1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 71 #include <asm/cacheflush.h> 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/io.h> 75 76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 78 79 #ifdef CONFIG_SMP 80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 81 #ifndef __addr_to_pcpu_ptr 82 #define __addr_to_pcpu_ptr(addr) \ 83 (void __percpu *)((unsigned long)(addr) - \ 84 (unsigned long)pcpu_base_addr + \ 85 (unsigned long)__per_cpu_start) 86 #endif 87 #ifndef __pcpu_ptr_to_addr 88 #define __pcpu_ptr_to_addr(ptr) \ 89 (void __force *)((unsigned long)(ptr) + \ 90 (unsigned long)pcpu_base_addr - \ 91 (unsigned long)__per_cpu_start) 92 #endif 93 #else /* CONFIG_SMP */ 94 /* on UP, it's always identity mapped */ 95 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 96 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 97 #endif /* CONFIG_SMP */ 98 99 struct pcpu_chunk { 100 struct list_head list; /* linked to pcpu_slot lists */ 101 int free_size; /* free bytes in the chunk */ 102 int contig_hint; /* max contiguous size hint */ 103 void *base_addr; /* base address of this chunk */ 104 int map_used; /* # of map entries used */ 105 int map_alloc; /* # of map entries allocated */ 106 int *map; /* allocation map */ 107 void *data; /* chunk data */ 108 bool immutable; /* no [de]population allowed */ 109 unsigned long populated[]; /* populated bitmap */ 110 }; 111 112 static int pcpu_unit_pages __read_mostly; 113 static int pcpu_unit_size __read_mostly; 114 static int pcpu_nr_units __read_mostly; 115 static int pcpu_atom_size __read_mostly; 116 static int pcpu_nr_slots __read_mostly; 117 static size_t pcpu_chunk_struct_size __read_mostly; 118 119 /* cpus with the lowest and highest unit numbers */ 120 static unsigned int pcpu_first_unit_cpu __read_mostly; 121 static unsigned int pcpu_last_unit_cpu __read_mostly; 122 123 /* the address of the first chunk which starts with the kernel static area */ 124 void *pcpu_base_addr __read_mostly; 125 EXPORT_SYMBOL_GPL(pcpu_base_addr); 126 127 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 128 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 129 130 /* group information, used for vm allocation */ 131 static int pcpu_nr_groups __read_mostly; 132 static const unsigned long *pcpu_group_offsets __read_mostly; 133 static const size_t *pcpu_group_sizes __read_mostly; 134 135 /* 136 * The first chunk which always exists. Note that unlike other 137 * chunks, this one can be allocated and mapped in several different 138 * ways and thus often doesn't live in the vmalloc area. 139 */ 140 static struct pcpu_chunk *pcpu_first_chunk; 141 142 /* 143 * Optional reserved chunk. This chunk reserves part of the first 144 * chunk and serves it for reserved allocations. The amount of 145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 146 * area doesn't exist, the following variables contain NULL and 0 147 * respectively. 148 */ 149 static struct pcpu_chunk *pcpu_reserved_chunk; 150 static int pcpu_reserved_chunk_limit; 151 152 /* 153 * Synchronization rules. 154 * 155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 156 * protects allocation/reclaim paths, chunks, populated bitmap and 157 * vmalloc mapping. The latter is a spinlock and protects the index 158 * data structures - chunk slots, chunks and area maps in chunks. 159 * 160 * During allocation, pcpu_alloc_mutex is kept locked all the time and 161 * pcpu_lock is grabbed and released as necessary. All actual memory 162 * allocations are done using GFP_KERNEL with pcpu_lock released. In 163 * general, percpu memory can't be allocated with irq off but 164 * irqsave/restore are still used in alloc path so that it can be used 165 * from early init path - sched_init() specifically. 166 * 167 * Free path accesses and alters only the index data structures, so it 168 * can be safely called from atomic context. When memory needs to be 169 * returned to the system, free path schedules reclaim_work which 170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 171 * reclaimed, release both locks and frees the chunks. Note that it's 172 * necessary to grab both locks to remove a chunk from circulation as 173 * allocation path might be referencing the chunk with only 174 * pcpu_alloc_mutex locked. 175 */ 176 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 177 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 178 179 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 180 181 /* reclaim work to release fully free chunks, scheduled from free path */ 182 static void pcpu_reclaim(struct work_struct *work); 183 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 184 185 static bool pcpu_addr_in_first_chunk(void *addr) 186 { 187 void *first_start = pcpu_first_chunk->base_addr; 188 189 return addr >= first_start && addr < first_start + pcpu_unit_size; 190 } 191 192 static bool pcpu_addr_in_reserved_chunk(void *addr) 193 { 194 void *first_start = pcpu_first_chunk->base_addr; 195 196 return addr >= first_start && 197 addr < first_start + pcpu_reserved_chunk_limit; 198 } 199 200 static int __pcpu_size_to_slot(int size) 201 { 202 int highbit = fls(size); /* size is in bytes */ 203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 204 } 205 206 static int pcpu_size_to_slot(int size) 207 { 208 if (size == pcpu_unit_size) 209 return pcpu_nr_slots - 1; 210 return __pcpu_size_to_slot(size); 211 } 212 213 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 