xref: /openbmc/linux/mm/percpu.c (revision e721eb06)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * tries to allocate from the fullest chunk first.  Each chunk is managed
41  * by a bitmap with metadata blocks.  The allocation map is updated on
42  * every allocation and free to reflect the current state while the boundary
43  * map is only updated on allocation.  Each metadata block contains
44  * information to help mitigate the need to iterate over large portions
45  * of the bitmap.  The reverse mapping from page to chunk is stored in
46  * the page's index.  Lastly, units are lazily backed and grow in unison.
47  *
48  * There is a unique conversion that goes on here between bytes and bits.
49  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
50  * tracks the number of pages it is responsible for in nr_pages.  Helper
51  * functions are used to convert from between the bytes, bits, and blocks.
52  * All hints are managed in bits unless explicitly stated.
53  *
54  * To use this allocator, arch code should do the following:
55  *
56  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57  *   regular address to percpu pointer and back if they need to be
58  *   different from the default
59  *
60  * - use pcpu_setup_first_chunk() during percpu area initialization to
61  *   setup the first chunk containing the kernel static percpu area
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
72 #include <linux/mm.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83 #include <linux/sched/mm.h>
84 
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92 
93 #include "percpu-internal.h"
94 
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT		5
97 /* chunks in slots below this are subject to being sidelined on failed alloc */
98 #define PCPU_SLOT_FAIL_THRESHOLD	3
99 
100 #define PCPU_EMPTY_POP_PAGES_LOW	2
101 #define PCPU_EMPTY_POP_PAGES_HIGH	4
102 
103 #ifdef CONFIG_SMP
104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105 #ifndef __addr_to_pcpu_ptr
106 #define __addr_to_pcpu_ptr(addr)					\
107 	(void __percpu *)((unsigned long)(addr) -			\
108 			  (unsigned long)pcpu_base_addr	+		\
109 			  (unsigned long)__per_cpu_start)
110 #endif
111 #ifndef __pcpu_ptr_to_addr
112 #define __pcpu_ptr_to_addr(ptr)						\
113 	(void __force *)((unsigned long)(ptr) +				\
114 			 (unsigned long)pcpu_base_addr -		\
115 			 (unsigned long)__per_cpu_start)
116 #endif
117 #else	/* CONFIG_SMP */
118 /* on UP, it's always identity mapped */
119 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
120 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
121 #endif	/* CONFIG_SMP */
122 
123 static int pcpu_unit_pages __ro_after_init;
124 static int pcpu_unit_size __ro_after_init;
125 static int pcpu_nr_units __ro_after_init;
126 static int pcpu_atom_size __ro_after_init;
127 int pcpu_nr_slots __ro_after_init;
128 static size_t pcpu_chunk_struct_size __ro_after_init;
129 
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __ro_after_init;
132 static unsigned int pcpu_high_unit_cpu __ro_after_init;
133 
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __ro_after_init;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
137 
138 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
140 
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __ro_after_init;
143 static const unsigned long *pcpu_group_offsets __ro_after_init;
144 static const size_t *pcpu_group_sizes __ro_after_init;
145 
146 /*
147  * The first chunk which always exists.  Note that unlike other
148  * chunks, this one can be allocated and mapped in several different
149  * ways and thus often doesn't live in the vmalloc area.
150  */
151 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
152 
153 /*
154  * Optional reserved chunk.  This chunk reserves part of the first
155  * chunk and serves it for reserved allocations.  When the reserved
156  * region doesn't exist, the following variable is NULL.
157  */
158 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
159 
160 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
161 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
162 
163 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
164 
165 /* chunks which need their map areas extended, protected by pcpu_lock */
166 static LIST_HEAD(pcpu_map_extend_chunks);
167 
168 /*
169  * The number of empty populated pages, protected by pcpu_lock.  The
170  * reserved chunk doesn't contribute to the count.
171  */
172 int pcpu_nr_empty_pop_pages;
173 
174 /*
175  * The number of populated pages in use by the allocator, protected by
176  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
177  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178  * and increments/decrements this count by 1).
179  */
180 static unsigned long pcpu_nr_populated;
181 
182 /*
183  * Balance work is used to populate or destroy chunks asynchronously.  We
184  * try to keep the number of populated free pages between
185  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186  * empty chunk.
187  */
188 static void pcpu_balance_workfn(struct work_struct *work);
189 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
190 static bool pcpu_async_enabled __read_mostly;
191 static bool pcpu_atomic_alloc_failed;
192 
193 static void pcpu_schedule_balance_work(void)
194 {
195 	if (pcpu_async_enabled)
196 		schedule_work(&pcpu_balance_work);
197 }
198 
199 /**
200  * pcpu_addr_in_chunk - check if the address is served from this chunk
201  * @chunk: chunk of interest
202  * @addr: percpu address
203  *
204  * RETURNS:
205  * True if the address is served from this chunk.
206  */
207 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
208 {
209 	void *start_addr, *end_addr;
210 
211 	if (!chunk)
212 		return false;
213 
214 	start_addr = chunk->base_addr + chunk->start_offset;
215 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
216 		   chunk->end_offset;
217 
218 	return addr >= start_addr && addr < end_addr;
219 }
220 
221 static int __pcpu_size_to_slot(int size)
222 {
223 	int highbit = fls(size);	/* size is in bytes */
224 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
225 }
226 
227 static int pcpu_size_to_slot(int size)
228 {
229 	if (size == pcpu_unit_size)
230 		return pcpu_nr_slots - 1;
231 	return __pcpu_size_to_slot(size);
232 }
233 
234 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
235 {
236 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
237 
238 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
239 	    chunk_md->contig_hint == 0)
240 		return 0;
241 
242 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
243 }
244 
245 /* set the pointer to a chunk in a page struct */
246 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
247 {
248 	page->index = (unsigned long)pcpu;
249 }
250 
251 /* obtain pointer to a chunk from a page struct */
252 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
253 {
254 	return (struct pcpu_chunk *)page->index;
255 }
256 
257 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
258 {
259 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
260 }
261 
262 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
263 {
264 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
265 }
266 
267 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
268 				     unsigned int cpu, int page_idx)
269 {
270 	return (unsigned long)chunk->base_addr +
271 	       pcpu_unit_page_offset(cpu, page_idx);
272 }
273 
274 /*
275  * The following are helper functions to help access bitmaps and convert
276  * between bitmap offsets to address offsets.
277  */
278 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
279 {
280 	return chunk->alloc_map +
281 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
282 }
283 
284 static unsigned long pcpu_off_to_block_index(int off)
285 {
286 	return off / PCPU_BITMAP_BLOCK_BITS;
287 }
288 
289 static unsigned long pcpu_off_to_block_off(int off)
290 {
291 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
292 }
293 
294 static unsigned long pcpu_block_off_to_off(int index, int off)
295 {
296 	return index * PCPU_BITMAP_BLOCK_BITS + off;
297 }
298 
299 /*
300  * pcpu_next_hint - determine which hint to use
301  * @block: block of interest
302  * @alloc_bits: size of allocation
303  *
304  * This determines if we should scan based on the scan_hint or first_free.
305  * In general, we want to scan from first_free to fulfill allocations by
306  * first fit.  However, if we know a scan_hint at position scan_hint_start
307  * cannot fulfill an allocation, we can begin scanning from there knowing
308  * the contig_hint will be our fallback.
309  */
310 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
311 {
312 	/*
313 	 * The three conditions below determine if we can skip past the
314 	 * scan_hint.  First, does the scan hint exist.  Second, is the
315 	 * contig_hint after the scan_hint (possibly not true iff
316 	 * contig_hint == scan_hint).  Third, is the allocation request
317 	 * larger than the scan_hint.
318 	 */
319 	if (block->scan_hint &&
320 	    block->contig_hint_start > block->scan_hint_start &&
321 	    alloc_bits > block->scan_hint)
322 		return block->scan_hint_start + block->scan_hint;
323 
324 	return block->first_free;
325 }
326 
327 /**
328  * pcpu_next_md_free_region - finds the next hint free area
329  * @chunk: chunk of interest
330  * @bit_off: chunk offset
331  * @bits: size of free area
332  *
333  * Helper function for pcpu_for_each_md_free_region.  It checks
334  * block->contig_hint and performs aggregation across blocks to find the
335  * next hint.  It modifies bit_off and bits in-place to be consumed in the
336  * loop.
337  */
338 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
339 				     int *bits)
340 {
341 	int i = pcpu_off_to_block_index(*bit_off);
342 	int block_off = pcpu_off_to_block_off(*bit_off);
343 	struct pcpu_block_md *block;
344 
345 	*bits = 0;
346 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
347 	     block++, i++) {
348 		/* handles contig area across blocks */
349 		if (*bits) {
350 			*bits += block->left_free;
351 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
352 				continue;
353 			return;
354 		}
355 
356 		/*
357 		 * This checks three things.  First is there a contig_hint to
358 		 * check.  Second, have we checked this hint before by
359 		 * comparing the block_off.  Third, is this the same as the
360 		 * right contig hint.  In the last case, it spills over into
361 		 * the next block and should be handled by the contig area
362 		 * across blocks code.
363 		 */
364 		*bits = block->contig_hint;
365 		if (*bits && block->contig_hint_start >= block_off &&
366 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
367 			*bit_off = pcpu_block_off_to_off(i,
368 					block->contig_hint_start);
369 			return;
370 		}
371 		/* reset to satisfy the second predicate above */
372 		block_off = 0;
373 
374 		*bits = block->right_free;
375 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
376 	}
377 }
378 
379 /**
380  * pcpu_next_fit_region - finds fit areas for a given allocation request
381  * @chunk: chunk of interest
382  * @alloc_bits: size of allocation
383  * @align: alignment of area (max PAGE_SIZE)
384  * @bit_off: chunk offset
385  * @bits: size of free area
386  *
387  * Finds the next free region that is viable for use with a given size and
388  * alignment.  This only returns if there is a valid area to be used for this
389  * allocation.  block->first_free is returned if the allocation request fits
390  * within the block to see if the request can be fulfilled prior to the contig
391  * hint.
392  */
393 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
394 				 int align, int *bit_off, int *bits)
395 {
396 	int i = pcpu_off_to_block_index(*bit_off);
397 	int block_off = pcpu_off_to_block_off(*bit_off);
398 	struct pcpu_block_md *block;
399 
400 	*bits = 0;
401 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
402 	     block++, i++) {
403 		/* handles contig area across blocks */
404 		if (*bits) {
405 			*bits += block->left_free;
406 			if (*bits >= alloc_bits)
407 				return;
408 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
409 				continue;
410 		}
411 
412 		/* check block->contig_hint */
413 		*bits = ALIGN(block->contig_hint_start, align) -
414 			block->contig_hint_start;
415 		/*
416 		 * This uses the block offset to determine if this has been
417 		 * checked in the prior iteration.
418 		 */
419 		if (block->contig_hint &&
420 		    block->contig_hint_start >= block_off &&
421 		    block->contig_hint >= *bits + alloc_bits) {
422 			int start = pcpu_next_hint(block, alloc_bits);
423 
424 			*bits += alloc_bits + block->contig_hint_start -
425 				 start;
426 			*bit_off = pcpu_block_off_to_off(i, start);
427 			return;
428 		}
429 		/* reset to satisfy the second predicate above */
430 		block_off = 0;
431 
432 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
433 				 align);
434 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
435 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
436 		if (*bits >= alloc_bits)
437 			return;
438 	}
439 
440 	/* no valid offsets were found - fail condition */
441 	*bit_off = pcpu_chunk_map_bits(chunk);
442 }
443 
444 /*
445  * Metadata free area iterators.  These perform aggregation of free areas
446  * based on the metadata blocks and return the offset @bit_off and size in
447  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
448  * a fit is found for the allocation request.
