdep_assert_held(&pcpu_lock);
1512 
1513 	bitmap_clear(chunk->populated, page_start, nr);
1514 	chunk->nr_populated -= nr;
1515 	pcpu_nr_populated -= nr;
1516 
1517 	pcpu_update_empty_pages(chunk, -nr);
1518 }
1519 
1520 /*
1521  * Chunk management implementation.
1522  *
1523  * To allow different implementations, chunk alloc/free and
1524  * [de]population are implemented in a separate file which is pulled
1525  * into this file and compiled together.  The following functions
1526  * should be implemented.
1527  *
1528  * pcpu_populate_chunk		- populate the specified range of a chunk
1529  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1530  * pcpu_create_chunk		- create a new chunk
1531  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1532  * pcpu_addr_to_page		- translate address to physical address
1533  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1534  */
1535 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1536 			       int page_start, int page_end, gfp_t gfp);
1537 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1538 				  int page_start, int page_end);
1539 static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
1540 					    gfp_t gfp);
1541 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1542 static struct page *pcpu_addr_to_page(void *addr);
1543 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1544 
1545 #ifdef CONFIG_NEED_PER_CPU_KM
1546 #include "percpu-km.c"
1547 #else
1548 #include "percpu-vm.c"
1549 #endif
1550 
1551 /**
1552  * pcpu_chunk_addr_search - determine chunk containing specified address
1553  * @addr: address for which the chunk needs to be determined.
1554  *
1555  * This is an internal function that handles all but static allocations.
1556  * Static percpu address values should never be passed into the allocator.
1557  *
1558  * RETURNS:
1559  * The address of the found chunk.
1560  */
1561 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1562 {
1563 	/* is it in the dynamic region (first chunk)? */
1564 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1565 		return pcpu_first_chunk;
1566 
1567 	/* is it in the reserved region? */
1568 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1569 		return pcpu_reserved_chunk;
1570 
1571 	/*
1572 	 * The address is relative to unit0 which might be unused and
1573 	 * thus unmapped.  Offset the address to the unit space of the
1574 	 * current processor before looking it up in the vmalloc
1575 	 * space.  Note that any possible cpu id can be used here, so
1576 	 * there's no need to worry about preemption or cpu hotplug.
1577 	 */
1578 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1579 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1580 }
1581 
1582 #ifdef CONFIG_MEMCG_KMEM
1583 static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1584 						     struct obj_cgroup **objcgp)
1585 {
1586 	struct obj_cgroup *objcg;
1587 
1588 	if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1589 		return PCPU_CHUNK_ROOT;
1590 
1591 	objcg = get_obj_cgroup_from_current();
1592 	if (!objcg)
1593 		return PCPU_CHUNK_ROOT;
1594 
1595 	if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1596 		obj_cgroup_put(objcg);
1597 		return PCPU_FAIL_ALLOC;
1598 	}
1599 
1600 	*objcgp = objcg;
1601 	return PCPU_CHUNK_MEMCG;
1602 }
1603 
1604 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1605 				       struct pcpu_chunk *chunk, int off,
1606 				       size_t size)
1607 {
1608 	if (!objcg)
1609 		return;
1610 
1611 	if (chunk) {
1612 		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1613 
1614 		rcu_read_lock();
1615 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1616 				size * num_possible_cpus());
1617 		rcu_read_unlock();
1618 	} else {
1619 		obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1620 		obj_cgroup_put(objcg);
1621 	}
1622 }
1623 
1624 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1625 {
1626 	struct obj_cgroup *objcg;
1627 
1628 	if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
1629 		return;
1630 
1631 	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1632 	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1633 
1634 	obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1635 
1636 	rcu_read_lock();
1637 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1638 			-(size * num_possible_cpus()));
1639 	rcu_read_unlock();
1640 
1641 	obj_cgroup_put(objcg);
1642 }
1643 
1644 #else /* CONFIG_MEMCG_KMEM */
1645 static enum pcpu_chunk_type
1646 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1647 {
1648 	return PCPU_CHUNK_ROOT;
1649 }
1650 
1651 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1652 				       struct pcpu_chunk *chunk, int off,
1653 				       size_t size)
1654 {
1655 }
1656 
1657 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1658 {
1659 }
1660 #endif /* CONFIG_MEMCG_KMEM */
1661 
1662 /**
1663  * pcpu_alloc - the percpu allocator
1664  * @size: size of area to allocate in bytes
1665  * @align: alignment of area (max PAGE_SIZE)
1666  * @reserved: allocate from the reserved chunk if available
1667  * @gfp: allocation flags
1668  *
1669  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1670  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1671  * then no warning will be triggered on invalid or failed allocation
1672  * requests.
1673  *
1674  * RETURNS:
1675  * Percpu pointer to the allocated area on success, NULL on failure.
1676  */
1677 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1678 				 gfp_t gfp)
1679 {
1680 	gfp_t pcpu_gfp;
1681 	bool is_atomic;
1682 	bool do_warn;
1683 	enum pcpu_chunk_type type;
1684 	struct list_head *pcpu_slot;
1685 	struct obj_cgroup *objcg = NULL;
1686 	static int warn_limit = 10;
1687 	struct pcpu_chunk *chunk, *next;
1688 	const char *err;
1689 	int slot, off, cpu, ret;
1690 	unsigned long flags;
1691 	void __percpu *ptr;
1692 	size_t bits, bit_align;
1693 
1694 	gfp = current_gfp_context(gfp);
1695 	/* whitelisted flags that can be passed to the backing allocators */
1696 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1697 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1698 	do_warn = !(gfp & __GFP_NOWARN);
1699 
1700 	/*
1701 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1702 	 * therefore alignment must be a minimum of that many bytes.
1703 	 * An allocation may have internal fragmentation from rounding up
1704 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1705 	 */
1706 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1707 		align = PCPU_MIN_ALLOC_SIZE;
1708 
1709 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1710 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1711 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1712 
1713 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1714 		     !is_power_of_2(align))) {
1715 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1716 		     size, align);
1717 		return NULL;
1718 	}
1719 
1720 	type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
1721 	if (unlikely(type == PCPU_FAIL_ALLOC))
1722 		return NULL;
1723 	pcpu_slot = pcpu_chunk_list(type);
1724 
1725 	if (!is_atomic) {
1726 		/*
1727 		 * pcpu_balance_workfn() allocates memory under this mutex,
1728 		 * and it may wait for memory reclaim. Allow current task
1729 		 * to become OOM victim, in case of memory pressure.