214 { 215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 216 return 0; 217 218 return pcpu_size_to_slot(chunk->free_size); 219 } 220 221 /* set the pointer to a chunk in a page struct */ 222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 223 { 224 page->index = (unsigned long)pcpu; 225 } 226 227 /* obtain pointer to a chunk from a page struct */ 228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 229 { 230 return (struct pcpu_chunk *)page->index; 231 } 232 233 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 234 { 235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 236 } 237 238 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 239 unsigned int cpu, int page_idx) 240 { 241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 242 (page_idx << PAGE_SHIFT); 243 } 244 245 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 246 int *rs, int *re, int end) 247 { 248 *rs = find_next_zero_bit(chunk->populated, end, *rs); 249 *re = find_next_bit(chunk->populated, end, *rs + 1); 250 } 251 252 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 253 int *rs, int *re, int end) 254 { 255 *rs = find_next_bit(chunk->populated, end, *rs); 256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 257 } 258 259 /* 260 * (Un)populated page region iterators. Iterate over (un)populated 261 * page regions between @start and @end in @chunk. @rs and @re should 262 * be integer variables and will be set to start and end page index of 263 * the current region. 264 */ 265 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 267 (rs) < (re); \ 268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 269 270 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 272 (rs) < (re); \ 273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 274 275 /** 276 * pcpu_mem_alloc - allocate memory 277 * @size: bytes to allocate 278 * 279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 280 * kzalloc() is used; otherwise, vmalloc() is used. The returned 281 * memory is always zeroed. 282 * 283 * CONTEXT: 284 * Does GFP_KERNEL allocation. 285 * 286 * RETURNS: 287 * Pointer to the allocated area on success, NULL on failure. 288 */ 289 static void *pcpu_mem_alloc(size_t size) 290 { 291 if (WARN_ON_ONCE(!slab_is_available())) 292 return NULL; 293 294 if (size <= PAGE_SIZE) 295 return kzalloc(size, GFP_KERNEL); 296 else 297 return vzalloc(size); 298 } 299 300 /** 301 * pcpu_mem_free - free memory 302 * @ptr: memory to free 303 * @size: size of the area 304 * 305 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 306 */ 307 static void pcpu_mem_free(void *ptr, size_t size) 308 { 309 if (size <= PAGE_SIZE) 310 kfree(ptr); 311 else 312 vfree(ptr); 313 } 314 315 /** 316 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 317 * @chunk: chunk of interest 318 * @oslot: the previous slot it was on 319 * 320 * This function is called after an allocation or free changed @chunk. 321 * New slot according to the changed state is determined and @chunk is 322 * moved to the slot. Note that the reserved chunk is never put on 323 * chunk slots. 324 * 325 * CONTEXT: 326 * pcpu_lock. 327 */ 328 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 329 { 330 int nslot = pcpu_chunk_slot(chunk); 331 332 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 333 if (oslot < nslot) 334 list_move(&chunk->list, &pcpu_slot[nslot]); 335 else 336 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 337 } 338 } 339 340 /** 341 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 342 * @chunk: chunk of interest 343 * 344 * Determine whether area map of @chunk needs to be extended to 345 * accommodate a new allocation. 346 * 347 * CONTEXT: 348 * pcpu_lock. 349 * 350 * RETURNS: 351 * New target map allocation length if extension is necessary, 0 352 * otherwise. 353 */ 354 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 355 { 356 int new_alloc; 357 358 if (chunk->map_alloc >= chunk->map_used + 2) 359 return 0; 360 361 new_alloc = PCPU_DFL_MAP_ALLOC; 362 while (new_alloc < chunk->map_used + 2) 363 new_alloc *= 2; 364 365 return new_alloc; 366 } 367 368 /** 369 * pcpu_extend_area_map - extend area map of a chunk 370 * @chunk: chunk of interest 371 * @new_alloc: new target allocation length of the area map 372 * 373 * Extend area map of @chunk to have @new_alloc entries. 374 * 375 * CONTEXT: 376 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 377 * 378 * RETURNS: 379 * 0 on success, -errno on failure. 380 */ 381 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 382 { 383 int *old = NULL, *new = NULL; 384 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 385 unsigned long flags; 386 387 new = pcpu_mem_alloc(new_size); 388 if (!new) 389 return -ENOMEM; 390 391 /* acquire pcpu_lock and switch to new area map */ 392 spin_lock_irqsave(&pcpu_lock, flags); 393 394 if (new_alloc <= chunk->map_alloc) 395 goto out_unlock; 396 397 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 398 old = chunk->map; 399 400 memcpy(new, old, old_size); 401 402 chunk->map_alloc = new_alloc; 403 chunk->map = new; 404 new = NULL; 405 406 out_unlock: 407 spin_unlock_irqrestore(&pcpu_lock, flags); 408 409 /* 410 * pcpu_mem_free() might end up calling vfree() which uses 411 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 412 */ 413 pcpu_mem_free(old, old_size); 414 pcpu_mem_free(new, new_size); 415 416 return 0; 417 } 418 419 /** 420 * pcpu_split_block - split a map block 421 * @chunk: chunk of interest 422 * @i: index of map block to split 423 * @head: head size in bytes (can be 0) 424 * @tail: tail size in bytes (can be 0) 425 * 426 * Split the @i'th map block into two or three blocks. If @head is 427 * non-zero, @head bytes block is inserted before block @i moving it 428 * to @i+1 and reducing its size by @head bytes. 