449  */
450 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
451 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
452 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
453 	     (bit_off) += (bits) + 1,					\
454 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
455 
456 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
457 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
458 				  &(bits));				      \
459 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
460 	     (bit_off) += (bits),					      \
461 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
462 				  &(bits)))
463 
464 /**
465  * pcpu_mem_zalloc - allocate memory
466  * @size: bytes to allocate
467  * @gfp: allocation flags
468  *
469  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
470  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
471  * This is to facilitate passing through whitelisted flags.  The
472  * returned memory is always zeroed.
473  *
474  * RETURNS:
475  * Pointer to the allocated area on success, NULL on failure.
476  */
477 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
478 {
479 	if (WARN_ON_ONCE(!slab_is_available()))
480 		return NULL;
481 
482 	if (size <= PAGE_SIZE)
483 		return kzalloc(size, gfp);
484 	else
485 		return __vmalloc(size, gfp | __GFP_ZERO);
486 }
487 
488 /**
489  * pcpu_mem_free - free memory
490  * @ptr: memory to free
491  *
492  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
493  */
494 static void pcpu_mem_free(void *ptr)
495 {
496 	kvfree(ptr);
497 }
498 
499 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
500 			      bool move_front)
501 {
502 	if (chunk != pcpu_reserved_chunk) {
503 		if (move_front)
504 			list_move(&chunk->list, &pcpu_slot[slot]);
505 		else
506 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
507 	}
508 }
509 
510 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
511 {
512 	__pcpu_chunk_move(chunk, slot, true);
513 }
514 
515 /**
516  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
517  * @chunk: chunk of interest
518  * @oslot: the previous slot it was on
519  *
520  * This function is called after an allocation or free changed @chunk.
521  * New slot according to the changed state is determined and @chunk is
522  * moved to the slot.  Note that the reserved chunk is never put on
523  * chunk slots.
524  *
525  * CONTEXT:
526  * pcpu_lock.
527  */
528 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
529 {
530 	int nslot = pcpu_chunk_slot(chunk);
531 
532 	if (oslot != nslot)
533 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
534 }
535 
536 /*
537  * pcpu_update_empty_pages - update empty page counters
538  * @chunk: chunk of interest
539  * @nr: nr of empty pages
540  *
541  * This is used to keep track of the empty pages now based on the premise
542  * a md_block covers a page.  The hint update functions recognize if a block
543  * is made full or broken to calculate deltas for keeping track of free pages.
544  */
545 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
546 {
547 	chunk->nr_empty_pop_pages += nr;
548 	if (chunk != pcpu_reserved_chunk)
549 		pcpu_nr_empty_pop_pages += nr;
550 }
551 
552 /*
553  * pcpu_region_overlap - determines if two regions overlap
554  * @a: start of first region, inclusive
555  * @b: end of first region, exclusive
556  * @x: start of second region, inclusive
557  * @y: end of second region, exclusive
558  *
559  * This is used to determine if the hint region [a, b) overlaps with the
560  * allocated region [x, y).
561  */
562 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
563 {
564 	return (a < y) && (x < b);
565 }
566 
567 /**
568  * pcpu_block_update - updates a block given a free area
569  * @block: block of interest
570  * @start: start offset in block
571  * @end: end offset in block
572  *
573  * Updates a block given a known free area.  The region [start, end) is
574  * expected to be the entirety of the free area within a block.  Chooses
575  * the best starting offset if the contig hints are equal.
576  */
577 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
578 {
579 	int contig = end - start;
580 
581 	block->first_free = min(block->first_free, start);
582 	if (start == 0)
583 		block->left_free = contig;
584 
585 	if (end == block->nr_bits)
586 		block->right_free = contig;
587 
588 	if (contig > block->contig_hint) {
589 		/* promote the old contig_hint to be the new scan_hint */
590 		if (start > block->contig_hint_start) {
591 			if (block->contig_hint > block->scan_hint) {
592 				block->scan_hint_start =
593 					block->contig_hint_start;
594 				block->scan_hint = block->contig_hint;
595 			} else if (start < block->scan_hint_start) {
596 				/*
597 				 * The old contig_hint == scan_hint.  But, the
598 				 * new contig is larger so hold the invariant
599 				 * scan_hint_start < contig_hint_start.
600 				 */
601 				block->scan_hint = 0;
602 			}
603 		} else {
604 			block->scan_hint = 0;
605 		}
606 		block->contig_hint_start = start;
607 		block->contig_hint = contig;
608 	} else if (contig == block->contig_hint) {
609 		if (block->contig_hint_start &&
610 		    (!start ||
611 		     __ffs(start) > __ffs(block->contig_hint_start))) {
612 			/* start has a better alignment so use it */
613 			block->contig_hint_start = start;
614 			if (start < block->scan_hint_start &&
615 			    block->contig_hint > block->scan_hint)
616 				block->scan_hint = 0;
617 		} else if (start > block->scan_hint_start ||
618 			   block->contig_hint > block->scan_hint) {
619 			/*
620 			 * Knowing contig == contig_hint, update the scan_hint
621 			 * if it is farther than or larger than the current
622 			 * scan_hint.
623 			 */
624 			block->scan_hint_start = start;
625 			block->scan_hint = contig;
626 		}
627 	} else {
628 		/*
629 		 * The region is smaller than the contig_hint.  So only update
630 		 * the scan_hint if it is larger than or equal and farther than
631 		 * the current scan_hint.
632 		 */
633 		if ((start < block->contig_hint_start &&
634 		     (contig > block->scan_hint ||
635 		      (contig == block->scan_hint &&
636 		       start > block->scan_hint_start)))) {
637 			block->scan_hint_start = start;
638 			block->scan_hint = contig;
639 		}
640 	}
641 }
642 
643 /*
644  * pcpu_block_update_scan - update a block given a free area from a scan
645  * @chunk: chunk of interest
646  * @bit_off: chunk offset
647  * @bits: size of free area
648  *
649  * Finding the final allocation spot first goes through pcpu_find_block_fit()
650  * to find a block that can hold the allocation and then pcpu_alloc_area()
651  * where a scan is used.  When allocations require specific alignments,
652  * we can inadvertently create holes which will not be seen in the alloc
653  * or free paths.
654  *
655  * This takes a given free area hole and updates a block as it may change the
656  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
657  * from alignment.
658  */
659 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
660 				   int bits)
661 {
662 	int s_off = pcpu_off_to_block_off(bit_off);
663 	int e_off = s_off + bits;
664 	int s_index, l_bit;
665 	struct pcpu_block_md *block;
666 
667 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
668 		return;
669 
670 	s_index = pcpu_off_to_block_index(bit_off);
671 	block = chunk->md_blocks + s_index;
672 
673 	/* scan backwards in case of alignment skipping free bits */
674 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
675 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
676 
677 	pcpu_block_update(block, s_off, e_off);
678 }
679 
680 /**
681  * pcpu_chunk_refresh_hint - updates metadata about a chunk
682  * @chunk: chunk of interest
683  * @full_scan: if we should scan from the beginning
684  *
685  * Iterates over the metadata blocks to find the largest contig area.
686  * A full scan can be avoided on the allocation path as this is triggered
687  * if we broke the contig_hint.  In doing so, the scan_hint will be before
688  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
689  * be prevented on freeing as we want to find the largest area possibly
690  * spanning blocks.
691  */
692 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
693 {
694 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
695 	int bit_off, bits;
696 
697 	/* promote scan_hint to contig_hint */
698 	if (!full_scan && chunk_md->scan_hint) {
699 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
700 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
701 		chunk_md->contig_hint = chunk_md->scan_hint;
702 		chunk_md->scan_hint = 0;
703 	} else {
704 		bit_off = chunk_md->first_free;
705 		chunk_md->contig_hint = 0;
706 	}
707 
708 	bits = 0;
709 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
710 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
711 }
712 
713 /**
714  * pcpu_block_refresh_hint
715  * @chunk: chunk of interest
716  * @index: index of the metadata block
717  *
718  * Scans over the block beginning at first_free and updates the block
719  * metadata accordingly.
720  */
721 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
722 {
723 	struct pcpu_block_md *block = chunk->md_blocks + index;
724 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
725 	unsigned int rs, re, start;	/* region start, region end */
726 
727 	/* promote scan_hint to contig_hint */
728 	if (block->scan_hint) {
729 		start = block->scan_hint_start + block->scan_hint;
730 		block->contig_hint_start = block->scan_hint_start;
731 		block->contig_hint = block->scan_hint;
732 		block->scan_hint = 0;
733 	} else {
734 		start = block->first_free;
735 		block->contig_hint = 0;
736 	}
737 
738 	block->right_free = 0;
739 
740 	/* iterate over free areas and update the contig hints */
741 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
742 				     PCPU_BITMAP_BLOCK_BITS)
743 		pcpu_block_update(block, rs, re);
744 }
745 
746 /**
747  * pcpu_block_update_hint_alloc - update hint on allocation path
748  * @chunk: chunk of interest
749  * @bit_off: chunk offset
750  * @bits: size of request
751  *
752  * Updates metadata for the allocation path.  The metadata only has to be
753  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
754  * scans are required if the block's contig hint is broken.
755  */
756 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
757 					 int bits)
758 {
759 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
760 	int nr_empty_pages = 0;
761 	struct pcpu_block_md *s_block, *e_block, *block;
762 	int s_index, e_index;	/* block indexes of the freed allocation */
763 	int s_off, e_off;	/* block offsets of the freed allocation */
764 
765 	/*
766 	 * Calculate per block offsets.
767 	 * The calculation uses an inclusive range, but the resulting offsets
768 	 * are [start, end).  e_index always points to the last block in the
769 	 * range.
770 	 */
771 	s_index = pcpu_off_to_block_index(bit_off);
772 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
773 	s_off = pcpu_off_to_block_off(bit_off);
774 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
775 
776 	s_block = chunk->md_blocks + s_index;
777 	e_block = chunk->md_blocks + e_index;
778 
779 	/*
780 	 * Update s_block.
781 	 * block->first_free must be updated if the allocation takes its place.
782 	 * If the allocation breaks the contig_hint, a scan is required to
783 	 * restore this hint.
784 	 */
785 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
786 		nr_empty_pages++;
787 
788 	if (s_off == s_block->first_free)
789 		s_block->first_free = find_next_zero_bit(
790 					pcpu_index_alloc_map(chunk, s_index),
791 					PCPU_BITMAP_BLOCK_BITS,
792 					s_off + bits);
793 
794 	if (pcpu_region_overlap(s_block->scan_hint_start,
795 				s_block->scan_hint_start + s_block->scan_hint,
796 				s_off,
797 				s_off + bits))
798 		s_block->scan_hint = 0;
799 
800 	if (pcpu_region_overlap(s_block->contig_hint_start,
801 				s_block->contig_hint_start +
802 				s_block->contig_hint,
803 				s_off,
804 				s_off + bits)) {
805 		/* block contig hint is broken - scan to fix it */
806 		if (!s_off)
807 			s_block->left_free = 0;
808 		pcpu_block_refresh_hint(chunk, s_index);
809 	} else {
810 		/* update left and right contig manually */
811 		s_block->left_free = min(s_block->left_free, s_off);
812 		if (s_index == e_index)
813 			s_block->right_free = min_t(int, s_block->right_free,
814 					PCPU_BITMAP_BLOCK_BITS - e_off);
815 		else
816 			s_block->right_free = 0;
817 	}
818 
819 	/*
820 	 * Update e_block.
821 	 */
822 	if (s_index != e_index) {
823 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
824 			nr_empty_pages++;
825 
826 		/*
827 		 * When the allocation is across blocks, the end is along
828 		 * the left part of the e_block.