1730 		 */
1731 		if (gfp & __GFP_NOFAIL) {
1732 			mutex_lock(&pcpu_alloc_mutex);
1733 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1734 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1735 			return NULL;
1736 		}
1737 	}
1738 
1739 	spin_lock_irqsave(&pcpu_lock, flags);
1740 
1741 	/* serve reserved allocations from the reserved chunk if available */
1742 	if (reserved && pcpu_reserved_chunk) {
1743 		chunk = pcpu_reserved_chunk;
1744 
1745 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1746 		if (off < 0) {
1747 			err = "alloc from reserved chunk failed";
1748 			goto fail_unlock;
1749 		}
1750 
1751 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1752 		if (off >= 0)
1753 			goto area_found;
1754 
1755 		err = "alloc from reserved chunk failed";
1756 		goto fail_unlock;
1757 	}
1758 
1759 restart:
1760 	/* search through normal chunks */
1761 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1762 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1763 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1764 						  is_atomic);
1765 			if (off < 0) {
1766 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1767 					pcpu_chunk_move(chunk, 0);
1768 				continue;
1769 			}
1770 
1771 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1772 			if (off >= 0)
1773 				goto area_found;
1774 
1775 		}
1776 	}
1777 
1778 	spin_unlock_irqrestore(&pcpu_lock, flags);
1779 
1780 	/*
1781 	 * No space left.  Create a new chunk.  We don't want multiple
1782 	 * tasks to create chunks simultaneously.  Serialize and create iff
1783 	 * there's still no empty chunk after grabbing the mutex.
1784 	 */
1785 	if (is_atomic) {
1786 		err = "atomic alloc failed, no space left";
1787 		goto fail;
1788 	}
1789 
1790 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1791 		chunk = pcpu_create_chunk(type, pcpu_gfp);
1792 		if (!chunk) {
1793 			err = "failed to allocate new chunk";
1794 			goto fail;
1795 		}
1796 
1797 		spin_lock_irqsave(&pcpu_lock, flags);
1798 		pcpu_chunk_relocate(chunk, -1);
1799 	} else {
1800 		spin_lock_irqsave(&pcpu_lock, flags);
1801 	}
1802 
1803 	goto restart;
1804 
1805 area_found:
1806 	pcpu_stats_area_alloc(chunk, size);
1807 	spin_unlock_irqrestore(&pcpu_lock, flags);
1808 
1809 	/* populate if not all pages are already there */
1810 	if (!is_atomic) {
1811 		unsigned int page_start, page_end, rs, re;
1812 
1813 		page_start = PFN_DOWN(off);
1814 		page_end = PFN_UP(off + size);
1815 
1816 		bitmap_for_each_clear_region(chunk->populated, rs, re,
1817 					     page_start, page_end) {
1818 			WARN_ON(chunk->immutable);
1819 
1820 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1821 
1822 			spin_lock_irqsave(&pcpu_lock, flags);
1823 			if (ret) {
1824 				pcpu_free_area(chunk, off);
1825 				err = "failed to populate";
1826 				goto fail_unlock;
1827 			}
1828 			pcpu_chunk_populated(chunk, rs, re);
1829 			spin_unlock_irqrestore(&pcpu_lock, flags);
1830 		}
1831 
1832 		mutex_unlock(&pcpu_alloc_mutex);
1833 	}
1834 
1835 	if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW)
1836 		pcpu_schedule_balance_work();
1837 
1838 	/* clear the areas and return address relative to base address */
1839 	for_each_possible_cpu(cpu)
1840 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1841 
1842 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1843 	kmemleak_alloc_percpu(ptr, size, gfp);
1844 
1845 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1846 			chunk->base_addr, off, ptr);
1847 
1848 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1849 
1850 	return ptr;
1851 
1852 fail_unlock:
1853 	spin_unlock_irqrestore(&pcpu_lock, flags);
1854 fail:
1855 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1856 
1857 	if (!is_atomic && do_warn && warn_limit) {
1858 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1859 			size, align, is_atomic, err);
1860 		dump_stack();
1861 		if (!--warn_limit)
1862 			pr_info("limit reached, disable warning\n");
1863 	}
1864 	if (is_atomic) {
1865 		/* see the flag handling in pcpu_balance_workfn() */
1866 		pcpu_atomic_alloc_failed = true;
1867 		pcpu_schedule_balance_work();
1868 	} else {
1869 		mutex_unlock(&pcpu_alloc_mutex);
1870 	}
1871 
1872 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1873 
1874 	return NULL;
1875 }
1876 
1877 /**
1878  * __alloc_percpu_gfp - allocate dynamic percpu area
1879  * @size: size of area to allocate in bytes
1880  * @align: alignment of area (max PAGE_SIZE)
1881  * @gfp: allocation flags
1882  *
1883  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1884  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1885  * be called from any context but is a lot more likely to fail. If @gfp
1886  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1887  * allocation requests.
1888  *
1889  * RETURNS:
1890  * Percpu pointer to the allocated area on success, NULL on failure.
1891  */
1892 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1893 {
1894 	return pcpu_alloc(size, align, false, gfp);
1895 }
1896 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1897 
1898 /**
1899  * __alloc_percpu - allocate dynamic percpu area
1900  * @size: size of area to allocate in bytes
1901  * @align: alignment of area (max PAGE_SIZE)
1902  *
1903  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1904  */
1905 void __percpu *__alloc_percpu(size_t size, size_t align)
1906 {
1907 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1908 }
1909 EXPORT_SYMBOL_GPL(__alloc_percpu);
1910 
1911 /**
1912  * __alloc_reserved_percpu - allocate reserved percpu area
1913  * @size: size of area to allocate in bytes
1914  * @align: alignment of area (max PAGE_SIZE)
1915  *
1916  * Allocate zero-filled percpu area of @size bytes aligned at @align
1917  * from reserved percpu area if arch has set it up; otherwise,
1918  * allocation is served from the same dynamic area.  Might sleep.
1919  * Might trigger writeouts.
1920  *
1921  * CONTEXT:
1922  * Does GFP_KERNEL allocation.
1923  *
1924  * RETURNS:
1925  * Percpu pointer to the allocated area on success, NULL on failure.
1926  */
1927 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1928 {
1929 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1930 }
1931 
1932 /**
1933  * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
1934  * @type: chunk type
1935  *
1936  * Reclaim all fully free chunks except for the first one.  This is also
1937  * responsible for maintaining the pool of empty populated pages.  However,
1938  * it is possible that this is called when physical memory is scarce causing
1939  * OOM killer to be triggered.  We should avoid doing so until an actual
1940  * allocation causes the failure as it is possible that requests can be
1941  * serviced from already backed regions.
1942  */
1943 static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
1944 {
1945 	/* gfp flags passed to underlying allocators */
1946 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1947 	LIST_HEAD(to_free);
1948 	struct list_head *pcpu_slot = pcpu_chunk_list(type);
1949 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1950 	struct pcpu_chunk *chunk, *next;
1951 	int slot, nr_to_pop, ret;
1952 
1953 	/*
1954 	 * There's no reason to keep around multiple unused chunks and VM
1955 	 * areas can be scarce.  Destroy all free chunks except for one.