429 * 430 * If @tail is non-zero, the target block, which can be @i or @i+1 431 * depending on @head, is reduced by @tail bytes and @tail byte block 432 * is inserted after the target block. 433 * 434 * @chunk->map must have enough free slots to accommodate the split. 435 * 436 * CONTEXT: 437 * pcpu_lock. 438 */ 439 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 440 int head, int tail) 441 { 442 int nr_extra = !!head + !!tail; 443 444 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 445 446 /* insert new subblocks */ 447 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 448 sizeof(chunk->map[0]) * (chunk->map_used - i)); 449 chunk->map_used += nr_extra; 450 451 if (head) { 452 chunk->map[i + 1] = chunk->map[i] - head; 453 chunk->map[i++] = head; 454 } 455 if (tail) { 456 chunk->map[i++] -= tail; 457 chunk->map[i] = tail; 458 } 459 } 460 461 /** 462 * pcpu_alloc_area - allocate area from a pcpu_chunk 463 * @chunk: chunk of interest 464 * @size: wanted size in bytes 465 * @align: wanted align 466 * 467 * Try to allocate @size bytes area aligned at @align from @chunk. 468 * Note that this function only allocates the offset. It doesn't 469 * populate or map the area. 470 * 471 * @chunk->map must have at least two free slots. 472 * 473 * CONTEXT: 474 * pcpu_lock. 475 * 476 * RETURNS: 477 * Allocated offset in @chunk on success, -1 if no matching area is 478 * found. 479 */ 480 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 481 { 482 int oslot = pcpu_chunk_slot(chunk); 483 int max_contig = 0; 484 int i, off; 485 486 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 487 bool is_last = i + 1 == chunk->map_used; 488 int head, tail; 489 490 /* extra for alignment requirement */ 491 head = ALIGN(off, align) - off; 492 BUG_ON(i == 0 && head != 0); 493 494 if (chunk->map[i] < 0) 495 continue; 496 if (chunk->map[i] < head + size) { 497 max_contig = max(chunk->map[i], max_contig); 498 continue; 499 } 500 501 /* 502 * If head is small or the previous block is free, 503 * merge'em. Note that 'small' is defined as smaller 504 * than sizeof(int), which is very small but isn't too 505 * uncommon for percpu allocations. 506 */ 507 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 508 if (chunk->map[i - 1] > 0) 509 chunk->map[i - 1] += head; 510 else { 511 chunk->map[i - 1] -= head; 512 chunk->free_size -= head; 513 } 514 chunk->map[i] -= head; 515 off += head; 516 head = 0; 517 } 518 519 /* if tail is small, just keep it around */ 520 tail = chunk->map[i] - head - size; 521 if (tail < sizeof(int)) 522 tail = 0; 523 524 /* split if warranted */ 525 if (head || tail) { 526 pcpu_split_block(chunk, i, head, tail); 527 if (head) { 528 i++; 529 off += head; 530 max_contig = max(chunk->map[i - 1], max_contig); 531 } 532 if (tail) 533 max_contig = max(chunk->map[i + 1], max_contig); 534 } 535 536 /* update hint and mark allocated */ 537 if (is_last) 538 chunk->contig_hint = max_contig; /* fully scanned */ 539 else 540 chunk->contig_hint = max(chunk->contig_hint, 541 max_contig); 542 543 chunk->free_size -= chunk->map[i]; 544 chunk->map[i] = -chunk->map[i]; 545 546 pcpu_chunk_relocate(chunk, oslot); 547 return off; 548 } 549 550 chunk->contig_hint = max_contig; /* fully scanned */ 551 pcpu_chunk_relocate(chunk, oslot); 552 553 /* tell the upper layer that this chunk has no matching area */ 554 return -1; 555 } 556 557 /** 558 * pcpu_free_area - free area to a pcpu_chunk 559 * @chunk: chunk of interest 560 * @freeme: offset of area to free 561 * 562 * Free area starting from @freeme to @chunk. Note that this function 563 * only modifies the allocation map. It doesn't depopulate or unmap 564 * the area. 565 * 566 * CONTEXT: 567 * pcpu_lock. 568 */ 569 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 570 { 571 int oslot = pcpu_chunk_slot(chunk); 572 int i, off; 573 574 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 575 if (off == freeme) 576 break; 577 BUG_ON(off != freeme); 578 BUG_ON(chunk->map[i] > 0); 579 580 chunk->map[i] = -chunk->map[i]; 581 chunk->free_size += chunk->map[i]; 582 583 /* merge with previous? */ 584 if (i > 0 && chunk->map[i - 1] >= 0) { 585 chunk->map[i - 1] += chunk->map[i]; 586 chunk->map_used--; 587 memmove(&chunk->map[i], &chunk->map[i + 1], 588 (chunk->map_used - i) * sizeof(chunk->map[0])); 589 i--; 590 } 591 /* merge with next? */ 592 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 593 chunk->map[i] += chunk->map[i + 1]; 594 chunk->map_used--; 595 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 596 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 597 } 598 599 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 600 pcpu_chunk_relocate(chunk, oslot); 601 } 602 603 static struct pcpu_chunk *pcpu_alloc_chunk(void) 604 { 605 struct pcpu_chunk *chunk; 606 607 chunk = pcpu_mem_alloc(pcpu_chunk_struct_size); 608 if (!chunk) 609 return NULL; 610 611 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 612 if (!chunk->map) { 613 kfree(chunk); 614 return NULL; 615 } 616 617 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 618 chunk->map[chunk->map_used++] = pcpu_unit_size; 619 620 INIT_LIST_HEAD(&chunk->list); 621 chunk->free_size = pcpu_unit_size; 622 chunk->contig_hint = pcpu_unit_size; 623 624 return chunk; 625 } 626 627 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 628 { 629 if (!chunk) 630 return; 631 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 632 kfree(chunk); 633 } 634 635 /* 636 * Chunk management implementation. 