829 		 */
830 		e_block->first_free = find_next_zero_bit(
831 				pcpu_index_alloc_map(chunk, e_index),
832 				PCPU_BITMAP_BLOCK_BITS, e_off);
833 
834 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
835 			/* reset the block */
836 			e_block++;
837 		} else {
838 			if (e_off > e_block->scan_hint_start)
839 				e_block->scan_hint = 0;
840 
841 			e_block->left_free = 0;
842 			if (e_off > e_block->contig_hint_start) {
843 				/* contig hint is broken - scan to fix it */
844 				pcpu_block_refresh_hint(chunk, e_index);
845 			} else {
846 				e_block->right_free =
847 					min_t(int, e_block->right_free,
848 					      PCPU_BITMAP_BLOCK_BITS - e_off);
849 			}
850 		}
851 
852 		/* update in-between md_blocks */
853 		nr_empty_pages += (e_index - s_index - 1);
854 		for (block = s_block + 1; block < e_block; block++) {
855 			block->scan_hint = 0;
856 			block->contig_hint = 0;
857 			block->left_free = 0;
858 			block->right_free = 0;
859 		}
860 	}
861 
862 	if (nr_empty_pages)
863 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
864 
865 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
866 				chunk_md->scan_hint_start +
867 				chunk_md->scan_hint,
868 				bit_off,
869 				bit_off + bits))
870 		chunk_md->scan_hint = 0;
871 
872 	/*
873 	 * The only time a full chunk scan is required is if the chunk
874 	 * contig hint is broken.  Otherwise, it means a smaller space
875 	 * was used and therefore the chunk contig hint is still correct.
876 	 */
877 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
878 				chunk_md->contig_hint_start +
879 				chunk_md->contig_hint,
880 				bit_off,
881 				bit_off + bits))
882 		pcpu_chunk_refresh_hint(chunk, false);
883 }
884 
885 /**
886  * pcpu_block_update_hint_free - updates the block hints on the free path
887  * @chunk: chunk of interest
888  * @bit_off: chunk offset
889  * @bits: size of request
890  *
891  * Updates metadata for the allocation path.  This avoids a blind block
892  * refresh by making use of the block contig hints.  If this fails, it scans
893  * forward and backward to determine the extent of the free area.  This is
894  * capped at the boundary of blocks.
895  *
896  * A chunk update is triggered if a page becomes free, a block becomes free,
897  * or the free spans across blocks.  This tradeoff is to minimize iterating
898  * over the block metadata to update chunk_md->contig_hint.
899  * chunk_md->contig_hint may be off by up to a page, but it will never be more
900  * than the available space.  If the contig hint is contained in one block, it
901  * will be accurate.
902  */
903 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
904 					int bits)
905 {
906 	int nr_empty_pages = 0;
907 	struct pcpu_block_md *s_block, *e_block, *block;
908 	int s_index, e_index;	/* block indexes of the freed allocation */
909 	int s_off, e_off;	/* block offsets of the freed allocation */
910 	int start, end;		/* start and end of the whole free area */
911 
912 	/*
913 	 * Calculate per block offsets.
914 	 * The calculation uses an inclusive range, but the resulting offsets
915 	 * are [start, end).  e_index always points to the last block in the
916 	 * range.
917 	 */
918 	s_index = pcpu_off_to_block_index(bit_off);
919 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
920 	s_off = pcpu_off_to_block_off(bit_off);
921 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
922 
923 	s_block = chunk->md_blocks + s_index;
924 	e_block = chunk->md_blocks + e_index;
925 
926 	/*
927 	 * Check if the freed area aligns with the block->contig_hint.
928 	 * If it does, then the scan to find the beginning/end of the
929 	 * larger free area can be avoided.
930 	 *
931 	 * start and end refer to beginning and end of the free area
932 	 * within each their respective blocks.  This is not necessarily
933 	 * the entire free area as it may span blocks past the beginning
934 	 * or end of the block.
935 	 */
936 	start = s_off;
937 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
938 		start = s_block->contig_hint_start;
939 	} else {
940 		/*
941 		 * Scan backwards to find the extent of the free area.
942 		 * find_last_bit returns the starting bit, so if the start bit
943 		 * is returned, that means there was no last bit and the
944 		 * remainder of the chunk is free.
945 		 */
946 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
947 					  start);
948 		start = (start == l_bit) ? 0 : l_bit + 1;
949 	}
950 
951 	end = e_off;
952 	if (e_off == e_block->contig_hint_start)
953 		end = e_block->contig_hint_start + e_block->contig_hint;
954 	else
955 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
956 				    PCPU_BITMAP_BLOCK_BITS, end);
957 
958 	/* update s_block */
959 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
960 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
961 		nr_empty_pages++;
962 	pcpu_block_update(s_block, start, e_off);
963 
964 	/* freeing in the same block */
965 	if (s_index != e_index) {
966 		/* update e_block */
967 		if (end == PCPU_BITMAP_BLOCK_BITS)
968 			nr_empty_pages++;
969 		pcpu_block_update(e_block, 0, end);
970 
971 		/* reset md_blocks in the middle */
972 		nr_empty_pages += (e_index - s_index - 1);
973 		for (block = s_block + 1; block < e_block; block++) {
974 			block->first_free = 0;
975 			block->scan_hint = 0;
976 			block->contig_hint_start = 0;
977 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
978 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
979 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
980 		}
981 	}
982 
983 	if (nr_empty_pages)
984 		pcpu_update_empty_pages(chunk, nr_empty_pages);
985 
986 	/*
987 	 * Refresh chunk metadata when the free makes a block free or spans
988 	 * across blocks.  The contig_hint may be off by up to a page, but if
989 	 * the contig_hint is contained in a block, it will be accurate with
990 	 * the else condition below.
991 	 */
992 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
993 		pcpu_chunk_refresh_hint(chunk, true);
994 	else
995 		pcpu_block_update(&chunk->chunk_md,
996 				  pcpu_block_off_to_off(s_index, start),
997 				  end);
998 }
999 
1000 /**
1001  * pcpu_is_populated - determines if the region is populated
1002  * @chunk: chunk of interest
1003  * @bit_off: chunk offset
1004  * @bits: size of area
1005  * @next_off: return value for the next offset to start searching
1006  *
1007  * For atomic allocations, check if the backing pages are populated.
1008  *
1009  * RETURNS:
1010  * Bool if the backing pages are populated.
1011  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1012  */
1013 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1014 			      int *next_off)
1015 {
1016 	unsigned int page_start, page_end, rs, re;
1017 
1018 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1019 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1020 
1021 	rs = page_start;
1022 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1023 	if (rs >= page_end)
1024 		return true;
1025 
1026 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1027 	return false;
1028 }
1029 
1030 /**
1031  * pcpu_find_block_fit - finds the block index to start searching
1032  * @chunk: chunk of interest
1033  * @alloc_bits: size of request in allocation units
1034  * @align: alignment of area (max PAGE_SIZE bytes)
1035  * @pop_only: use populated regions only
1036  *
1037  * Given a chunk and an allocation spec, find the offset to begin searching
1038  * for a free region.  This iterates over the bitmap metadata blocks to
1039  * find an offset that will be guaranteed to fit the requirements.  It is
1040  * not quite first fit as if the allocation does not fit in the contig hint
1041  * of a block or chunk, it is skipped.  This errs on the side of caution
1042  * to prevent excess iteration.  Poor alignment can cause the allocator to
1043  * skip over blocks and chunks that have valid free areas.
1044  *
1045  * RETURNS:
1046  * The offset in the bitmap to begin searching.
1047  * -1 if no offset is found.
1048  */
1049 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1050 			       size_t align, bool pop_only)
1051 {
1052 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1053 	int bit_off, bits, next_off;
1054 
1055 	/*
1056 	 * Check to see if the allocation can fit in the chunk's contig hint.
1057 	 * This is an optimization to prevent scanning by assuming if it
1058 	 * cannot fit in the global hint, there is memory pressure and creating
1059 	 * a new chunk would happen soon.
1060 	 */
1061 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1062 		  chunk_md->contig_hint_start;
1063 	if (bit_off + alloc_bits > chunk_md->contig_hint)
1064 		return -1;
1065 
1066 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1067 	bits = 0;
1068 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1069 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1070 						   &next_off))
1071 			break;
1072 
1073 		bit_off = next_off;
1074 		bits = 0;
1075 	}
1076 
1077 	if (bit_off == pcpu_chunk_map_bits(chunk))
1078 		return -1;
1079 
1080 	return bit_off;
1081 }
1082 
1083 /*
1084  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1085  * @map: the address to base the search on
1086  * @size: the bitmap size in bits
1087  * @start: the bitnumber to start searching at
1088  * @nr: the number of zeroed bits we're looking for
1089  * @align_mask: alignment mask for zero area
1090  * @largest_off: offset of the largest area skipped
1091  * @largest_bits: size of the largest area skipped
1092  *
1093  * The @align_mask should be one less than a power of 2.
1094  *
1095  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1096  * the largest area that was skipped.  This is imperfect, but in general is
1097  * good enough.  The largest remembered region is the largest failed region
1098  * seen.  This does not include anything we possibly skipped due to alignment.
1099  * pcpu_block_update_scan() does scan backwards to try and recover what was
1100  * lost to alignment.  While this can cause scanning to miss earlier possible
1101  * free areas, smaller allocations will eventually fill those holes.
1102  */
1103 static unsigned long pcpu_find_zero_area(unsigned long *map,
1104 					 unsigned long size,
1105 					 unsigned long start,
1106 					 unsigned long nr,
1107 					 unsigned long align_mask,
1108 					 unsigned long *largest_off,
1109 					 unsigned long *largest_bits)
1110 {
1111 	unsigned long index, end, i, area_off, area_bits;
1112 again:
1113 	index = find_next_zero_bit(map, size, start);
1114 
1115 	/* Align allocation */
1116 	index = __ALIGN_MASK(index, align_mask);
1117 	area_off = index;
1118 
1119 	end = index + nr;
1120 	if (end > size)
1121 		return end;
1122 	i = find_next_bit(map, end, index);
1123 	if (i < end) {
1124 		area_bits = i - area_off;
1125 		/* remember largest unused area with best alignment */
1126 		if (area_bits > *largest_bits ||
1127 		    (area_bits == *largest_bits && *largest_off &&
1128 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1129 			*largest_off = area_off;
1130 			*largest_bits = area_bits;
1131 		}
1132 
1133 		start = i + 1;
1134 		goto again;
1135 	}
1136 	return index;
1137 }
1138 
1139 /**
1140  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1141  * @chunk: chunk of interest
1142  * @alloc_bits: size of request in allocation units
1143  * @align: alignment of area (max PAGE_SIZE)
1144  * @start: bit_off to start searching
1145  *
1146  * This function takes in a @start offset to begin searching to fit an
1147  * allocation of @alloc_bits with alignment @align.  It needs to scan
1148  * the allocation map because if it fits within the block's contig hint,
1149  * @start will be block->first_free. This is an attempt to fill the
1150  * allocation prior to breaking the contig hint.  The allocation and
1151  * boundary maps are updated accordingly if it confirms a valid
1152  * free area.
1153  *
1154  * RETURNS:
1155  * Allocated addr offset in @chunk on success.
1156  * -1 if no matching area is found.
1157  */
1158 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1159 			   size_t align, int start)
1160 {
1161 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1162 	size_t align_mask = (align) ? (align - 1) : 0;
1163 	unsigned long area_off = 0, area_bits = 0;
1164 	int bit_off, end, oslot;
1165 
1166 	lockdep_assert_held(&pcpu_lock);
1167 
1168 	oslot = pcpu_chunk_slot(chunk);
1169 
1170 	/*
1171 	 * Search to find a fit.