1956 	 */
1957 	mutex_lock(&pcpu_alloc_mutex);
1958 	spin_lock_irq(&pcpu_lock);
1959 
1960 	list_for_each_entry_safe(chunk, next, free_head, list) {
1961 		WARN_ON(chunk->immutable);
1962 
1963 		/* spare the first one */
1964 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1965 			continue;
1966 
1967 		list_move(&chunk->list, &to_free);
1968 	}
1969 
1970 	spin_unlock_irq(&pcpu_lock);
1971 
1972 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1973 		unsigned int rs, re;
1974 
1975 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1976 					   chunk->nr_pages) {
1977 			pcpu_depopulate_chunk(chunk, rs, re);
1978 			spin_lock_irq(&pcpu_lock);
1979 			pcpu_chunk_depopulated(chunk, rs, re);
1980 			spin_unlock_irq(&pcpu_lock);
1981 		}
1982 		pcpu_destroy_chunk(chunk);
1983 		cond_resched();
1984 	}
1985 
1986 	/*
1987 	 * Ensure there are certain number of free populated pages for
1988 	 * atomic allocs.  Fill up from the most packed so that atomic
1989 	 * allocs don't increase fragmentation.  If atomic allocation
1990 	 * failed previously, always populate the maximum amount.  This
1991 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1992 	 * failing indefinitely; however, large atomic allocs are not
1993 	 * something we support properly and can be highly unreliable and
1994 	 * inefficient.
1995 	 */
1996 retry_pop:
1997 	if (pcpu_atomic_alloc_failed) {
1998 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1999 		/* best effort anyway, don't worry about synchronization */
2000 		pcpu_atomic_alloc_failed = false;
2001 	} else {
2002 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2003 				  pcpu_nr_empty_pop_pages[type],
2004 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2005 	}
2006 
2007 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
2008 		unsigned int nr_unpop = 0, rs, re;
2009 
2010 		if (!nr_to_pop)
2011 			break;
2012 
2013 		spin_lock_irq(&pcpu_lock);
2014 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
2015 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2016 			if (nr_unpop)
2017 				break;
2018 		}
2019 		spin_unlock_irq(&pcpu_lock);
2020 
2021 		if (!nr_unpop)
2022 			continue;
2023 
2024 		/* @chunk can't go away while pcpu_alloc_mutex is held */
2025 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2026 					     chunk->nr_pages) {
2027 			int nr = min_t(int, re - rs, nr_to_pop);
2028 
2029 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2030 			if (!ret) {
2031 				nr_to_pop -= nr;
2032 				spin_lock_irq(&pcpu_lock);
2033 				pcpu_chunk_populated(chunk, rs, rs + nr);
2034 				spin_unlock_irq(&pcpu_lock);
2035 			} else {
2036 				nr_to_pop = 0;
2037 			}
2038 
2039 			if (!nr_to_pop)
2040 				break;
2041 		}
2042 	}
2043 
2044 	if (nr_to_pop) {
2045 		/* ran out of chunks to populate, create a new one and retry */
2046 		chunk = pcpu_create_chunk(type, gfp);
2047 		if (chunk) {
2048 			spin_lock_irq(&pcpu_lock);
2049 			pcpu_chunk_relocate(chunk, -1);
2050 			spin_unlock_irq(&pcpu_lock);
2051 			goto retry_pop;
2052 		}
2053 	}
2054 
2055 	mutex_unlock(&pcpu_alloc_mutex);
2056 }
2057 
2058 /**
2059  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2060  * @work: unused
2061  *
2062  * Call __pcpu_balance_workfn() for each chunk type.
2063  */
2064 static void pcpu_balance_workfn(struct work_struct *work)
2065 {
2066 	enum pcpu_chunk_type type;
2067 
2068 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2069 		__pcpu_balance_workfn(type);
2070 }
2071 
2072 /**
2073  * free_percpu - free percpu area
2074  * @ptr: pointer to area to free
2075  *
2076  * Free percpu area @ptr.
2077  *
2078  * CONTEXT:
2079  * Can be called from atomic context.
2080  */
2081 void free_percpu(void __percpu *ptr)
2082 {
2083 	void *addr;
2084 	struct pcpu_chunk *chunk;
2085 	unsigned long flags;
2086 	int size, off;
2087 	bool need_balance = false;
2088 	struct list_head *pcpu_slot;
2089 
2090 	if (!ptr)
2091 		return;
2092 
2093 	kmemleak_free_percpu(ptr);
2094 
2095 	addr = __pcpu_ptr_to_addr(ptr);
2096 
2097 	spin_lock_irqsave(&pcpu_lock, flags);
2098 
2099 	chunk = pcpu_chunk_addr_search(addr);
2100 	off = addr - chunk->base_addr;
2101 
2102 	size = pcpu_free_area(chunk, off);
2103 
2104 	pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
2105 
2106 	pcpu_memcg_free_hook(chunk, off, size);
2107 
2108 	/* if there are more than one fully free chunks, wake up grim reaper */
2109 	if (chunk->free_bytes == pcpu_unit_size) {
2110 		struct pcpu_chunk *pos;
2111 
2112 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
2113 			if (pos != chunk) {
2114 				need_balance = true;
2115 				break;
2116 			}
2117 	}
2118 
2119 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2120 
2121 	spin_unlock_irqrestore(&pcpu_lock, flags);
2122 
2123 	if (need_balance)
2124 		pcpu_schedule_balance_work();
2125 }
2126 EXPORT_SYMBOL_GPL(free_percpu);
2127 
2128 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2129 {
2130 #ifdef CONFIG_SMP
2131 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2132 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2133 	unsigned int cpu;
2134 
2135 	for_each_possible_cpu(cpu) {
2136 		void *start = per_cpu_ptr(base, cpu);
2137 		void *va = (void *)addr;
2138 
2139 		if (va >= start && va < start + static_size) {
2140 			if (can_addr) {
2141 				*can_addr = (unsigned long) (va - start);
2142 				*can_addr += (unsigned long)
2143 					per_cpu_ptr(base, get_boot_cpu_id());
2144 			}
2145 			return true;
2146 		}
2147 	}
2148 #endif
2149 	/* on UP, can't distinguish from other static vars, always false */
2150 	return false;
2151 }
2152 
2153 /**
2154  * is_kernel_percpu_address - test whether address is from static percpu area
2155  * @addr: address to test
2156  *
2157  * Test whether @addr belongs to in-kernel static percpu area.  Module
2158  * static percpu areas are not considered.  For those, use
2159  * is_module_percpu_address().
2160  *
2161  * RETURNS:
2162  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2163  */
2164 bool is_kernel_percpu_address(unsigned long addr)
2165 {
2166 	return __is_kernel_percpu_address(addr, NULL);
2167 }
2168 
2169 /**
2170  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2171  * @addr: the address to be converted to physical address
2172  *
2173  * Given @addr which is dereferenceable address obtained via one of
2174  * percpu access macros, this function translates it into its physical
2175  * address.  The caller is responsible for ensuring @addr stays valid
2176  * until this function finishes.