637 * 638 * To allow different implementations, chunk alloc/free and 639 * [de]population are implemented in a separate file which is pulled 640 * into this file and compiled together. The following functions 641 * should be implemented. 642 * 643 * pcpu_populate_chunk - populate the specified range of a chunk 644 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 645 * pcpu_create_chunk - create a new chunk 646 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 647 * pcpu_addr_to_page - translate address to physical address 648 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 649 */ 650 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 651 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 652 static struct pcpu_chunk *pcpu_create_chunk(void); 653 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 654 static struct page *pcpu_addr_to_page(void *addr); 655 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 656 657 #ifdef CONFIG_NEED_PER_CPU_KM 658 #include "percpu-km.c" 659 #else 660 #include "percpu-vm.c" 661 #endif 662 663 /** 664 * pcpu_chunk_addr_search - determine chunk containing specified address 665 * @addr: address for which the chunk needs to be determined. 666 * 667 * RETURNS: 668 * The address of the found chunk. 669 */ 670 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 671 { 672 /* is it in the first chunk? */ 673 if (pcpu_addr_in_first_chunk(addr)) { 674 /* is it in the reserved area? */ 675 if (pcpu_addr_in_reserved_chunk(addr)) 676 return pcpu_reserved_chunk; 677 return pcpu_first_chunk; 678 } 679 680 /* 681 * The address is relative to unit0 which might be unused and 682 * thus unmapped. Offset the address to the unit space of the 683 * current processor before looking it up in the vmalloc 684 * space. Note that any possible cpu id can be used here, so 685 * there's no need to worry about preemption or cpu hotplug. 686 */ 687 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 688 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 689 } 690 691 /** 692 * pcpu_alloc - the percpu allocator 693 * @size: size of area to allocate in bytes 694 * @align: alignment of area (max PAGE_SIZE) 695 * @reserved: allocate from the reserved chunk if available 696 * 697 * Allocate percpu area of @size bytes aligned at @align. 698 * 699 * CONTEXT: 700 * Does GFP_KERNEL allocation. 701 * 702 * RETURNS: 703 * Percpu pointer to the allocated area on success, NULL on failure. 704 */ 705 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 706 { 707 static int warn_limit = 10; 708 struct pcpu_chunk *chunk; 709 const char *err; 710 int slot, off, new_alloc; 711 unsigned long flags; 712 713 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 714 WARN(true, "illegal size (%zu) or align (%zu) for " 715 "percpu allocation\n", size, align); 716 return NULL; 717 } 718 719 mutex_lock(&pcpu_alloc_mutex); 720 spin_lock_irqsave(&pcpu_lock, flags); 721 722 /* serve reserved allocations from the reserved chunk if available */ 723 if (reserved && pcpu_reserved_chunk) { 724 chunk = pcpu_reserved_chunk; 725 726 if (size > chunk->contig_hint) { 727 err = "alloc from reserved chunk failed"; 728 goto fail_unlock; 729 } 730 731 while ((new_alloc = pcpu_need_to_extend(chunk))) { 732 spin_unlock_irqrestore(&pcpu_lock, flags); 733 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 734 err = "failed to extend area map of reserved chunk"; 735 goto fail_unlock_mutex; 736 } 737 spin_lock_irqsave(&pcpu_lock, flags); 738 } 739 740 off = pcpu_alloc_area(chunk, size, align); 741 if (off >= 0) 742 goto area_found; 743 744 err = "alloc from reserved chunk failed"; 745 goto fail_unlock; 746 } 747 748 restart: 749 /* search through normal chunks */ 750 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 751 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 752 if (size > chunk->contig_hint) 753 continue; 754 755 new_alloc = pcpu_need_to_extend(chunk); 756 if (new_alloc) { 757 spin_unlock_irqrestore(&pcpu_lock, flags); 758 if (pcpu_extend_area_map(chunk, 759 new_alloc) < 0) { 760 err = "failed to extend area map"; 761 goto fail_unlock_mutex; 762 } 763 spin_lock_irqsave(&pcpu_lock, flags); 764 /* 765 * pcpu_lock has been dropped, need to 766 * restart cpu_slot list walking. 767 */ 768 goto restart; 769 } 770 771 off = pcpu_alloc_area(chunk, size, align); 772 if (off >= 0) 773 goto area_found; 774 } 775 } 776 777 /* hmmm... no space left, create a new chunk */ 778 spin_unlock_irqrestore(&pcpu_lock, flags); 779 780 chunk = pcpu_create_chunk(); 781 if (!chunk) { 782 err = "failed to allocate new chunk"; 783 goto fail_unlock_mutex; 784 } 785 786 spin_lock_irqsave(&pcpu_lock, flags); 787 pcpu_chunk_relocate(chunk, -1); 788 goto restart; 789 790 area_found: 791 spin_unlock_irqrestore(&pcpu_lock, flags); 792 793 /* populate, map and clear the area */ 794 if (pcpu_populate_chunk(chunk, off, size)) { 795 spin_lock_irqsave(&pcpu_lock, flags); 796 pcpu_free_area(chunk, off); 797 err = "failed to populate"; 798 goto fail_unlock; 799 } 800 801 mutex_unlock(&pcpu_alloc_mutex); 802 803 /* return address relative to base address */ 804 return __addr_to_pcpu_ptr(chunk->base_addr + off); 805 806 fail_unlock: 807 spin_unlock_irqrestore(&pcpu_lock, flags); 808 fail_unlock_mutex: 809 mutex_unlock(&pcpu_alloc_mutex); 810 if (warn_limit) { 811 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 812 "%s\n", size, align, err); 813 dump_stack(); 814 if (!