1172 	 */
1173 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1174 		    pcpu_chunk_map_bits(chunk));
1175 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1176 				      align_mask, &area_off, &area_bits);
1177 	if (bit_off >= end)
1178 		return -1;
1179 
1180 	if (area_bits)
1181 		pcpu_block_update_scan(chunk, area_off, area_bits);
1182 
1183 	/* update alloc map */
1184 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1185 
1186 	/* update boundary map */
1187 	set_bit(bit_off, chunk->bound_map);
1188 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1189 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1190 
1191 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1192 
1193 	/* update first free bit */
1194 	if (bit_off == chunk_md->first_free)
1195 		chunk_md->first_free = find_next_zero_bit(
1196 					chunk->alloc_map,
1197 					pcpu_chunk_map_bits(chunk),
1198 					bit_off + alloc_bits);
1199 
1200 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1201 
1202 	pcpu_chunk_relocate(chunk, oslot);
1203 
1204 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1205 }
1206 
1207 /**
1208  * pcpu_free_area - frees the corresponding offset
1209  * @chunk: chunk of interest
1210  * @off: addr offset into chunk
1211  *
1212  * This function determines the size of an allocation to free using
1213  * the boundary bitmap and clears the allocation map.
1214  */
1215 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1216 {
1217 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1218 	int bit_off, bits, end, oslot;
1219 
1220 	lockdep_assert_held(&pcpu_lock);
1221 	pcpu_stats_area_dealloc(chunk);
1222 
1223 	oslot = pcpu_chunk_slot(chunk);
1224 
1225 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1226 
1227 	/* find end index */
1228 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1229 			    bit_off + 1);
1230 	bits = end - bit_off;
1231 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1232 
1233 	/* update metadata */
1234 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1235 
1236 	/* update first free bit */
1237 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1238 
1239 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1240 
1241 	pcpu_chunk_relocate(chunk, oslot);
1242 }
1243 
1244 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1245 {
1246 	block->scan_hint = 0;
1247 	block->contig_hint = nr_bits;
1248 	block->left_free = nr_bits;
1249 	block->right_free = nr_bits;
1250 	block->first_free = 0;
1251 	block->nr_bits = nr_bits;
1252 }
1253 
1254 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1255 {
1256 	struct pcpu_block_md *md_block;
1257 
1258 	/* init the chunk's block */
1259 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1260 
1261 	for (md_block = chunk->md_blocks;
1262 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1263 	     md_block++)
1264 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1265 }
1266 
1267 /**
1268  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1269  * @tmp_addr: the start of the region served
1270  * @map_size: size of the region served
1271  *
1272  * This is responsible for creating the chunks that serve the first chunk.  The
1273  * base_addr is page aligned down of @tmp_addr while the region end is page
1274  * aligned up.  Offsets are kept track of to determine the region served. All
1275  * this is done to appease the bitmap allocator in avoiding partial blocks.
1276  *
1277  * RETURNS:
1278  * Chunk serving the region at @tmp_addr of @map_size.
1279  */
1280 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1281 							 int map_size)
1282 {
1283 	struct pcpu_chunk *chunk;
1284 	unsigned long aligned_addr, lcm_align;
1285 	int start_offset, offset_bits, region_size, region_bits;
1286 	size_t alloc_size;
1287 
1288 	/* region calculations */
1289 	aligned_addr = tmp_addr & PAGE_MASK;
1290 
1291 	start_offset = tmp_addr - aligned_addr;
1292 
1293 	/*
1294 	 * Align the end of the region with the LCM of PAGE_SIZE and
1295 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1296 	 * the other.
1297 	 */
1298 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1299 	region_size = ALIGN(start_offset + map_size, lcm_align);
1300 
1301 	/* allocate chunk */
1302 	alloc_size = sizeof(struct pcpu_chunk) +
1303 		BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1304 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1305 	if (!chunk)
1306 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1307 		      alloc_size);
1308 
1309 	INIT_LIST_HEAD(&chunk->list);
1310 
1311 	chunk->base_addr = (void *)aligned_addr;
1312 	chunk->start_offset = start_offset;
1313 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1314 
1315 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1316 	region_bits = pcpu_chunk_map_bits(chunk);
1317 
1318 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1319 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1320 	if (!chunk->alloc_map)
1321 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1322 		      alloc_size);
1323 
1324 	alloc_size =
1325 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1326 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1327 	if (!chunk->bound_map)
1328 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1329 		      alloc_size);
1330 
1331 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1332 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1333 	if (!chunk->md_blocks)
1334 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1335 		      alloc_size);
1336 
1337 	pcpu_init_md_blocks(chunk);
1338 
1339 	/* manage populated page bitmap */
1340 	chunk->immutable = true;
1341 	bitmap_fill(chunk->populated, chunk->nr_pages);
1342 	chunk->nr_populated = chunk->nr_pages;
1343 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1344 
1345 	chunk->free_bytes = map_size;
1346 
1347 	if (chunk->start_offset) {
1348 		/* hide the beginning of the bitmap */
1349 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1350 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1351 		set_bit(0, chunk->bound_map);
1352 		set_bit(offset_bits, chunk->bound_map);
1353 
1354 		chunk->chunk_md.first_free = offset_bits;
1355 
1356 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1357 	}
1358 
1359 	if (chunk->end_offset) {
1360 		/* hide the end of the bitmap */
1361 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1362 		bitmap_set(chunk->alloc_map,
1363 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1364 			   offset_bits);
1365 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1366 			chunk->bound_map);
1367 		set_bit(region_bits, chunk->bound_map);
1368 
1369 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1370 					     - offset_bits, offset_bits);
1371 	}
1372 
1373 	return chunk;
1374 }
1375 
1376 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1377 {
1378 	struct pcpu_chunk *chunk;
1379 	int region_bits;
1380 
1381 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1382 	if (!chunk)
1383 		return NULL;
1384 
1385 	INIT_LIST_HEAD(&chunk->list);
1386 	chunk->nr_pages = pcpu_unit_pages;
1387 	region_bits = pcpu_chunk_map_bits(chunk);
1388 
1389 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1390 					   sizeof(chunk->alloc_map[0]), gfp);
1391 	if (!chunk->alloc_map)
1392 		goto alloc_map_fail;
1393 
1394 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1395 					   sizeof(chunk->bound_map[0]), gfp);
1396 	if (!chunk->bound_map)
1397 		goto bound_map_fail;
1398 
1399 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1400 					   sizeof(chunk->md_blocks[0]), gfp);
1401 	if (!chunk->md_blocks)
1402 		goto md_blocks_fail;
1403 
1404 	pcpu_init_md_blocks(chunk);
1405 
1406 	/* init metadata */
1407 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1408 
1409 	return chunk;
1410 
1411 md_blocks_fail:
1412 	pcpu_mem_free(chunk->bound_map);
1413 bound_map_fail:
1414 	pcpu_mem_free(chunk->alloc_map);
1415 alloc_map_fail:
1416 	pcpu_mem_free(chunk);
1417 
1418 	return NULL;
1419 }
1420 
1421 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1422 {
1423 	if (!chunk)
1424 		return;
1425 	pcpu_mem_free(chunk->md_blocks);
1426 	pcpu_mem_free(chunk->bound_map);
1427 	pcpu_mem_free(chunk->alloc_map);
1428 	pcpu_mem_free(chunk);
1429 }
1430 
1431 /**
1432  * pcpu_chunk_populated - post-population bookkeeping
1433  * @chunk: pcpu_chunk which got populated
1434  * @page_start: the start page
1435  * @page_end: the end page
1436  *
1437  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1438  * the bookkeeping information accordingly.  Must be called after each
1439  * successful population.
1440  *
1441  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1442  * is to serve an allocation in that area.
1443  */
1444 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1445 				 int page_end)
1446 {
1447 	int nr = page_end - page_start;
1448 
1449 	lockdep_assert_held(&pcpu_lock);
1450 
1451 	bitmap_set(chunk->populated, page_start, nr);
1452 	chunk->nr_populated += nr;
1453 	pcpu_nr_populated += nr;
1454 
1455 	pcpu_update_empty_pages(chunk, nr);
1456 }
1457 
1458 /**
1459  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1460  * @chunk: pcpu_chunk which got depopulated
1461  * @page_start: the start page
1462  * @page_end: the end page
1463  *
1464  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1465  * Update the bookkeeping information accordingly.  Must be called after
1466  * each successful depopulation.
1467  */
1468 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1469 				   int page_start, int page_end)
1470 {
1471 	int nr = page_end - page_start;
1472 
1473 	lockdep_assert_held(&pcpu_lock);
1474 
1475 	bitmap_clear(chunk->populated, page_start, nr);
1476 	chunk->nr_populated -= nr;
1477 	pcpu_nr_populated -= nr;
1478 
1479 	pcpu_update_empty_pages(chunk, -nr);
1480 }
1481 
1482 /*
1483  * Chunk management implementation.
1484  *
1485  * To allow different implementations, chunk alloc/free and
1486  * [de]population are implemented in a separate file which is pulled
1487  * into this file and compiled together.  The following functions
1488  * should be implemented.
1489  *
1490  * pcpu_populate_chunk		- populate the specified range of a chunk
1491  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1492  * pcpu_create_chunk		- create a new chunk
1493  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1494  * pcpu_addr_to_page		- translate address to physical address
1495  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1496  */
1497 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1498 			       int page_start, int page_end, gfp_t gfp);
1499 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1500 				  int page_start, int page_end);
1501 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1502 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1503 static struct page *pcpu_addr_to_page(void *addr);
1504 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1505 
1506 #ifdef CONFIG_NEED_PER_CPU_KM
1507 #include "percpu-km.c"
1508 #else
1509 #include "percpu-vm.c"
1510 #endif
1511 
1512 /**
1513  * pcpu_chunk_addr_search - determine chunk containing specified address
1514  * @addr: address for which the chunk needs to be determined.
1515  *
1516  * This is an internal function that handles all but static allocations.
1517  * Static percpu address values should never be passed into the allocator.
1518  *
1519  * RETURNS:
1520  * The address of the found chunk.
1521  */
1522 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1523 {
1524 	/* is it in the dynamic region (first chunk)? */
1525 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1526 		return pcpu_first_chunk;
1527 
1528 	/* is it in the reserved region? */
1529 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1530 		return pcpu_reserved_chunk;
1531 
1532 	/*
1533 	 * The address is relative to unit0 which might be unused and
1534 	 * thus unmapped.  Offset the address to the unit space of the
1535 	 * current processor before looking it up in the vmalloc
1536 	 * space.  Note that any possible cpu id can be used here, so
1537 	 * there's no need to worry about preemption or cpu hotplug.
1538 	 */
1539 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1540 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1541 }
1542 
1543 /**
1544  * pcpu_alloc - the percpu allocator
1545  * @size: size of area to allocate in bytes
1546  * @align: alignment of area (max PAGE_SIZE)
1547  * @reserved: allocate from the reserved chunk if available
1548  * @gfp: allocation flags
1549  *
1550  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1551  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1552  * then no warning will be triggered on invalid or failed allocation
1553  * requests.
1554  *
1555  * RETURNS:
1556  * Percpu pointer to the allocated area on success, NULL on failure.
1557  */
1558 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1559 				 gfp_t gfp)
1560 {
1561 	gfp_t pcpu_gfp;
1562 	bool is_atomic;
1563 	bool do_warn;
1564 	static int warn_limit = 10;
1565 	struct pcpu_chunk *chunk, *next;
1566 	const char *err;
1567 	int slot, off, cpu, ret;
1568 	unsigned long flags;
1569 	void __percpu *ptr;
1570 	size_t bits, bit_align;
1571 
1572 	gfp = current_gfp_context(gfp);
1573 	/* whitelisted flags that can be passed to the backing allocators */
1574 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1575 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1576 	do_warn = !(gfp & __GFP_NOWARN);
1577 
1578 	/*
1579 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1580 	 * therefore alignment must be a minimum of that many bytes.