2177  *
2178  * percpu allocator has special setup for the first chunk, which currently
2179  * supports either embedding in linear address space or vmalloc mapping,
2180  * and, from the second one, the backing allocator (currently either vm or
2181  * km) provides translation.
2182  *
2183  * The addr can be translated simply without checking if it falls into the
2184  * first chunk. But the current code reflects better how percpu allocator
2185  * actually works, and the verification can discover both bugs in percpu
2186  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2187  * code.
2188  *
2189  * RETURNS:
2190  * The physical address for @addr.
2191  */
2192 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2193 {
2194 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2195 	bool in_first_chunk = false;
2196 	unsigned long first_low, first_high;
2197 	unsigned int cpu;
2198 
2199 	/*
2200 	 * The following test on unit_low/high isn't strictly
2201 	 * necessary but will speed up lookups of addresses which
2202 	 * aren't in the first chunk.
2203 	 *
2204 	 * The address check is against full chunk sizes.  pcpu_base_addr
2205 	 * points to the beginning of the first chunk including the
2206 	 * static region.  Assumes good intent as the first chunk may
2207 	 * not be full (ie. < pcpu_unit_pages in size).
2208 	 */
2209 	first_low = (unsigned long)pcpu_base_addr +
2210 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2211 	first_high = (unsigned long)pcpu_base_addr +
2212 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2213 	if ((unsigned long)addr >= first_low &&
2214 	    (unsigned long)addr < first_high) {
2215 		for_each_possible_cpu(cpu) {
2216 			void *start = per_cpu_ptr(base, cpu);
2217 
2218 			if (addr >= start && addr < start + pcpu_unit_size) {
2219 				in_first_chunk = true;
2220 				break;
2221 			}
2222 		}
2223 	}
2224 
2225 	if (in_first_chunk) {
2226 		if (!is_vmalloc_addr(addr))
2227 			return __pa(addr);
2228 		else
2229 			return page_to_phys(vmalloc_to_page(addr)) +
2230 			       offset_in_page(addr);
2231 	} else
2232 		return page_to_phys(pcpu_addr_to_page(addr)) +
2233 		       offset_in_page(addr);
2234 }
2235 
2236 /**
2237  * pcpu_alloc_alloc_info - allocate percpu allocation info
2238  * @nr_groups: the number of groups
2239  * @nr_units: the number of units
2240  *
2241  * Allocate ai which is large enough for @nr_groups groups containing
2242  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2243  * cpu_map array which is long enough for @nr_units and filled with
2244  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2245  * pointer of other groups.
2246  *
2247  * RETURNS:
2248  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2249  * failure.
2250  */
2251 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2252 						      int nr_units)
2253 {
2254 	struct pcpu_alloc_info *ai;
2255 	size_t base_size, ai_size;
2256 	void *ptr;
2257 	int unit;
2258 
2259 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2260 			  __alignof__(ai->groups[0].cpu_map[0]));
2261 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2262 
2263 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2264 	if (!ptr)
2265 		return NULL;
2266 	ai = ptr;
2267 	ptr += base_size;
2268 
2269 	ai->groups[0].cpu_map = ptr;
2270 
2271 	for (unit = 0; unit < nr_units; unit++)
2272 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2273 
2274 	ai->nr_groups = nr_groups;
2275 	ai->__ai_size = PFN_ALIGN(ai_size);
2276 
2277 	return ai;
2278 }
2279 
2280 /**
2281  * pcpu_free_alloc_info - free percpu allocation info
2282  * @ai: pcpu_alloc_info to free
2283  *
2284  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2285  */
2286 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2287 {
2288 	memblock_free_early(__pa(ai), ai->__ai_size);
2289 }
2290 
2291 /**
2292  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2293  * @lvl: loglevel
2294  * @ai: allocation info to dump
2295  *
2296  * Print out information about @ai using loglevel @lvl.
2297  */
2298 static void pcpu_dump_alloc_info(const char *lvl,
2299 				 const struct pcpu_alloc_info *ai)
2300 {
2301 	int group_width = 1, cpu_width = 1, width;
2302 	char empty_str[] = "--------";
2303 	int alloc = 0, alloc_end = 0;
2304 	int group, v;
2305 	int upa, apl;	/* units per alloc, allocs per line */
2306 
2307 	v = ai->nr_groups;
2308 	while (v /= 10)
2309 		group_width++;
2310 
2311 	v = num_possible_cpus();
2312 	while (v /= 10)
2313 		cpu_width++;
2314 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2315 
2316 	upa = ai->alloc_size / ai->unit_size;
2317 	width = upa * (cpu_width + 1) + group_width + 3;
2318 	apl = rounddown_pow_of_two(max(60 / width, 1));
2319 
2320 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2321 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2322 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2323 
2324 	for (group = 0; group < ai->nr_groups; group++) {
2325 		const struct pcpu_group_info *gi = &ai->groups[group];
2326 		int unit = 0, unit_end = 0;
2327 
2328 		BUG_ON(gi->nr_units % upa);
2329 		for (alloc_end += gi->nr_units / upa;
2330 		     alloc < alloc_end; alloc++) {
2331 			if (!(alloc % apl)) {
2332 				pr_cont("\n");
2333 				printk("%spcpu-alloc: ", lvl);
2334 			}
2335 			pr_cont("[%0*d] ", group_width, group);
2336 
2337 			for (unit_end += upa; unit < unit_end; unit++)
2338 				if (gi->cpu_map[unit] != NR_CPUS)
2339 					pr_cont("%0*d ",
2340 						cpu_width, gi->cpu_map[unit]);
2341 				else
2342 					pr_cont("%s ", empty_str);
2343 		}
2344 	}
2345 	pr_cont("\n");
2346 }
2347 
2348 /**
2349  * pcpu_setup_first_chunk - initialize the first percpu chunk
2350  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2351  * @base_addr: mapped address
2352  *
2353  * Initialize the first percpu chunk which contains the kernel static
2354  * percpu area.  This function is to be called from arch percpu area
2355  * setup path.
2356  *
2357  * @ai contains all information necessary to initialize the first
2358  * chunk and prime the dynamic percpu allocator.
2359  *
2360  * @ai->static_size is the size of static percpu area.
2361  *
2362  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2363  * reserve after the static area in the first chunk.  This reserves
2364  * the first chunk such that it's available only through reserved
2365  * percpu allocation.  This is primarily used to serve module percpu
2366  * static areas on architectures where the addressing model has
2367  * limited offset range for symbol relocations to guarantee module
2368  * percpu symbols fall inside the relocatable range.
2369  *
2370  * @ai->dyn_size determines the number of bytes available for dynamic
2371  * allocation in the first chunk.  The area between @ai->static_size +
2372  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2373  *
2374  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2375  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2376  * @ai->dyn_size.
2377  *
2378  * @ai->atom_size is the allocation atom size and used as alignment
2379  * for vm areas.