--warn_limit) 815 pr_info("PERCPU: limit reached, disable warning\n"); 816 } 817 return NULL; 818 } 819 820 /** 821 * __alloc_percpu - allocate dynamic percpu area 822 * @size: size of area to allocate in bytes 823 * @align: alignment of area (max PAGE_SIZE) 824 * 825 * Allocate zero-filled percpu area of @size bytes aligned at @align. 826 * Might sleep. Might trigger writeouts. 827 * 828 * CONTEXT: 829 * Does GFP_KERNEL allocation. 830 * 831 * RETURNS: 832 * Percpu pointer to the allocated area on success, NULL on failure. 833 */ 834 void __percpu *__alloc_percpu(size_t size, size_t align) 835 { 836 return pcpu_alloc(size, align, false); 837 } 838 EXPORT_SYMBOL_GPL(__alloc_percpu); 839 840 /** 841 * __alloc_reserved_percpu - allocate reserved percpu area 842 * @size: size of area to allocate in bytes 843 * @align: alignment of area (max PAGE_SIZE) 844 * 845 * Allocate zero-filled percpu area of @size bytes aligned at @align 846 * from reserved percpu area if arch has set it up; otherwise, 847 * allocation is served from the same dynamic area. Might sleep. 848 * Might trigger writeouts. 849 * 850 * CONTEXT: 851 * Does GFP_KERNEL allocation. 852 * 853 * RETURNS: 854 * Percpu pointer to the allocated area on success, NULL on failure. 855 */ 856 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 857 { 858 return pcpu_alloc(size, align, true); 859 } 860 861 /** 862 * pcpu_reclaim - reclaim fully free chunks, workqueue function 863 * @work: unused 864 * 865 * Reclaim all fully free chunks except for the first one. 866 * 867 * CONTEXT: 868 * workqueue context. 869 */ 870 static void pcpu_reclaim(struct work_struct *work) 871 { 872 LIST_HEAD(todo); 873 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 874 struct pcpu_chunk *chunk, *next; 875 876 mutex_lock(&pcpu_alloc_mutex); 877 spin_lock_irq(&pcpu_lock); 878 879 list_for_each_entry_safe(chunk, next, head, list) { 880 WARN_ON(chunk->immutable); 881 882 /* spare the first one */ 883 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 884 continue; 885 886 list_move(&chunk->list, &todo); 887 } 888 889 spin_unlock_irq(&pcpu_lock); 890 891 list_for_each_entry_safe(chunk, next, &todo, list) { 892 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 893 pcpu_destroy_chunk(chunk); 894 } 895 896 mutex_unlock(&pcpu_alloc_mutex); 897 } 898 899 /** 900 * free_percpu - free percpu area 901 * @ptr: pointer to area to free 902 * 903 * Free percpu area @ptr. 904 * 905 * CONTEXT: 906 * Can be called from atomic context. 907 */ 908 void free_percpu(void __percpu *ptr) 909 { 910 void *addr; 911 struct pcpu_chunk *chunk; 912 unsigned long flags; 913 int off; 914 915 if (!ptr) 916 return; 917 918 addr = __pcpu_ptr_to_addr(ptr); 919 920 spin_lock_irqsave(&pcpu_lock, flags); 921 922 chunk = pcpu_chunk_addr_search(addr); 923 off = addr - chunk->base_addr; 924 925 pcpu_free_area(chunk, off); 926 927 /* if there are more than one fully free chunks, wake up grim reaper */ 928 if (chunk->free_size == pcpu_unit_size) { 929 struct pcpu_chunk *pos; 930 931 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 932 if (pos != chunk) { 933 schedule_work(&pcpu_reclaim_work); 934 break; 935 } 936 } 937 938 spin_unlock_irqrestore(&pcpu_lock, flags); 939 } 940 EXPORT_SYMBOL_GPL(free_percpu); 941 942 /** 943 * is_kernel_percpu_address - test whether address is from static percpu area 944 * @addr: address to test 945 * 946 * Test whether @addr belongs to in-kernel static percpu area. Module 947 * static percpu areas are not considered. For those, use 948 * is_module_percpu_address(). 949 * 950 * RETURNS: 951 * %true if @addr is from in-kernel static percpu area, %false otherwise. 952 */ 953 bool is_kernel_percpu_address(unsigned long addr) 954 { 955 #ifdef CONFIG_SMP 956 const size_t static_size = __per_cpu_end - __per_cpu_start; 957 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 958 unsigned int cpu; 959 960 for_each_possible_cpu(cpu) { 961 void *start = per_cpu_ptr(base, cpu); 962 963 if ((void *)addr >= start && (void *)addr < start + static_size) 964 return true; 965 } 966 #endif 967 /* on UP, can't distinguish from other static vars, always false */ 968 return false; 969 } 970 971 /** 972 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 973 * @addr: the address to be converted to physical address 974 * 975 * Given @addr which is dereferenceable address obtained via one of 976 * percpu access macros, this function translates it into its physical 977 * address. The caller is responsible for ensuring @addr stays valid 978 * until this function finishes. 979 * 980 * RETURNS: 981 * The physical address for @addr. 982 */ 983 phys_addr_t per_cpu_ptr_to_phys(void *addr) 984 { 985 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 986 bool in_first_chunk = false; 987 unsigned long first_start, first_end; 988 unsigned int cpu; 989 990 /* 991 * The following test on first_start/end isn't strictly 992 * necessary but will speed up lookups of addresses which 993 * aren't in the first chunk. 