1581 	 * An allocation may have internal fragmentation from rounding up
1582 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1583 	 */
1584 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1585 		align = PCPU_MIN_ALLOC_SIZE;
1586 
1587 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1588 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1589 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1590 
1591 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1592 		     !is_power_of_2(align))) {
1593 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1594 		     size, align);
1595 		return NULL;
1596 	}
1597 
1598 	if (!is_atomic) {
1599 		/*
1600 		 * pcpu_balance_workfn() allocates memory under this mutex,
1601 		 * and it may wait for memory reclaim. Allow current task
1602 		 * to become OOM victim, in case of memory pressure.
1603 		 */
1604 		if (gfp & __GFP_NOFAIL)
1605 			mutex_lock(&pcpu_alloc_mutex);
1606 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1607 			return NULL;
1608 	}
1609 
1610 	spin_lock_irqsave(&pcpu_lock, flags);
1611 
1612 	/* serve reserved allocations from the reserved chunk if available */
1613 	if (reserved && pcpu_reserved_chunk) {
1614 		chunk = pcpu_reserved_chunk;
1615 
1616 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1617 		if (off < 0) {
1618 			err = "alloc from reserved chunk failed";
1619 			goto fail_unlock;
1620 		}
1621 
1622 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1623 		if (off >= 0)
1624 			goto area_found;
1625 
1626 		err = "alloc from reserved chunk failed";
1627 		goto fail_unlock;
1628 	}
1629 
1630 restart:
1631 	/* search through normal chunks */
1632 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1633 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1634 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1635 						  is_atomic);
1636 			if (off < 0) {
1637 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1638 					pcpu_chunk_move(chunk, 0);
1639 				continue;
1640 			}
1641 
1642 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1643 			if (off >= 0)
1644 				goto area_found;
1645 
1646 		}
1647 	}
1648 
1649 	spin_unlock_irqrestore(&pcpu_lock, flags);
1650 
1651 	/*
1652 	 * No space left.  Create a new chunk.  We don't want multiple
1653 	 * tasks to create chunks simultaneously.  Serialize and create iff
1654 	 * there's still no empty chunk after grabbing the mutex.
1655 	 */
1656 	if (is_atomic) {
1657 		err = "atomic alloc failed, no space left";
1658 		goto fail;
1659 	}
1660 
1661 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1662 		chunk = pcpu_create_chunk(pcpu_gfp);
1663 		if (!chunk) {
1664 			err = "failed to allocate new chunk";
1665 			goto fail;
1666 		}
1667 
1668 		spin_lock_irqsave(&pcpu_lock, flags);
1669 		pcpu_chunk_relocate(chunk, -1);
1670 	} else {
1671 		spin_lock_irqsave(&pcpu_lock, flags);
1672 	}
1673 
1674 	goto restart;
1675 
1676 area_found:
1677 	pcpu_stats_area_alloc(chunk, size);
1678 	spin_unlock_irqrestore(&pcpu_lock, flags);
1679 
1680 	/* populate if not all pages are already there */
1681 	if (!is_atomic) {
1682 		unsigned int page_start, page_end, rs, re;
1683 
1684 		page_start = PFN_DOWN(off);
1685 		page_end = PFN_UP(off + size);
1686 
1687 		bitmap_for_each_clear_region(chunk->populated, rs, re,
1688 					     page_start, page_end) {
1689 			WARN_ON(chunk->immutable);
1690 
1691 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1692 
1693 			spin_lock_irqsave(&pcpu_lock, flags);
1694 			if (ret) {
1695 				pcpu_free_area(chunk, off);
1696 				err = "failed to populate";
1697 				goto fail_unlock;
1698 			}
1699 			pcpu_chunk_populated(chunk, rs, re);
1700 			spin_unlock_irqrestore(&pcpu_lock, flags);
1701 		}
1702 
1703 		mutex_unlock(&pcpu_alloc_mutex);
1704 	}
1705 
1706 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1707 		pcpu_schedule_balance_work();
1708 
1709 	/* clear the areas and return address relative to base address */
1710 	for_each_possible_cpu(cpu)
1711 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1712 
1713 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1714 	kmemleak_alloc_percpu(ptr, size, gfp);
1715 
1716 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1717 			chunk->base_addr, off, ptr);
1718 
1719 	return ptr;
1720 
1721 fail_unlock:
1722 	spin_unlock_irqrestore(&pcpu_lock, flags);
1723 fail:
1724 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1725 
1726 	if (!is_atomic && do_warn && warn_limit) {
1727 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1728 			size, align, is_atomic, err);
1729 		dump_stack();
1730 		if (!--warn_limit)
1731 			pr_info("limit reached, disable warning\n");
1732 	}
1733 	if (is_atomic) {
1734 		/* see the flag handling in pcpu_blance_workfn() */
1735 		pcpu_atomic_alloc_failed = true;
1736 		pcpu_schedule_balance_work();
1737 	} else {
1738 		mutex_unlock(&pcpu_alloc_mutex);
1739 	}
1740 	return NULL;
1741 }
1742 
1743 /**
1744  * __alloc_percpu_gfp - allocate dynamic percpu area
1745  * @size: size of area to allocate in bytes
1746  * @align: alignment of area (max PAGE_SIZE)
1747  * @gfp: allocation flags
1748  *
1749  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1750  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1751  * be called from any context but is a lot more likely to fail. If @gfp
1752  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1753  * allocation requests.
1754  *
1755  * RETURNS:
1756  * Percpu pointer to the allocated area on success, NULL on failure.
1757  */
1758 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1759 {
1760 	return pcpu_alloc(size, align, false, gfp);
1761 }
1762 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1763 
1764 /**
1765  * __alloc_percpu - allocate dynamic percpu area
1766  * @size: size of area to allocate in bytes
1767  * @align: alignment of area (max PAGE_SIZE)
1768  *
1769  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1770  */
1771 void __percpu *__alloc_percpu(size_t size, size_t align)
1772 {
1773 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1774 }
1775 EXPORT_SYMBOL_GPL(__alloc_percpu);
1776 
1777 /**
1778  * __alloc_reserved_percpu - allocate reserved percpu area
1779  * @size: size of area to allocate in bytes
1780  * @align: alignment of area (max PAGE_SIZE)
1781  *
1782  * Allocate zero-filled percpu area of @size bytes aligned at @align
1783  * from reserved percpu area if arch has set it up; otherwise,
1784  * allocation is served from the same dynamic area.  Might sleep.
1785  * Might trigger writeouts.
1786  *
1787  * CONTEXT:
1788  * Does GFP_KERNEL allocation.
1789  *
1790  * RETURNS:
1791  * Percpu pointer to the allocated area on success, NULL on failure.
1792  */
1793 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1794 {
1795 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1796 }
1797 
1798 /**
1799  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1800  * @work: unused
1801  *
1802  * Reclaim all fully free chunks except for the first one.  This is also
1803  * responsible for maintaining the pool of empty populated pages.  However,
1804  * it is possible that this is called when physical memory is scarce causing
1805  * OOM killer to be triggered.  We should avoid doing so until an actual
1806  * allocation causes the failure as it is possible that requests can be
1807  * serviced from already backed regions.
1808  */
1809 static void pcpu_balance_workfn(struct work_struct *work)
1810 {
1811 	/* gfp flags passed to underlying allocators */
1812 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1813 	LIST_HEAD(to_free);
1814 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1815 	struct pcpu_chunk *chunk, *next;
1816 	int slot, nr_to_pop, ret;
1817 
1818 	/*
1819 	 * There's no reason to keep around multiple unused chunks and VM
1820 	 * areas can be scarce.  Destroy all free chunks except for one.
1821 	 */
1822 	mutex_lock(&pcpu_alloc_mutex);
1823 	spin_lock_irq(&pcpu_lock);
1824 
1825 	list_for_each_entry_safe(chunk, next, free_head, list) {
1826 		WARN_ON(chunk->immutable);
1827 
1828 		/* spare the first one */
1829 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1830 			continue;
1831 
1832 		list_move(&chunk->list, &to_free);
1833 	}
1834 
1835 	spin_unlock_irq(&pcpu_lock);
1836 
1837 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1838 		unsigned int rs, re;
1839 
1840 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1841 					   chunk->nr_pages) {
1842 			pcpu_depopulate_chunk(chunk, rs, re);
1843 			spin_lock_irq(&pcpu_lock);
1844 			pcpu_chunk_depopulated(chunk, rs, re);
1845 			spin_unlock_irq(&pcpu_lock);
1846 		}
1847 		pcpu_destroy_chunk(chunk);
1848 		cond_resched();
1849 	}
1850 
1851 	/*
1852 	 * Ensure there are certain number of free populated pages for
1853 	 * atomic allocs.  Fill up from the most packed so that atomic
1854 	 * allocs don't increase fragmentation.  If atomic allocation
1855 	 * failed previously, always populate the maximum amount.  This
1856 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1857 	 * failing indefinitely; however, large atomic allocs are not
1858 	 * something we support properly and can be highly unreliable and
1859 	 * inefficient.
1860 	 */
1861 retry_pop:
1862 	if (pcpu_atomic_alloc_failed) {
1863 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1864 		/* best effort anyway, don't worry about synchronization */
1865 		pcpu_atomic_alloc_failed = false;
1866 	} else {
1867 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1868 				  pcpu_nr_empty_pop_pages,
1869 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1870 	}
1871 
1872 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1873 		unsigned int nr_unpop = 0, rs, re;
1874 
1875 		if (!nr_to_pop)
1876 			break;
1877 
1878 		spin_lock_irq(&pcpu_lock);
1879 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1880 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1881 			if (nr_unpop)
1882 				break;
1883 		}
1884 		spin_unlock_irq(&pcpu_lock);
1885 
1886 		if (!nr_unpop)
1887 			continue;
1888 
1889 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1890 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
1891 					     chunk->nr_pages) {
1892 			int nr = min_t(int, re - rs, nr_to_pop);
1893 
1894 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1895 			if (!ret) {
1896 				nr_to_pop -= nr;
1897 				spin_lock_irq(&pcpu_lock);
1898 				pcpu_chunk_populated(chunk, rs, rs + nr);
1899 				spin_unlock_irq(&pcpu_lock);
1900 			} else {
1901 				nr_to_pop = 0;
1902 			}
1903 
1904 			if (!nr_to_pop)
1905 				break;
1906 		}
1907 	}
1908 
1909 	if (nr_to_pop) {
1910 		/* ran out of chunks to populate, create a new one and retry */
1911 		chunk = pcpu_create_chunk(gfp);
1912 		if (chunk) {
1913 			spin_lock_irq(&pcpu_lock);
1914 			pcpu_chunk_relocate(chunk, -1);
1915 			spin_unlock_irq(&pcpu_lock);
1916 			goto retry_pop;
1917 		}
1918 	}
1919 
1920 	mutex_unlock(&pcpu_alloc_mutex);
1921 }
1922 
1923 /**
1924  * free_percpu - free percpu area
1925  * @ptr: pointer to area to free
1926  *
1927  * Free percpu area @ptr.
1928  *
1929  * CONTEXT:
1930  * Can be called from atomic context.