2380  *
2381  * @ai->alloc_size is the allocation size and always multiple of
2382  * @ai->atom_size.  This is larger than @ai->atom_size if
2383  * @ai->unit_size is larger than @ai->atom_size.
2384  *
2385  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2386  * percpu areas.  Units which should be colocated are put into the
2387  * same group.  Dynamic VM areas will be allocated according to these
2388  * groupings.  If @ai->nr_groups is zero, a single group containing
2389  * all units is assumed.
2390  *
2391  * The caller should have mapped the first chunk at @base_addr and
2392  * copied static data to each unit.
2393  *
2394  * The first chunk will always contain a static and a dynamic region.
2395  * However, the static region is not managed by any chunk.  If the first
2396  * chunk also contains a reserved region, it is served by two chunks -
2397  * one for the reserved region and one for the dynamic region.  They
2398  * share the same vm, but use offset regions in the area allocation map.
2399  * The chunk serving the dynamic region is circulated in the chunk slots
2400  * and available for dynamic allocation like any other chunk.
2401  */
2402 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2403 				   void *base_addr)
2404 {
2405 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2406 	size_t static_size, dyn_size;
2407 	struct pcpu_chunk *chunk;
2408 	unsigned long *group_offsets;
2409 	size_t *group_sizes;
2410 	unsigned long *unit_off;
2411 	unsigned int cpu;
2412 	int *unit_map;
2413 	int group, unit, i;
2414 	int map_size;
2415 	unsigned long tmp_addr;
2416 	size_t alloc_size;
2417 	enum pcpu_chunk_type type;
2418 
2419 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2420 	if (unlikely(cond)) {						\
2421 		pr_emerg("failed to initialize, %s\n", #cond);		\
2422 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2423 			 cpumask_pr_args(cpu_possible_mask));		\
2424 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2425 		BUG();							\
2426 	}								\
2427 } while (0)
2428 
2429 	/* sanity checks */
2430 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2431 #ifdef CONFIG_SMP
2432 	PCPU_SETUP_BUG_ON(!ai->static_size);
2433 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2434 #endif
2435 	PCPU_SETUP_BUG_ON(!base_addr);
2436 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2437 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2438 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2439 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2440 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2441 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2442 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2443 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2444 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2445 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2446 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2447 
2448 	/* process group information and build config tables accordingly */
2449 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2450 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2451 	if (!group_offsets)
2452 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2453 		      alloc_size);
2454 
2455 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2456 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2457 	if (!group_sizes)
2458 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2459 		      alloc_size);
2460 
2461 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2462 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2463 	if (!unit_map)
2464 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2465 		      alloc_size);
2466 
2467 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2468 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2469 	if (!unit_off)
2470 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2471 		      alloc_size);
2472 
2473 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2474 		unit_map[cpu] = UINT_MAX;
2475 
2476 	pcpu_low_unit_cpu = NR_CPUS;
2477 	pcpu_high_unit_cpu = NR_CPUS;
2478 
2479 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2480 		const struct pcpu_group_info *gi = &ai->groups[group];
2481 
2482 		group_offsets[group] = gi->base_offset;
2483 		group_sizes[group] = gi->nr_units * ai->unit_size;
2484 
2485 		for (i = 0; i < gi->nr_units; i++) {
2486 			cpu = gi->cpu_map[i];
2487 			if (cpu == NR_CPUS)
2488 				continue;
2489 
2490 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2491 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2492 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2493 
2494 			unit_map[cpu] = unit + i;
2495 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2496 
2497 			/* determine low/high unit_cpu */
2498 			if (pcpu_low_unit_cpu == NR_CPUS ||
2499 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2500 				pcpu_low_unit_cpu = cpu;
2501 			if (pcpu_high_unit_cpu == NR_CPUS ||
2502 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2503 				pcpu_high_unit_cpu = cpu;
2504 		}
2505 	}
2506 	pcpu_nr_units = unit;
2507 
2508 	for_each_possible_cpu(cpu)
2509 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2510 
2511 	/* we're done parsing the input, undefine BUG macro and dump config */
2512 #undef PCPU_SETUP_BUG_ON
2513 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2514 
2515 	pcpu_nr_groups = ai->nr_groups;
2516 	pcpu_group_offsets = group_offsets;
2517 	pcpu_group_sizes = group_sizes;
2518 	pcpu_unit_map = unit_map;
2519 	pcpu_unit_offsets = unit_off;
2520 
2521 	/* determine basic parameters */
2522 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2523 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2524 	pcpu_atom_size = ai->atom_size;
2525 	pcpu_chunk_struct_size = struct_size(chunk, populated,
2526 					     BITS_TO_LONGS(pcpu_unit_pages));
2527 
2528 	pcpu_stats_save_ai(ai);
2529 
2530 	/*
2531 	 * Allocate chunk slots.  The additional last slot is for
2532 	 * empty chunks.
2533 	 */
2534 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2535 	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2536 					  sizeof(pcpu_chunk_lists[0]) *
2537 					  PCPU_NR_CHUNK_TYPES,
2538 					  SMP_CACHE_BYTES);
2539 	if (!pcpu_chunk_lists)
2540 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2541 		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
2542 		      PCPU_NR_CHUNK_TYPES);
2543 
2544 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2545 		for (i = 0; i < pcpu_nr_slots; i++)
2546 			INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
2547 
2548 	/*
2549 	 * The end of the static region needs to be aligned with the
2550 	 * minimum allocation size as this offsets the reserved and
2551 	 * dynamic region.  The first chunk ends page aligned by
2552 	 * expanding the dynamic region, therefore the dynamic region
2553 	 * can be shrunk to compensate while still staying above the
2554 	 * configured sizes.
2555 	 */
2556 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2557 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2558 
2559 	/*
2560 	 * Initialize first chunk.
2561 	 * If the reserved_size is non-zero, this initializes the reserved
2562 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2563 	 * and the dynamic region is initialized here.  The first chunk,
2564 	 * pcpu_first_chunk, will always point to the chunk that serves
2565 	 * the dynamic region.