994 */ 995 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0); 996 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu, 997 pcpu_unit_pages); 998 if ((unsigned long)addr >= first_start && 999 (unsigned long)addr < first_end) { 1000 for_each_possible_cpu(cpu) { 1001 void *start = per_cpu_ptr(base, cpu); 1002 1003 if (addr >= start && addr < start + pcpu_unit_size) { 1004 in_first_chunk = true; 1005 break; 1006 } 1007 } 1008 } 1009 1010 if (in_first_chunk) { 1011 if (!is_vmalloc_addr(addr)) 1012 return __pa(addr); 1013 else 1014 return page_to_phys(vmalloc_to_page(addr)); 1015 } else 1016 return page_to_phys(pcpu_addr_to_page(addr)); 1017 } 1018 1019 /** 1020 * pcpu_alloc_alloc_info - allocate percpu allocation info 1021 * @nr_groups: the number of groups 1022 * @nr_units: the number of units 1023 * 1024 * Allocate ai which is large enough for @nr_groups groups containing 1025 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1026 * cpu_map array which is long enough for @nr_units and filled with 1027 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1028 * pointer of other groups. 1029 * 1030 * RETURNS: 1031 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1032 * failure. 1033 */ 1034 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1035 int nr_units) 1036 { 1037 struct pcpu_alloc_info *ai; 1038 size_t base_size, ai_size; 1039 void *ptr; 1040 int unit; 1041 1042 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1043 __alignof__(ai->groups[0].cpu_map[0])); 1044 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1045 1046 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1047 if (!ptr) 1048 return NULL; 1049 ai = ptr; 1050 ptr += base_size; 1051 1052 ai->groups[0].cpu_map = ptr; 1053 1054 for (unit = 0; unit < nr_units; unit++) 1055 ai->groups[0].cpu_map[unit] = NR_CPUS; 1056 1057 ai->nr_groups = nr_groups; 1058 ai->__ai_size = PFN_ALIGN(ai_size); 1059 1060 return ai; 1061 } 1062 1063 /** 1064 * pcpu_free_alloc_info - free percpu allocation info 1065 * @ai: pcpu_alloc_info to free 1066 * 1067 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1068 */ 1069 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1070 { 1071 free_bootmem(__pa(ai), ai->__ai_size); 1072 } 1073 1074 /** 1075 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1076 * @lvl: loglevel 1077 * @ai: allocation info to dump 1078 * 1079 * Print out information about @ai using loglevel @lvl. 1080 */ 1081 static void pcpu_dump_alloc_info(const char *lvl, 1082 const struct pcpu_alloc_info *ai) 1083 { 1084 int group_width = 1, cpu_width = 1, width; 1085 char empty_str[] = "--------"; 1086 int alloc = 0, alloc_end = 0; 1087 int group, v; 1088 int upa, apl; /* units per alloc, allocs per line */ 1089 1090 v = ai->nr_groups; 1091 while (v /= 10) 1092 group_width++; 1093 1094 v = num_possible_cpus(); 1095 while (v /= 10) 1096 cpu_width++; 1097 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1098 1099 upa = ai->alloc_size / ai->unit_size; 1100 width = upa * (cpu_width + 1) + group_width + 3; 1101 apl = rounddown_pow_of_two(max(60 / width, 1)); 1102 1103 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1104 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1105 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1106 1107 for (group = 0; group < ai->nr_groups; group++) { 1108 const struct pcpu_group_info *gi = &ai->groups[group]; 1109 int unit = 0, unit_end = 0; 1110 1111 BUG_ON(gi->nr_units % upa); 1112 for (alloc_end += gi->nr_units / upa; 1113 alloc < alloc_end; alloc++) { 1114 if (!(alloc % apl)) { 1115 printk("\n"); 1116 printk("%spcpu-alloc: ", lvl); 1117 } 1118 printk("[%0*d] ", group_width, group); 1119 1120 for (unit_end += upa; unit < unit_end; unit++) 1121 if (gi->cpu_map[unit] != NR_CPUS) 1122 printk("%0*d ", cpu_width, 1123 gi->cpu_map[unit]); 1124 else 1125 printk("%s ", empty_str); 1126 } 1127 } 1128 printk("\n"); 1129 } 1130 1131 /** 1132 * pcpu_setup_first_chunk - initialize the first percpu chunk 1133 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1134 * @base_addr: mapped address 1135 * 1136 * Initialize the first percpu chunk which contains the kernel static 1137 * perpcu area. This function is to be called from arch percpu area 1138 * setup path. 1139 * 1140 * @ai contains all information necessary to initialize the first 1141 * chunk and prime the dynamic percpu allocator. 1142 * 1143 * @ai->static_size is the size of static percpu area. 1144 * 1145 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1146 * reserve after the static area in the first chunk. This reserves 1147 * the first chunk such that it's available only through reserved 1148 * percpu allocation. This is primarily used to serve module percpu 1149 * static areas on architectures where the addressing model has 1150 * limited offset range for symbol relocations to guarantee module 1151 * percpu symbols fall inside the relocatable range. 1152 * 1153 * @ai->dyn_size determines the number of bytes available for dynamic 1154 * allocation in the first chunk. The area between @ai->static_size + 1155 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1156 * 1157 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1158 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1159 * @ai->dyn_size. 1160 * 1161 * @ai->atom_size is the allocation atom size and used as alignment 1162 * for vm areas. 