1931  */
1932 void free_percpu(void __percpu *ptr)
1933 {
1934 	void *addr;
1935 	struct pcpu_chunk *chunk;
1936 	unsigned long flags;
1937 	int off;
1938 	bool need_balance = false;
1939 
1940 	if (!ptr)
1941 		return;
1942 
1943 	kmemleak_free_percpu(ptr);
1944 
1945 	addr = __pcpu_ptr_to_addr(ptr);
1946 
1947 	spin_lock_irqsave(&pcpu_lock, flags);
1948 
1949 	chunk = pcpu_chunk_addr_search(addr);
1950 	off = addr - chunk->base_addr;
1951 
1952 	pcpu_free_area(chunk, off);
1953 
1954 	/* if there are more than one fully free chunks, wake up grim reaper */
1955 	if (chunk->free_bytes == pcpu_unit_size) {
1956 		struct pcpu_chunk *pos;
1957 
1958 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1959 			if (pos != chunk) {
1960 				need_balance = true;
1961 				break;
1962 			}
1963 	}
1964 
1965 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1966 
1967 	spin_unlock_irqrestore(&pcpu_lock, flags);
1968 
1969 	if (need_balance)
1970 		pcpu_schedule_balance_work();
1971 }
1972 EXPORT_SYMBOL_GPL(free_percpu);
1973 
1974 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1975 {
1976 #ifdef CONFIG_SMP
1977 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1978 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1979 	unsigned int cpu;
1980 
1981 	for_each_possible_cpu(cpu) {
1982 		void *start = per_cpu_ptr(base, cpu);
1983 		void *va = (void *)addr;
1984 
1985 		if (va >= start && va < start + static_size) {
1986 			if (can_addr) {
1987 				*can_addr = (unsigned long) (va - start);
1988 				*can_addr += (unsigned long)
1989 					per_cpu_ptr(base, get_boot_cpu_id());
1990 			}
1991 			return true;
1992 		}
1993 	}
1994 #endif
1995 	/* on UP, can't distinguish from other static vars, always false */
1996 	return false;
1997 }
1998 
1999 /**
2000  * is_kernel_percpu_address - test whether address is from static percpu area
2001  * @addr: address to test
2002  *
2003  * Test whether @addr belongs to in-kernel static percpu area.  Module
2004  * static percpu areas are not considered.  For those, use
2005  * is_module_percpu_address().
2006  *
2007  * RETURNS:
2008  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2009  */
2010 bool is_kernel_percpu_address(unsigned long addr)
2011 {
2012 	return __is_kernel_percpu_address(addr, NULL);
2013 }
2014 
2015 /**
2016  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2017  * @addr: the address to be converted to physical address
2018  *
2019  * Given @addr which is dereferenceable address obtained via one of
2020  * percpu access macros, this function translates it into its physical
2021  * address.  The caller is responsible for ensuring @addr stays valid
2022  * until this function finishes.
2023  *
2024  * percpu allocator has special setup for the first chunk, which currently
2025  * supports either embedding in linear address space or vmalloc mapping,
2026  * and, from the second one, the backing allocator (currently either vm or
2027  * km) provides translation.
2028  *
2029  * The addr can be translated simply without checking if it falls into the
2030  * first chunk. But the current code reflects better how percpu allocator
2031  * actually works, and the verification can discover both bugs in percpu
2032  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2033  * code.
2034  *
2035  * RETURNS:
2036  * The physical address for @addr.
2037  */
2038 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2039 {
2040 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2041 	bool in_first_chunk = false;
2042 	unsigned long first_low, first_high;
2043 	unsigned int cpu;
2044 
2045 	/*
2046 	 * The following test on unit_low/high isn't strictly
2047 	 * necessary but will speed up lookups of addresses which
2048 	 * aren't in the first chunk.
2049 	 *
2050 	 * The address check is against full chunk sizes.  pcpu_base_addr
2051 	 * points to the beginning of the first chunk including the
2052 	 * static region.  Assumes good intent as the first chunk may
2053 	 * not be full (ie. < pcpu_unit_pages in size).
2054 	 */
2055 	first_low = (unsigned long)pcpu_base_addr +
2056 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2057 	first_high = (unsigned long)pcpu_base_addr +
2058 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2059 	if ((unsigned long)addr >= first_low &&
2060 	    (unsigned long)addr < first_high) {
2061 		for_each_possible_cpu(cpu) {
2062 			void *start = per_cpu_ptr(base, cpu);
2063 
2064 			if (addr >= start && addr < start + pcpu_unit_size) {
2065 				in_first_chunk = true;
2066 				break;
2067 			}
2068 		}
2069 	}
2070 
2071 	if (in_first_chunk) {
2072 		if (!is_vmalloc_addr(addr))
2073 			return __pa(addr);
2074 		else
2075 			return page_to_phys(vmalloc_to_page(addr)) +
2076 			       offset_in_page(addr);
2077 	} else
2078 		return page_to_phys(pcpu_addr_to_page(addr)) +
2079 		       offset_in_page(addr);
2080 }
2081 
2082 /**
2083  * pcpu_alloc_alloc_info - allocate percpu allocation info
2084  * @nr_groups: the number of groups
2085  * @nr_units: the number of units
2086  *
2087  * Allocate ai which is large enough for @nr_groups groups containing
2088  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2089  * cpu_map array which is long enough for @nr_units and filled with
2090  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2091  * pointer of other groups.
2092  *
2093  * RETURNS:
2094  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2095  * failure.
2096  */
2097 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2098 						      int nr_units)
2099 {
2100 	struct pcpu_alloc_info *ai;
2101 	size_t base_size, ai_size;
2102 	void *ptr;
2103 	int unit;
2104 
2105 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2106 			  __alignof__(ai->groups[0].cpu_map[0]));
2107 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2108 
2109 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2110 	if (!ptr)
2111 		return NULL;
2112 	ai = ptr;
2113 	ptr += base_size;
2114 
2115 	ai->groups[0].cpu_map = ptr;
2116 
2117 	for (unit = 0; unit < nr_units; unit++)
2118 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2119 
2120 	ai->nr_groups = nr_groups;
2121 	ai->__ai_size = PFN_ALIGN(ai_size);
2122 
2123 	return ai;
2124 }
2125 
2126 /**
2127  * pcpu_free_alloc_info - free percpu allocation info
2128  * @ai: pcpu_alloc_info to free
2129  *
2130  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2131  */
2132 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2133 {
2134 	memblock_free_early(__pa(ai), ai->__ai_size);
2135 }
2136 
2137 /**
2138  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2139  * @lvl: loglevel
2140  * @ai: allocation info to dump
2141  *
2142  * Print out information about @ai using loglevel @lvl.
2143  */
2144 static void pcpu_dump_alloc_info(const char *lvl,
2145 				 const struct pcpu_alloc_info *ai)
2146 {
2147 	int group_width = 1, cpu_width = 1, width;
2148 	char empty_str[] = "--------";
2149 	int alloc = 0, alloc_end = 0;
2150 	int group, v;
2151 	int upa, apl;	/* units per alloc, allocs per line */
2152 
2153 	v = ai->nr_groups;
2154 	while (v /= 10)
2155 		group_width++;
2156 
2157 	v = num_possible_cpus();
2158 	while (v /= 10)
2159 		cpu_width++;
2160 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2161 
2162 	upa = ai->alloc_size / ai->unit_size;
2163 	width = upa * (cpu_width + 1) + group_width + 3;
2164 	apl = rounddown_pow_of_two(max(60 / width, 1));
2165 
2166 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2167 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2168 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2169 
2170 	for (group = 0; group < ai->nr_groups; group++) {
2171 		const struct pcpu_group_info *gi = &ai->groups[group];
2172 		int unit = 0, unit_end = 0;
2173 
2174 		BUG_ON(gi->nr_units % upa);
2175 		for (alloc_end += gi->nr_units / upa;
2176 		     alloc < alloc_end; alloc++) {
2177 			if (!(alloc % apl)) {
2178 				pr_cont("\n");
2179 				printk("%spcpu-alloc: ", lvl);
2180 			}
2181 			pr_cont("[%0*d] ", group_width, group);
2182 
2183 			for (unit_end += upa; unit < unit_end; unit++)
2184 				if (gi->cpu_map[unit] != NR_CPUS)
2185 					pr_cont("%0*d ",
2186 						cpu_width, gi->cpu_map[unit]);
2187 				else
2188 					pr_cont("%s ", empty_str);
2189 		}
2190 	}
2191 	pr_cont("\n");
2192 }
2193 
2194 /**
2195  * pcpu_setup_first_chunk - initialize the first percpu chunk
2196  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2197  * @base_addr: mapped address
2198  *
2199  * Initialize the first percpu chunk which contains the kernel static
2200  * percpu area.  This function is to be called from arch percpu area
2201  * setup path.
2202  *
2203  * @ai contains all information necessary to initialize the first
2204  * chunk and prime the dynamic percpu allocator.
2205  *
2206  * @ai->static_size is the size of static percpu area.
2207  *
2208  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2209  * reserve after the static area in the first chunk.  This reserves
2210  * the first chunk such that it's available only through reserved
2211  * percpu allocation.  This is primarily used to serve module percpu
2212  * static areas on architectures where the addressing model has
2213  * limited offset range for symbol relocations to guarantee module
2214  * percpu symbols fall inside the relocatable range.
2215  *
2216  * @ai->dyn_size determines the number of bytes available for dynamic
2217  * allocation in the first chunk.  The area between @ai->static_size +
2218  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2219  *
2220  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2221  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2222  * @ai->dyn_size.
2223  *
2224  * @ai->atom_size is the allocation atom size and used as alignment
2225  * for vm areas.
2226  *
2227  * @ai->alloc_size is the allocation size and always multiple of
2228  * @ai->atom_size.  This is larger than @ai->atom_size if
2229  * @ai->unit_size is larger than @ai->atom_size.
2230  *
2231  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2232  * percpu areas.  Units which should be colocated are put into the
2233  * same group.  Dynamic VM areas will be allocated according to these
2234  * groupings.  If @ai->nr_groups is zero, a single group containing
2235  * all units is assumed.
2236  *
2237  * The caller should have mapped the first chunk at @base_addr and
2238  * copied static data to each unit.
2239  *
2240  * The first chunk will always contain a static and a dynamic region.
2241  * However, the static region is not managed by any chunk.  If the first
2242  * chunk also contains a reserved region, it is served by two chunks -
2243  * one for the reserved region and one for the dynamic region.  They
2244  * share the same vm, but use offset regions in the area allocation map.
2245  * The chunk serving the dynamic region is circulated in the chunk slots
2246  * and available for dynamic allocation like any other chunk.
2247  */
2248 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2249 				   void *base_addr)
2250 {
2251 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2252 	size_t static_size, dyn_size;
2253 	struct pcpu_chunk *chunk;
2254 	unsigned long *group_offsets;
2255 	size_t *group_sizes;
2256 	unsigned long *unit_off;
2257 	unsigned int cpu;
2258 	int *unit_map;
2259 	int group, unit, i;
2260 	int map_size;
2261 	unsigned long tmp_addr;
2262 	size_t alloc_size;
2263 
2264 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2265 	if (unlikely(cond)) {						\
2266 		pr_emerg("failed to initialize, %s\n", #cond);		\
2267 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2268 			 cpumask_pr_args(cpu_possible_mask));		\
2269 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2270 		BUG();							\
2271 	}								\
2272 } while (0)
2273 
2274 	/* sanity checks */
2275 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2276 #ifdef CONFIG_SMP
2277 	PCPU_SETUP_BUG_ON(!ai->static_size);
2278 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2279 #endif
2280 	PCPU_SETUP_BUG_ON(!base_addr);
2281 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2282 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2283 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2284 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2285 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2286 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2287 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2288 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2289 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2290 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2291 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2292 
2293 	/* process group information and build config tables accordingly */
2294 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2295 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2296 	if (!group_offsets)
2297 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2298 		      alloc_size);
2299 
2300 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2301 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2302 	if (!group_sizes)
2303 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2304 		      alloc_size);
2305 
2306 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2307 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2308 	if (!unit_map)
2309 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2310 		      alloc_size);
2311 
2312 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2313 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2314 	if (!unit_off)
2315 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2316 		      alloc_size);
2317 
2318 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2319 		unit_map[cpu] = UINT_MAX;
2320 
2321 	pcpu_low_unit_cpu = NR_CPUS;
2322 	pcpu_high_unit_cpu = NR_CPUS;
2323 
2324 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2325 		const struct pcpu_group_info *gi = &ai->groups[group];
2326 
2327 		group_offsets[group] = gi->base_offset;
2328 		group_sizes[group] = gi->nr_units * ai->unit_size;
2329 
2330 		for (i = 0; i < gi->nr_units; i++) {
2331 			cpu = gi->cpu_map[i];
2332 			if (cpu == NR_CPUS)
2333 				continue;
2334 
2335 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2336 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2337 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2338 
2339 			unit_map[cpu] = unit + i;
2340 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2341 
2342 			/* determine low/high unit_cpu */
2343 			if (pcpu_low_unit_cpu == NR_CPUS ||
2344 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2345 				pcpu_low_unit_cpu = cpu;
2346 			if (pcpu_high_unit_cpu == NR_CPUS ||
2347 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2348 				pcpu_high_unit_cpu = cpu;
2349 		}
2350 	}
2351 	pcpu_nr_units = unit;
2352 
2353 	for_each_possible_cpu(cpu)
2354 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2355 
2356 	/* we're done parsing the input, undefine BUG macro and dump config */
2357 #undef PCPU_SETUP_BUG_ON
2358 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2359 
2360 	pcpu_nr_groups = ai->nr_groups;
2361 	pcpu_group_offsets = group_offsets;
2362 	pcpu_group_sizes = group_sizes;
2363 	pcpu_unit_map = unit_map;
2364 	pcpu_unit_offsets = unit_off;
2365 
2366 	/* determine basic parameters */
2367 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2368 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2369 	pcpu_atom_size = ai->atom_size;
2370 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2371 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2372 
2373 	pcpu_stats_save_ai(ai);
2374 
2375 	/*
2376 	 * Allocate chunk slots.  The additional last slot is for
2377 	 * empty chunks.