2566 	 */
2567 	tmp_addr = (unsigned long)base_addr + static_size;
2568 	map_size = ai->reserved_size ?: dyn_size;
2569 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2570 
2571 	/* init dynamic chunk if necessary */
2572 	if (ai->reserved_size) {
2573 		pcpu_reserved_chunk = chunk;
2574 
2575 		tmp_addr = (unsigned long)base_addr + static_size +
2576 			   ai->reserved_size;
2577 		map_size = dyn_size;
2578 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2579 	}
2580 
2581 	/* link the first chunk in */
2582 	pcpu_first_chunk = chunk;
2583 	pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages;
2584 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2585 
2586 	/* include all regions of the first chunk */
2587 	pcpu_nr_populated += PFN_DOWN(size_sum);
2588 
2589 	pcpu_stats_chunk_alloc();
2590 	trace_percpu_create_chunk(base_addr);
2591 
2592 	/* we're done */
2593 	pcpu_base_addr = base_addr;
2594 }
2595 
2596 #ifdef CONFIG_SMP
2597 
2598 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2599 	[PCPU_FC_AUTO]	= "auto",
2600 	[PCPU_FC_EMBED]	= "embed",
2601 	[PCPU_FC_PAGE]	= "page",
2602 };
2603 
2604 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2605 
2606 static int __init percpu_alloc_setup(char *str)
2607 {
2608 	if (!str)
2609 		return -EINVAL;
2610 
2611 	if (0)
2612 		/* nada */;
2613 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2614 	else if (!strcmp(str, "embed"))
2615 		pcpu_chosen_fc = PCPU_FC_EMBED;
2616 #endif
2617 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2618 	else if (!strcmp(str, "page"))
2619 		pcpu_chosen_fc = PCPU_FC_PAGE;
2620 #endif
2621 	else
2622 		pr_warn("unknown allocator %s specified\n", str);
2623 
2624 	return 0;
2625 }
2626 early_param("percpu_alloc", percpu_alloc_setup);
2627 
2628 /*
2629  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2630  * Build it if needed by the arch config or the generic setup is going
2631  * to be used.
2632  */
2633 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2634 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2635 #define BUILD_EMBED_FIRST_CHUNK
2636 #endif
2637 
2638 /* build pcpu_page_first_chunk() iff needed by the arch config */
2639 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2640 #define BUILD_PAGE_FIRST_CHUNK
2641 #endif
2642 
2643 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2644 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2645 /**
2646  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2647  * @reserved_size: the size of reserved percpu area in bytes
2648  * @dyn_size: minimum free size for dynamic allocation in bytes
2649  * @atom_size: allocation atom size
2650  * @cpu_distance_fn: callback to determine distance between cpus, optional
2651  *
2652  * This function determines grouping of units, their mappings to cpus
2653  * and other parameters considering needed percpu size, allocation
2654  * atom size and distances between CPUs.
2655  *
2656  * Groups are always multiples of atom size and CPUs which are of
2657  * LOCAL_DISTANCE both ways are grouped together and share space for
2658  * units in the same group.  The returned configuration is guaranteed
2659  * to have CPUs on different nodes on different groups and >=75% usage
2660  * of allocated virtual address space.
2661  *
2662  * RETURNS:
2663  * On success, pointer to the new allocation_info is returned.  On
2664  * failure, ERR_PTR value is returned.
2665  */
2666 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2667 				size_t reserved_size, size_t dyn_size,
2668 				size_t atom_size,
2669 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2670 {
2671 	static int group_map[NR_CPUS] __initdata;
2672 	static int group_cnt[NR_CPUS] __initdata;
2673 	static struct cpumask mask __initdata;
2674 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2675 	int nr_groups = 1, nr_units = 0;
2676 	size_t size_sum, min_unit_size, alloc_size;
2677 	int upa, max_upa, best_upa;	/* units_per_alloc */
2678 	int last_allocs, group, unit;
2679 	unsigned int cpu, tcpu;
2680 	struct pcpu_alloc_info *ai;
2681 	unsigned int *cpu_map;
2682 
2683 	/* this function may be called multiple times */
2684 	memset(group_map, 0, sizeof(group_map));
2685 	memset(group_cnt, 0, sizeof(group_cnt));
2686 	cpumask_clear(&mask);
2687 
2688 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2689 	size_sum = PFN_ALIGN(static_size + reserved_size +
2690 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2691 	dyn_size = size_sum - static_size - reserved_size;
2692 
2693 	/*
2694 	 * Determine min_unit_size, alloc_size and max_upa such that
2695 	 * alloc_size is multiple of atom_size and is the smallest
2696 	 * which can accommodate 4k aligned segments which are equal to
2697 	 * or larger than min_unit_size.
2698 	 */
2699 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2700 
2701 	/* determine the maximum # of units that can fit in an allocation */
2702 	alloc_size = roundup(min_unit_size, atom_size);
2703 	upa = alloc_size / min_unit_size;
2704 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2705 		upa--;
2706 	max_upa = upa;
2707 
2708 	cpumask_copy(&mask, cpu_possible_mask);
2709 
2710 	/* group cpus according to their proximity */
2711 	for (group = 0; !cpumask_empty(&mask); group++) {
2712 		/* pop the group's first cpu */
2713 		cpu = cpumask_first(&mask);
2714 		group_map[cpu] = group;
2715 		group_cnt[group]++;
2716 		cpumask_clear_cpu(cpu, &mask);
2717 
2718 		for_each_cpu(tcpu, &mask) {
2719 			if (!cpu_distance_fn ||
2720 			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2721 			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2722 				group_map[tcpu] = group;
2723 				group_cnt[group]++;
2724 				cpumask_clear_cpu(tcpu, &mask);
2725 			}
2726 		}
2727 	}
2728 	nr_groups = group;
2729 
2730 	/*
2731 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2732 	 * Expand the unit_size until we use >= 75% of the units allocated.
2733 	 * Related to atom_size, which could be much larger than the unit_size.
2734 	 */
2735 	last_allocs = INT_MAX;
2736 	for (upa = max_upa; upa; upa--) {
2737 		int allocs = 0, wasted = 0;
2738 
2739 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2740 			continue;
2741 
2742 		for (group = 0; group < nr_groups; group++) {
2743 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2744 			allocs += this_allocs;
2745 			wasted += this_allocs * upa - group_cnt[group];
2746 		}
2747 
2748 		/*
2749 		 * Don't accept if wastage is over 1/3.  The
2750 		 * greater-than comparison ensures upa==1 always
2751 		 * passes the following check.
2752 		 */
2753 		if (wasted > num_possible_cpus() / 3)
2754 			continue;
2755 
2756 		/* and then don't consume more memory */
2757 		if (allocs > last_allocs)
2758 			break;
2759 		last_allocs = allocs;
2760 		best_upa = upa;
2761 	}
2762 	upa = best_upa;
2763 
2764 	/* allocate and fill alloc_info */
2765 	for (group = 0; group < nr_groups; group++)
2766 		nr_units += roundup(group_cnt[group], upa);
2767 
2768 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2769 	if (!ai)
2770 		return ERR_PTR(-ENOMEM);
2771 	cpu_map = ai->groups[0].cpu_map;
2772 
2773 	for (group = 0; group < nr_groups; group++) {
2774 		ai->groups[group].cpu_map = cpu_map;
2775 		cpu_map += roundup(group_cnt[group], upa);
2776 	}
2777 
2778 	ai->static_size = static_size;
2779 	ai->reserved_size = reserved_size;
2780 	ai->dyn_size = dyn_size;
2781 	ai->unit_size = alloc_size / upa;
2782 	ai->atom_size = atom_size;
2783 	ai->alloc_size = alloc_size;
2784 
2785 	for (group = 0, unit = 0; group < nr_groups; group++) {
2786 		struct pcpu_group_info *gi = &ai->groups[group];
2787 
2788 		/*
2789 		 * Initialize base_offset as if all groups are located
2790 		 * back-to-back.  The caller should update this to
2791 		 * reflect actual allocation.