1163 * 1164 * @ai->alloc_size is the allocation size and always multiple of 1165 * @ai->atom_size. This is larger than @ai->atom_size if 1166 * @ai->unit_size is larger than @ai->atom_size. 1167 * 1168 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1169 * percpu areas. Units which should be colocated are put into the 1170 * same group. Dynamic VM areas will be allocated according to these 1171 * groupings. If @ai->nr_groups is zero, a single group containing 1172 * all units is assumed. 1173 * 1174 * The caller should have mapped the first chunk at @base_addr and 1175 * copied static data to each unit. 1176 * 1177 * If the first chunk ends up with both reserved and dynamic areas, it 1178 * is served by two chunks - one to serve the core static and reserved 1179 * areas and the other for the dynamic area. They share the same vm 1180 * and page map but uses different area allocation map to stay away 1181 * from each other. The latter chunk is circulated in the chunk slots 1182 * and available for dynamic allocation like any other chunks. 1183 * 1184 * RETURNS: 1185 * 0 on success, -errno on failure. 1186 */ 1187 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1188 void *base_addr) 1189 { 1190 static char cpus_buf[4096] __initdata; 1191 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1192 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1193 size_t dyn_size = ai->dyn_size; 1194 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1195 struct pcpu_chunk *schunk, *dchunk = NULL; 1196 unsigned long *group_offsets; 1197 size_t *group_sizes; 1198 unsigned long *unit_off; 1199 unsigned int cpu; 1200 int *unit_map; 1201 int group, unit, i; 1202 1203 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1204 1205 #define PCPU_SETUP_BUG_ON(cond) do { \ 1206 if (unlikely(cond)) { \ 1207 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1208 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1209 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1210 BUG(); \ 1211 } \ 1212 } while (0) 1213 1214 /* sanity checks */ 1215 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1216 #ifdef CONFIG_SMP 1217 PCPU_SETUP_BUG_ON(!ai->static_size); 1218 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); 1219 #endif 1220 PCPU_SETUP_BUG_ON(!base_addr); 1221 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); 1222 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1223 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1224 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1225 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1226 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1227 1228 /* process group information and build config tables accordingly */ 1229 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1230 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1231 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1232 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1233 1234 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1235 unit_map[cpu] = UINT_MAX; 1236 pcpu_first_unit_cpu = NR_CPUS; 1237 1238 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1239 const struct pcpu_group_info *gi = &ai->groups[group]; 1240 1241 group_offsets[group] = gi->base_offset; 1242 group_sizes[group] = gi->nr_units * ai->unit_size; 1243 1244 for (i = 0; i < gi->nr_units; i++) { 1245 cpu = gi->cpu_map[i]; 1246 if (cpu == NR_CPUS) 1247 continue; 1248 1249 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1250 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1251 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1252 1253 unit_map[cpu] = unit + i; 1254 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1255 1256 if (pcpu_first_unit_cpu == NR_CPUS) 1257 pcpu_first_unit_cpu = cpu; 1258 pcpu_last_unit_cpu = cpu; 1259 } 1260 } 1261 pcpu_nr_units = unit; 1262 1263 for_each_possible_cpu(cpu) 1264 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1265 1266 /* we're done parsing the input, undefine BUG macro and dump config */ 1267 #undef PCPU_SETUP_BUG_ON 1268 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1269 1270 pcpu_nr_groups = ai->nr_groups; 1271 pcpu_group_offsets = group_offsets; 1272 pcpu_group_sizes = group_sizes; 1273 pcpu_unit_map = unit_map; 1274 pcpu_unit_offsets = unit_off; 1275 1276 /* determine basic parameters */ 1277 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1278 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1279 pcpu_atom_size = ai->atom_size; 1280 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1281 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1282 1283 /* 1284 * Allocate chunk slots. The additional last slot is for 1285 * empty chunks. 1286 */ 1287 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1288 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1289 for (i = 0; i < pcpu_nr_slots; i++) 1290 INIT_LIST_HEAD(&pcpu_slot[i]); 1291 1292 /* 1293 * Initialize static chunk. If reserved_size is zero, the 1294 * static chunk covers static area + dynamic allocation area 1295 * in the first chunk. If reserved_size is not zero, it 1296 * covers static area + reserved area (mostly used for module 1297 * static percpu allocation). 