2378 	 */
2379 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2380 	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2381 				   SMP_CACHE_BYTES);
2382 	if (!pcpu_slot)
2383 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2384 		      pcpu_nr_slots * sizeof(pcpu_slot[0]));
2385 	for (i = 0; i < pcpu_nr_slots; i++)
2386 		INIT_LIST_HEAD(&pcpu_slot[i]);
2387 
2388 	/*
2389 	 * The end of the static region needs to be aligned with the
2390 	 * minimum allocation size as this offsets the reserved and
2391 	 * dynamic region.  The first chunk ends page aligned by
2392 	 * expanding the dynamic region, therefore the dynamic region
2393 	 * can be shrunk to compensate while still staying above the
2394 	 * configured sizes.
2395 	 */
2396 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2397 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2398 
2399 	/*
2400 	 * Initialize first chunk.
2401 	 * If the reserved_size is non-zero, this initializes the reserved
2402 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2403 	 * and the dynamic region is initialized here.  The first chunk,
2404 	 * pcpu_first_chunk, will always point to the chunk that serves
2405 	 * the dynamic region.
2406 	 */
2407 	tmp_addr = (unsigned long)base_addr + static_size;
2408 	map_size = ai->reserved_size ?: dyn_size;
2409 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2410 
2411 	/* init dynamic chunk if necessary */
2412 	if (ai->reserved_size) {
2413 		pcpu_reserved_chunk = chunk;
2414 
2415 		tmp_addr = (unsigned long)base_addr + static_size +
2416 			   ai->reserved_size;
2417 		map_size = dyn_size;
2418 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2419 	}
2420 
2421 	/* link the first chunk in */
2422 	pcpu_first_chunk = chunk;
2423 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2424 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2425 
2426 	/* include all regions of the first chunk */
2427 	pcpu_nr_populated += PFN_DOWN(size_sum);
2428 
2429 	pcpu_stats_chunk_alloc();
2430 	trace_percpu_create_chunk(base_addr);
2431 
2432 	/* we're done */
2433 	pcpu_base_addr = base_addr;
2434 }
2435 
2436 #ifdef CONFIG_SMP
2437 
2438 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2439 	[PCPU_FC_AUTO]	= "auto",
2440 	[PCPU_FC_EMBED]	= "embed",
2441 	[PCPU_FC_PAGE]	= "page",
2442 };
2443 
2444 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2445 
2446 static int __init percpu_alloc_setup(char *str)
2447 {
2448 	if (!str)
2449 		return -EINVAL;
2450 
2451 	if (0)
2452 		/* nada */;
2453 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2454 	else if (!strcmp(str, "embed"))
2455 		pcpu_chosen_fc = PCPU_FC_EMBED;
2456 #endif
2457 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2458 	else if (!strcmp(str, "page"))
2459 		pcpu_chosen_fc = PCPU_FC_PAGE;
2460 #endif
2461 	else
2462 		pr_warn("unknown allocator %s specified\n", str);
2463 
2464 	return 0;
2465 }
2466 early_param("percpu_alloc", percpu_alloc_setup);
2467 
2468 /*
2469  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2470  * Build it if needed by the arch config or the generic setup is going
2471  * to be used.
2472  */
2473 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2474 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2475 #define BUILD_EMBED_FIRST_CHUNK
2476 #endif
2477 
2478 /* build pcpu_page_first_chunk() iff needed by the arch config */
2479 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2480 #define BUILD_PAGE_FIRST_CHUNK
2481 #endif
2482 
2483 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2484 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2485 /**
2486  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2487  * @reserved_size: the size of reserved percpu area in bytes
2488  * @dyn_size: minimum free size for dynamic allocation in bytes
2489  * @atom_size: allocation atom size
2490  * @cpu_distance_fn: callback to determine distance between cpus, optional
2491  *
2492  * This function determines grouping of units, their mappings to cpus
2493  * and other parameters considering needed percpu size, allocation
2494  * atom size and distances between CPUs.
2495  *
2496  * Groups are always multiples of atom size and CPUs which are of
2497  * LOCAL_DISTANCE both ways are grouped together and share space for
2498  * units in the same group.  The returned configuration is guaranteed
2499  * to have CPUs on different nodes on different groups and >=75% usage
2500  * of allocated virtual address space.
2501  *
2502  * RETURNS:
2503  * On success, pointer to the new allocation_info is returned.  On
2504  * failure, ERR_PTR value is returned.
2505  */
2506 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2507 				size_t reserved_size, size_t dyn_size,
2508 				size_t atom_size,
2509 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2510 {
2511 	static int group_map[NR_CPUS] __initdata;
2512 	static int group_cnt[NR_CPUS] __initdata;
2513 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2514 	int nr_groups = 1, nr_units = 0;
2515 	size_t size_sum, min_unit_size, alloc_size;
2516 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2517 	int last_allocs, group, unit;
2518 	unsigned int cpu, tcpu;
2519 	struct pcpu_alloc_info *ai;
2520 	unsigned int *cpu_map;
2521 
2522 	/* this function may be called multiple times */
2523 	memset(group_map, 0, sizeof(group_map));
2524 	memset(group_cnt, 0, sizeof(group_cnt));
2525 
2526 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2527 	size_sum = PFN_ALIGN(static_size + reserved_size +
2528 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2529 	dyn_size = size_sum - static_size - reserved_size;
2530 
2531 	/*
2532 	 * Determine min_unit_size, alloc_size and max_upa such that
2533 	 * alloc_size is multiple of atom_size and is the smallest
2534 	 * which can accommodate 4k aligned segments which are equal to
2535 	 * or larger than min_unit_size.
2536 	 */
2537 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2538 
2539 	/* determine the maximum # of units that can fit in an allocation */
2540 	alloc_size = roundup(min_unit_size, atom_size);
2541 	upa = alloc_size / min_unit_size;
2542 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2543 		upa--;
2544 	max_upa = upa;
2545 
2546 	/* group cpus according to their proximity */
2547 	for_each_possible_cpu(cpu) {
2548 		group = 0;
2549 	next_group:
2550 		for_each_possible_cpu(tcpu) {
2551 			if (cpu == tcpu)
2552 				break;
2553 			if (group_map[tcpu] == group && cpu_distance_fn &&
2554 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2555 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2556 				group++;
2557 				nr_groups = max(nr_groups, group + 1);
2558 				goto next_group;
2559 			}
2560 		}
2561 		group_map[cpu] = group;
2562 		group_cnt[group]++;
2563 	}
2564 
2565 	/*
2566 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2567 	 * Expand the unit_size until we use >= 75% of the units allocated.
2568 	 * Related to atom_size, which could be much larger than the unit_size.
2569 	 */
2570 	last_allocs = INT_MAX;
2571 	for (upa = max_upa; upa; upa--) {
2572 		int allocs = 0, wasted = 0;
2573 
2574 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2575 			continue;
2576 
2577 		for (group = 0; group < nr_groups; group++) {
2578 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2579 			allocs += this_allocs;
2580 			wasted += this_allocs * upa - group_cnt[group];
2581 		}
2582 
2583 		/*
2584 		 * Don't accept if wastage is over 1/3.  The
2585 		 * greater-than comparison ensures upa==1 always
2586 		 * passes the following check.
2587 		 */
2588 		if (wasted > num_possible_cpus() / 3)
2589 			continue;
2590 
2591 		/* and then don't consume more memory */
2592 		if (allocs > last_allocs)
2593 			break;
2594 		last_allocs = allocs;
2595 		best_upa = upa;
2596 	}
2597 	upa = best_upa;
2598 
2599 	/* allocate and fill alloc_info */
2600 	for (group = 0; group < nr_groups; group++)
2601 		nr_units += roundup(group_cnt[group], upa);
2602 
2603 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2604 	if (!ai)
2605 		return ERR_PTR(-ENOMEM);
2606 	cpu_map = ai->groups[0].cpu_map;
2607 
2608 	for (group = 0; group < nr_groups; group++) {
2609 		ai->groups[group].cpu_map = cpu_map;
2610 		cpu_map += roundup(group_cnt[group], upa);
2611 	}
2612 
2613 	ai->static_size = static_size;
2614 	ai->reserved_size = reserved_size;
2615 	ai->dyn_size = dyn_size;
2616 	ai->unit_size = alloc_size / upa;
2617 	ai->atom_size = atom_size;
2618 	ai->alloc_size = alloc_size;
2619 
2620 	for (group = 0, unit = 0; group < nr_groups; group++) {
2621 		struct pcpu_group_info *gi = &ai->groups[group];
2622 
2623 		/*
2624 		 * Initialize base_offset as if all groups are located
2625 		 * back-to-back.  The caller should update this to
2626 		 * reflect actual allocation.
2627 		 */
2628 		gi->base_offset = unit * ai->unit_size;
2629 
2630 		for_each_possible_cpu(cpu)
2631 			if (group_map[cpu] == group)
2632 				gi->cpu_map[gi->nr_units++] = cpu;
2633 		gi->nr_units = roundup(gi->nr_units, upa);
2634 		unit += gi->nr_units;
2635 	}
2636 	BUG_ON(unit != nr_units);
2637 
2638 	return ai;
2639 }
2640 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2641 
2642 #if defined(BUILD_EMBED_FIRST_CHUNK)
2643 /**
2644  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2645  * @reserved_size: the size of reserved percpu area in bytes
2646  * @dyn_size: minimum free size for dynamic allocation in bytes
2647  * @atom_size: allocation atom size
2648  * @cpu_distance_fn: callback to determine distance between cpus, optional
2649  * @alloc_fn: function to allocate percpu page
2650  * @free_fn: function to free percpu page
2651  *
2652  * This is a helper to ease setting up embedded first percpu chunk and
2653  * can be called where pcpu_setup_first_chunk() is expected.
2654  *
2655  * If this function is used to setup the first chunk, it is allocated
2656  * by calling @alloc_fn and used as-is without being mapped into
2657  * vmalloc area.  Allocations are always whole multiples of @atom_size
2658  * aligned to @atom_size.
2659  *
2660  * This enables the first chunk to piggy back on the linear physical
2661  * mapping which often uses larger page size.  Please note that this
2662  * can result in very sparse cpu->unit mapping on NUMA machines thus
2663  * requiring large vmalloc address space.  Don't use this allocator if
2664  * vmalloc space is not orders of magnitude larger than distances
2665  * between node memory addresses (ie. 32bit NUMA machines).