2792 		 */
2793 		gi->base_offset = unit * ai->unit_size;
2794 
2795 		for_each_possible_cpu(cpu)
2796 			if (group_map[cpu] == group)
2797 				gi->cpu_map[gi->nr_units++] = cpu;
2798 		gi->nr_units = roundup(gi->nr_units, upa);
2799 		unit += gi->nr_units;
2800 	}
2801 	BUG_ON(unit != nr_units);
2802 
2803 	return ai;
2804 }
2805 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2806 
2807 #if defined(BUILD_EMBED_FIRST_CHUNK)
2808 /**
2809  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2810  * @reserved_size: the size of reserved percpu area in bytes
2811  * @dyn_size: minimum free size for dynamic allocation in bytes
2812  * @atom_size: allocation atom size
2813  * @cpu_distance_fn: callback to determine distance between cpus, optional
2814  * @alloc_fn: function to allocate percpu page
2815  * @free_fn: function to free percpu page
2816  *
2817  * This is a helper to ease setting up embedded first percpu chunk and
2818  * can be called where pcpu_setup_first_chunk() is expected.
2819  *
2820  * If this function is used to setup the first chunk, it is allocated
2821  * by calling @alloc_fn and used as-is without being mapped into
2822  * vmalloc area.  Allocations are always whole multiples of @atom_size
2823  * aligned to @atom_size.
2824  *
2825  * This enables the first chunk to piggy back on the linear physical
2826  * mapping which often uses larger page size.  Please note that this
2827  * can result in very sparse cpu->unit mapping on NUMA machines thus
2828  * requiring large vmalloc address space.  Don't use this allocator if
2829  * vmalloc space is not orders of magnitude larger than distances
2830  * between node memory addresses (ie. 32bit NUMA machines).
2831  *
2832  * @dyn_size specifies the minimum dynamic area size.
2833  *
2834  * If the needed size is smaller than the minimum or specified unit
2835  * size, the leftover is returned using @free_fn.
2836  *
2837  * RETURNS:
2838  * 0 on success, -errno on failure.
2839  */
2840 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2841 				  size_t atom_size,
2842 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2843 				  pcpu_fc_alloc_fn_t alloc_fn,
2844 				  pcpu_fc_free_fn_t free_fn)
2845 {
2846 	void *base = (void *)ULONG_MAX;
2847 	void **areas = NULL;
2848 	struct pcpu_alloc_info *ai;
2849 	size_t size_sum, areas_size;
2850 	unsigned long max_distance;
2851 	int group, i, highest_group, rc = 0;
2852 
2853 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2854 				   cpu_distance_fn);
2855 	if (IS_ERR(ai))
2856 		return PTR_ERR(ai);
2857 
2858 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2859 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2860 
2861 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2862 	if (!areas) {
2863 		rc = -ENOMEM;
2864 		goto out_free;
2865 	}
2866 
2867 	/* allocate, copy and determine base address & max_distance */
2868 	highest_group = 0;
2869 	for (group = 0; group < ai->nr_groups; group++) {
2870 		struct pcpu_group_info *gi = &ai->groups[group];
2871 		unsigned int cpu = NR_CPUS;
2872 		void *ptr;
2873 
2874 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2875 			cpu = gi->cpu_map[i];
2876 		BUG_ON(cpu == NR_CPUS);
2877 
2878 		/* allocate space for the whole group */
2879 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2880 		if (!ptr) {
2881 			rc = -ENOMEM;
2882 			goto out_free_areas;
2883 		}
2884 		/* kmemleak tracks the percpu allocations separately */
2885 		kmemleak_free(ptr);
2886 		areas[group] = ptr;
2887 
2888 		base = min(ptr, base);
2889 		if (ptr > areas[highest_group])
2890 			highest_group = group;
2891 	}
2892 	max_distance = areas[highest_group] - base;
2893 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2894 
2895 	/* warn if maximum distance is further than 75% of vmalloc space */
2896 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2897 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2898 				max_distance, VMALLOC_TOTAL);
2899 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2900 		/* and fail if we have fallback */
2901 		rc = -EINVAL;
2902 		goto out_free_areas;
2903 #endif
2904 	}
2905 
2906 	/*
2907 	 * Copy data and free unused parts.  This should happen after all
2908 	 * allocations are complete; otherwise, we may end up with
2909 	 * overlapping groups.
2910 	 */
2911 	for (group = 0; group < ai->nr_groups; group++) {
2912 		struct pcpu_group_info *gi = &ai->groups[group];
2913 		void *ptr = areas[group];
2914 
2915 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2916 			if (gi->cpu_map[i] == NR_CPUS) {
2917 				/* unused unit, free whole */
2918 				free_fn(ptr, ai->unit_size);
2919 				continue;
2920 			}
2921 			/* copy and return the unused part */
2922 			memcpy(ptr, __per_cpu_load, ai->static_size);
2923 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2924 		}
2925 	}
2926 
2927 	/* base address is now known, determine group base offsets */
2928 	for (group = 0; group < ai->nr_groups; group++) {
2929 		ai->groups[group].base_offset = areas[group] - base;
2930 	}
2931 
2932 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2933 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2934 		ai->dyn_size, ai->unit_size);
2935 
2936 	pcpu_setup_first_chunk(ai, base);
2937 	goto out_free;
2938 
2939 out_free_areas:
2940 	for (group = 0; group < ai->nr_groups; group++)
2941 		if (areas[group])
2942 			free_fn(areas[group],
2943 				ai->groups[group].nr_units * ai->unit_size);
2944 out_free:
2945 	pcpu_free_alloc_info(ai);
2946 	if (areas)
2947 		memblock_free_early(__pa(areas), areas_size);
2948 	return rc;
2949 }
2950 #endif /* BUILD_EMBED_FIRST_CHUNK */
2951 
2952 #ifdef BUILD_PAGE_FIRST_CHUNK
2953 /**
2954  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2955  * @reserved_size: the size of reserved percpu area in bytes
2956  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2957  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2958  * @populate_pte_fn: function to populate pte
2959  *
2960  * This is a helper to ease setting up page-remapped first percpu
2961  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2962  *
2963  * This is the basic allocator.  Static percpu area is allocated
2964  * page-by-page into vmalloc area.
2965  *
2966  * RETURNS:
2967  * 0 on success, -errno on failure.
2968  */
2969 int __init pcpu_page_first_chunk(size_t reserved_size,
2970 				 pcpu_fc_alloc_fn_t alloc_fn,
2971 				 pcpu_fc_free_fn_t free_fn,
2972 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2973 {
2974 	static struct vm_struct vm;
2975 	struct pcpu_alloc_info *ai;
2976 	char psize_str[16];
2977 	int unit_pages;
2978 	size_t pages_size;
2979 	struct page **pages;
2980 	int unit, i, j, rc = 0;
2981 	int upa;
2982 	int nr_g0_units;
2983 
2984 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2985 
2986 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2987 	if (IS_ERR(ai))
2988 		return PTR_ERR(ai);
2989 	BUG_ON(ai->nr_groups != 1);
2990 	upa = ai->alloc_size/ai->unit_size;
2991 	nr_g0_units = roundup(num_possible_cpus(), upa);
2992 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2993 		pcpu_free_alloc_info(ai);
2994 		return -EINVAL;
2995 	}
2996 
2997 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2998 
2999 	/* unaligned allocations can't be freed, round up to page size */
3000 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3001 			       sizeof(pages[0]));
3002 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3003 	if (!pages)
3004 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3005 		      pages_size);
3006 
3007 	/* allocate pages */
3008 	j = 0;
3009 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3010 		unsigned int cpu = ai->groups[0].cpu_map[unit];
3011 		for (i = 0; i < unit_pages; i++) {
3012 			void *ptr;
3013 
3014 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3015 			if (!ptr) {
3016 				pr_warn("failed to allocate %s page for cpu%u\n",
3017 						psize_str, cpu);
3018 				goto enomem;
3019 			}
3020 			/* kmemleak tracks the percpu allocations separately */
3021 			kmemleak_free(ptr);
3022 			pages[j++] = virt_to_page(ptr);
3023 		}
3024 	}
3025 
3026 	/* allocate vm area, map the pages and copy static data */
3027 	vm.flags = VM_ALLOC;
3028 	vm.size = num_possible_cpus() * ai->unit_size;
3029 	vm_area_register_early(&vm, PAGE_SIZE);
3030 
3031 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3032 		unsigned long unit_addr =
3033 			(unsigned long)vm.addr + unit * ai->unit_size;
3034 
3035 		for (i = 0; i < unit_pages; i++)
3036 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3037 
3038 		/* pte already populated, the following shouldn't fail */
3039 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3040 				      unit_pages);
3041 		if (rc < 0)
3042 			panic("failed to map percpu area, err=%d\n", rc);
3043 
3044 		/*
3045 		 * FIXME: Archs with virtual cache should flush local
3046 		 * cache for the linear mapping here - something
3047 		 * equivalent to flush_cache_vmap() on the local cpu.
3048 		 * flush_cache_vmap() can't be used as most supporting
3049 		 * data structures are not set up yet.
3050 		 */
3051 
3052 		/* copy static data */
3053 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3054 	}
3055 
3056 	/* we're ready, commit */
3057 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3058 		unit_pages, psize_str, ai->static_size,
3059 		ai->reserved_size, ai->dyn_size);
3060 
3061 	pcpu_setup_first_chunk(ai, vm.addr);
3062 	goto out_free_ar;
3063 
3064 enomem:
3065 	while (--j >= 0)
3066 		free_fn(page_address(pages[j]), PAGE_SIZE);
3067 	rc = -ENOMEM;
3068 out_free_ar:
3069 	memblock_free_early(__pa(pages), pages_size);
3070 	pcpu_free_alloc_info(ai);
3071 	return rc;
3072 }
3073 #endif /* BUILD_PAGE_FIRST_CHUNK */
3074 
3075 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3076 /*
3077  * Generic SMP percpu area setup.
3078  *
3079  * The embedding helper is used because its behavior closely resembles
3080  * the original non-dynamic generic percpu area setup.  This is
3081  * important because many archs have addressing restrictions and might
3082  * fail if the percpu area is located far away from the previous
3083  * location.  As an added bonus, in non-NUMA cases, embedding is
3084  * generally a good idea TLB-wise because percpu area can piggy back
3085  * on the physical linear memory mapping which uses large page
3086  * mappings on applicable archs.
3087  */
3088 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3089 EXPORT_SYMBOL(__per_cpu_offset);
3090 
3091 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3092 				       size_t align)
3093 {
3094 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3095 }
3096 
3097 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3098 {
3099 	memblock_free_early(__pa(ptr), size);
3100 }
3101 
3102 void __init setup_per_cpu_areas(void)
3103 {
3104 	unsigned long delta;
3105 	unsigned int cpu;
3106 	int rc;
3107 
3108 	/*
3109 	 * Always reserve area for module percpu variables.  That's
3110 	 * what the legacy allocator did.
3111 	 */
3112 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3113 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3114 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3115 	if (rc < 0)
3116 		panic("Failed to initialize percpu areas.");
3117 
3118 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3119 	for_each_possible_cpu(cpu)
3120 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3121 }
3122 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3123 
3124 #else	/* CONFIG_SMP */
3125 
3126 /*
3127  * UP percpu area setup.
3128  *
3129  * UP always uses km-based percpu allocator with identity mapping.
3130  * Static percpu variables are indistinguishable from the usual static
3131  * variables and don't require any special preparation.
3132  */
3133 void __init setup_per_cpu_areas(void)
3134 {
3135 	const size_t unit_size =
3136 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3137 					 PERCPU_DYNAMIC_RESERVE));
3138 	struct pcpu_alloc_info *ai;
3139 	void *fc;
3140 
3141 	ai = pcpu_alloc_alloc_info(1, 1);
3142 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3143 	if (!ai || !fc)
3144 		panic("Failed to allocate memory for percpu areas.");
3145 	/* kmemleak tracks the percpu allocations separately */
3146 	kmemleak_free(fc);
3147 
3148 	ai->dyn_size = unit_size;
3149 	ai->unit_size = unit_size;
3150 	ai->atom_size = unit_size;
3151 	ai->alloc_size = unit_size;
3152 	ai->groups[0].nr_units = 1;
3153 	ai->groups[0].cpu_map[0] = 0;
3154 
3155 	pcpu_setup_first_chunk(ai, fc);
3156 	pcpu_free_alloc_info(ai);
3157 }
3158 
3159 #endif	/* CONFIG_SMP */
3160 
3161 /*
3162  * pcpu_nr_pages - calculate total number of populated backing pages
3163  *
3164  * This reflects the number of pages populated to back chunks.  Metadata is
3165  * excluded in the number exposed in meminfo as the number of backing pages
3166  * scales with the number of cpus and can quickly outweigh the memory used for
3167  * metadata.  It also keeps this calculation nice and simple.
3168  *
3169  * RETURNS:
3170  * Total number of populated backing pages in use by the allocator.
3171  */
3172 unsigned long pcpu_nr_pages(void)
3173 {
3174 	return pcpu_nr_populated * pcpu_nr_units;
3175 }
3176 
3177 /*
3178  * Percpu allocator is initialized early during boot when neither slab or
3179  * workqueue is available.  Plug async management until everything is up
3180  * and running.
3181  */
3182 static int __init percpu_enable_async(void)
3183 {
3184 	pcpu_async_enabled = true;
3185 	return 0;
3186 }
3187 subsys_initcall(percpu_enable_async);
3188