2666  *
2667  * @dyn_size specifies the minimum dynamic area size.
2668  *
2669  * If the needed size is smaller than the minimum or specified unit
2670  * size, the leftover is returned using @free_fn.
2671  *
2672  * RETURNS:
2673  * 0 on success, -errno on failure.
2674  */
2675 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2676 				  size_t atom_size,
2677 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2678 				  pcpu_fc_alloc_fn_t alloc_fn,
2679 				  pcpu_fc_free_fn_t free_fn)
2680 {
2681 	void *base = (void *)ULONG_MAX;
2682 	void **areas = NULL;
2683 	struct pcpu_alloc_info *ai;
2684 	size_t size_sum, areas_size;
2685 	unsigned long max_distance;
2686 	int group, i, highest_group, rc = 0;
2687 
2688 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2689 				   cpu_distance_fn);
2690 	if (IS_ERR(ai))
2691 		return PTR_ERR(ai);
2692 
2693 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2694 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2695 
2696 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2697 	if (!areas) {
2698 		rc = -ENOMEM;
2699 		goto out_free;
2700 	}
2701 
2702 	/* allocate, copy and determine base address & max_distance */
2703 	highest_group = 0;
2704 	for (group = 0; group < ai->nr_groups; group++) {
2705 		struct pcpu_group_info *gi = &ai->groups[group];
2706 		unsigned int cpu = NR_CPUS;
2707 		void *ptr;
2708 
2709 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2710 			cpu = gi->cpu_map[i];
2711 		BUG_ON(cpu == NR_CPUS);
2712 
2713 		/* allocate space for the whole group */
2714 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2715 		if (!ptr) {
2716 			rc = -ENOMEM;
2717 			goto out_free_areas;
2718 		}
2719 		/* kmemleak tracks the percpu allocations separately */
2720 		kmemleak_free(ptr);
2721 		areas[group] = ptr;
2722 
2723 		base = min(ptr, base);
2724 		if (ptr > areas[highest_group])
2725 			highest_group = group;
2726 	}
2727 	max_distance = areas[highest_group] - base;
2728 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2729 
2730 	/* warn if maximum distance is further than 75% of vmalloc space */
2731 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2732 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2733 				max_distance, VMALLOC_TOTAL);
2734 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2735 		/* and fail if we have fallback */
2736 		rc = -EINVAL;
2737 		goto out_free_areas;
2738 #endif
2739 	}
2740 
2741 	/*
2742 	 * Copy data and free unused parts.  This should happen after all
2743 	 * allocations are complete; otherwise, we may end up with
2744 	 * overlapping groups.
2745 	 */
2746 	for (group = 0; group < ai->nr_groups; group++) {
2747 		struct pcpu_group_info *gi = &ai->groups[group];
2748 		void *ptr = areas[group];
2749 
2750 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2751 			if (gi->cpu_map[i] == NR_CPUS) {
2752 				/* unused unit, free whole */
2753 				free_fn(ptr, ai->unit_size);
2754 				continue;
2755 			}
2756 			/* copy and return the unused part */
2757 			memcpy(ptr, __per_cpu_load, ai->static_size);
2758 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2759 		}
2760 	}
2761 
2762 	/* base address is now known, determine group base offsets */
2763 	for (group = 0; group < ai->nr_groups; group++) {
2764 		ai->groups[group].base_offset = areas[group] - base;
2765 	}
2766 
2767 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2768 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2769 		ai->dyn_size, ai->unit_size);
2770 
2771 	pcpu_setup_first_chunk(ai, base);
2772 	goto out_free;
2773 
2774 out_free_areas:
2775 	for (group = 0; group < ai->nr_groups; group++)
2776 		if (areas[group])
2777 			free_fn(areas[group],
2778 				ai->groups[group].nr_units * ai->unit_size);
2779 out_free:
2780 	pcpu_free_alloc_info(ai);
2781 	if (areas)
2782 		memblock_free_early(__pa(areas), areas_size);
2783 	return rc;
2784 }
2785 #endif /* BUILD_EMBED_FIRST_CHUNK */
2786 
2787 #ifdef BUILD_PAGE_FIRST_CHUNK
2788 /**
2789  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2790  * @reserved_size: the size of reserved percpu area in bytes
2791  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2792  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2793  * @populate_pte_fn: function to populate pte
2794  *
2795  * This is a helper to ease setting up page-remapped first percpu
2796  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2797  *
2798  * This is the basic allocator.  Static percpu area is allocated
2799  * page-by-page into vmalloc area.
2800  *
2801  * RETURNS:
2802  * 0 on success, -errno on failure.
2803  */
2804 int __init pcpu_page_first_chunk(size_t reserved_size,
2805 				 pcpu_fc_alloc_fn_t alloc_fn,
2806 				 pcpu_fc_free_fn_t free_fn,
2807 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2808 {
2809 	static struct vm_struct vm;
2810 	struct pcpu_alloc_info *ai;
2811 	char psize_str[16];
2812 	int unit_pages;
2813 	size_t pages_size;
2814 	struct page **pages;
2815 	int unit, i, j, rc = 0;
2816 	int upa;
2817 	int nr_g0_units;
2818 
2819 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2820 
2821 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2822 	if (IS_ERR(ai))
2823 		return PTR_ERR(ai);
2824 	BUG_ON(ai->nr_groups != 1);
2825 	upa = ai->alloc_size/ai->unit_size;
2826 	nr_g0_units = roundup(num_possible_cpus(), upa);
2827 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2828 		pcpu_free_alloc_info(ai);
2829 		return -EINVAL;
2830 	}
2831 
2832 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2833 
2834 	/* unaligned allocations can't be freed, round up to page size */
2835 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2836 			       sizeof(pages[0]));
2837 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2838 	if (!pages)
2839 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2840 		      pages_size);
2841 
2842 	/* allocate pages */
2843 	j = 0;
2844 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2845 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2846 		for (i = 0; i < unit_pages; i++) {
2847 			void *ptr;
2848 
2849 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2850 			if (!ptr) {
2851 				pr_warn("failed to allocate %s page for cpu%u\n",
2852 						psize_str, cpu);
2853 				goto enomem;
2854 			}
2855 			/* kmemleak tracks the percpu allocations separately */
2856 			kmemleak_free(ptr);
2857 			pages[j++] = virt_to_page(ptr);
2858 		}
2859 	}
2860 
2861 	/* allocate vm area, map the pages and copy static data */
2862 	vm.flags = VM_ALLOC;
2863 	vm.size = num_possible_cpus() * ai->unit_size;
2864 	vm_area_register_early(&vm, PAGE_SIZE);
2865 
2866 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2867 		unsigned long unit_addr =
2868 			(unsigned long)vm.addr + unit * ai->unit_size;
2869 
2870 		for (i = 0; i < unit_pages; i++)
2871 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2872 
2873 		/* pte already populated, the following shouldn't fail */
2874 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2875 				      unit_pages);
2876 		if (rc < 0)
2877 			panic("failed to map percpu area, err=%d\n", rc);
2878 
2879 		/*
2880 		 * FIXME: Archs with virtual cache should flush local
2881 		 * cache for the linear mapping here - something
2882 		 * equivalent to flush_cache_vmap() on the local cpu.
2883 		 * flush_cache_vmap() can't be used as most supporting
2884 		 * data structures are not set up yet.
2885 		 */
2886 
2887 		/* copy static data */
2888 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2889 	}
2890 
2891 	/* we're ready, commit */
2892 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2893 		unit_pages, psize_str, ai->static_size,
2894 		ai->reserved_size, ai->dyn_size);
2895 
2896 	pcpu_setup_first_chunk(ai, vm.addr);
2897 	goto out_free_ar;
2898 
2899 enomem:
2900 	while (--j >= 0)
2901 		free_fn(page_address(pages[j]), PAGE_SIZE);
2902 	rc = -ENOMEM;
2903 out_free_ar:
2904 	memblock_free_early(__pa(pages), pages_size);
2905 	pcpu_free_alloc_info(ai);
2906 	return rc;
2907 }
2908 #endif /* BUILD_PAGE_FIRST_CHUNK */
2909 
2910 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2911 /*
2912  * Generic SMP percpu area setup.
2913  *
2914  * The embedding helper is used because its behavior closely resembles
2915  * the original non-dynamic generic percpu area setup.  This is
2916  * important because many archs have addressing restrictions and might
2917  * fail if the percpu area is located far away from the previous
2918  * location.  As an added bonus, in non-NUMA cases, embedding is
2919  * generally a good idea TLB-wise because percpu area can piggy back
2920  * on the physical linear memory mapping which uses large page
2921  * mappings on applicable archs.
2922  */
2923 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2924 EXPORT_SYMBOL(__per_cpu_offset);
2925 
2926 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2927 				       size_t align)
2928 {
2929 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2930 }
2931 
2932 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2933 {
2934 	memblock_free_early(__pa(ptr), size);
2935 }
2936 
2937 void __init setup_per_cpu_areas(void)
2938 {
2939 	unsigned long delta;
2940 	unsigned int cpu;
2941 	int rc;
2942 
2943 	/*
2944 	 * Always reserve area for module percpu variables.  That's
2945 	 * what the legacy allocator did.
2946 	 */
2947 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2948 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2949 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2950 	if (rc < 0)
2951 		panic("Failed to initialize percpu areas.");
2952 
2953 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2954 	for_each_possible_cpu(cpu)
2955 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2956 }
2957 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2958 
2959 #else	/* CONFIG_SMP */
2960 
2961 /*
2962  * UP percpu area setup.
2963  *
2964  * UP always uses km-based percpu allocator with identity mapping.
2965  * Static percpu variables are indistinguishable from the usual static
2966  * variables and don't require any special preparation.
2967  */
2968 void __init setup_per_cpu_areas(void)
2969 {
2970 	const size_t unit_size =
2971 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2972 					 PERCPU_DYNAMIC_RESERVE));
2973 	struct pcpu_alloc_info *ai;
2974 	void *fc;
2975 
2976 	ai = pcpu_alloc_alloc_info(1, 1);
2977 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2978 	if (!ai || !fc)
2979 		panic("Failed to allocate memory for percpu areas.");
2980 	/* kmemleak tracks the percpu allocations separately */
2981 	kmemleak_free(fc);
2982 
2983 	ai->dyn_size = unit_size;
2984 	ai->unit_size = unit_size;
2985 	ai->atom_size = unit_size;
2986 	ai->alloc_size = unit_size;
2987 	ai->groups[0].nr_units = 1;
2988 	ai->groups[0].cpu_map[0] = 0;
2989 
2990 	pcpu_setup_first_chunk(ai, fc);
2991 	pcpu_free_alloc_info(ai);
2992 }
2993 
2994 #endif	/* CONFIG_SMP */
2995 
2996 /*
2997  * pcpu_nr_pages - calculate total number of populated backing pages
2998  *
2999  * This reflects the number of pages populated to back chunks.  Metadata is
3000  * excluded in the number exposed in meminfo as the number of backing pages
3001  * scales with the number of cpus and can quickly outweigh the memory used for
3002  * metadata.  It also keeps this calculation nice and simple.
3003  *
3004  * RETURNS:
3005  * Total number of populated backing pages in use by the allocator.
3006  */
3007 unsigned long pcpu_nr_pages(void)
3008 {
3009 	return pcpu_nr_populated * pcpu_nr_units;
3010 }
3011 
3012 /*
3013  * Percpu allocator is initialized early during boot when neither slab or
3014  * workqueue is available.  Plug async management until everything is up
3015  * and running.
3016  */
3017 static int __init percpu_enable_async(void)
3018 {
3019 	pcpu_async_enabled = true;
3020 	return 0;
3021 }
3022 subsys_initcall(percpu_enable_async);
3023