1298 */ 1299 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1300 INIT_LIST_HEAD(&schunk->list); 1301 schunk->base_addr = base_addr; 1302 schunk->map = smap; 1303 schunk->map_alloc = ARRAY_SIZE(smap); 1304 schunk->immutable = true; 1305 bitmap_fill(schunk->populated, pcpu_unit_pages); 1306 1307 if (ai->reserved_size) { 1308 schunk->free_size = ai->reserved_size; 1309 pcpu_reserved_chunk = schunk; 1310 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1311 } else { 1312 schunk->free_size = dyn_size; 1313 dyn_size = 0; /* dynamic area covered */ 1314 } 1315 schunk->contig_hint = schunk->free_size; 1316 1317 schunk->map[schunk->map_used++] = -ai->static_size; 1318 if (schunk->free_size) 1319 schunk->map[schunk->map_used++] = schunk->free_size; 1320 1321 /* init dynamic chunk if necessary */ 1322 if (dyn_size) { 1323 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1324 INIT_LIST_HEAD(&dchunk->list); 1325 dchunk->base_addr = base_addr; 1326 dchunk->map = dmap; 1327 dchunk->map_alloc = ARRAY_SIZE(dmap); 1328 dchunk->immutable = true; 1329 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1330 1331 dchunk->contig_hint = dchunk->free_size = dyn_size; 1332 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1333 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1334 } 1335 1336 /* link the first chunk in */ 1337 pcpu_first_chunk = dchunk ?: schunk; 1338 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1339 1340 /* we're done */ 1341 pcpu_base_addr = base_addr; 1342 return 0; 1343 } 1344 1345 #ifdef CONFIG_SMP 1346 1347 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1348 [PCPU_FC_AUTO] = "auto", 1349 [PCPU_FC_EMBED] = "embed", 1350 [PCPU_FC_PAGE] = "page", 1351 }; 1352 1353 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1354 1355 static int __init percpu_alloc_setup(char *str) 1356 { 1357 if (0) 1358 /* nada */; 1359 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1360 else if (!strcmp(str, "embed")) 1361 pcpu_chosen_fc = PCPU_FC_EMBED; 1362 #endif 1363 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1364 else if (!strcmp(str, "page")) 1365 pcpu_chosen_fc = PCPU_FC_PAGE; 1366 #endif 1367 else 1368 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1369 1370 return 0; 1371 } 1372 early_param("percpu_alloc", percpu_alloc_setup); 1373 1374 /* 1375 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1376 * Build it if needed by the arch config or the generic setup is going 1377 * to be used. 1378 */ 1379 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1380 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1381 #define BUILD_EMBED_FIRST_CHUNK 1382 #endif 1383 1384 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1385 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1386 #define BUILD_PAGE_FIRST_CHUNK 1387 #endif 1388 1389 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1390 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1391 /** 1392 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1393 * @reserved_size: the size of reserved percpu area in bytes 1394 * @dyn_size: minimum free size for dynamic allocation in bytes 1395 * @atom_size: allocation atom size 1396 * @cpu_distance_fn: callback to determine distance between cpus, optional 1397 * 1398 * This function determines grouping of units, their mappings to cpus 1399 * and other parameters considering needed percpu size, allocation 1400 * atom size and distances between CPUs. 1401 * 1402 * Groups are always mutliples of atom size and CPUs which are of 1403 * LOCAL_DISTANCE both ways are grouped together and share space for 1404 * units in the same group. The returned configuration is guaranteed 1405 * to have CPUs on different nodes on different groups and >=75% usage 1406 * of allocated virtual address space. 1407 * 1408 * RETURNS: 1409 * On success, pointer to the new allocation_info is returned. On 1410 * failure, ERR_PTR value is returned. 1411 */ 1412 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1413 size_t reserved_size, size_t dyn_size, 1414 size_t atom_size, 1415 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1416 { 1417 static int group_map[NR_CPUS] __initdata; 1418 static int group_cnt[NR_CPUS] __initdata; 1419 const size_t static_size = __per_cpu_end - __per_cpu_start; 1420 int nr_groups = 1, nr_units = 0; 1421 size_t size_sum, min_unit_size, alloc_size; 1422 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1423 int last_allocs, group, unit; 1424 unsigned int cpu, tcpu; 1425 struct pcpu_alloc_info *ai; 1426 unsigned int *cpu_map; 1427 1428 /* this function may be called multiple times */ 1429 memset(group_map, 0, sizeof(group_map)); 1430 memset(group_cnt, 0, sizeof(group_cnt)); 1431 1432 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1433 size_sum = PFN_ALIGN(static_size + reserved_size + 1434 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1435 dyn_size = size_sum - static_size - reserved_size; 1436 1437 /* 1438 * Determine min_unit_size, alloc_size and max_upa such that 1439 * alloc_size is multiple of atom_size and is the smallest 1440 * which can accommodate 4k aligned segments which are equal to 1441 * or larger than min_unit_size. 1442 */ 1443 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1444 1445 alloc_size = roundup(min_unit_size, atom_size); 1446 upa = alloc_size / min_unit_size; 1447 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1448 upa--; 1449 max_upa = upa; 1450 1451 /* group cpus according to their proximity */ 1452 for_each_possible_cpu(cpu) { 1453 group = 0; 1454 next_group: 1455 for_each_possible_cpu(tcpu) { 1456 if (cpu == tcpu) 1457 break; 1458 if (group_map[tcpu] == group && cpu_distance_fn && 1459 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1460 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1461 group++; 1462 nr_groups = max(nr_groups, group + 1); 1463 goto next_group; 1464 } 1465 } 1466 group_map[cpu] = group; 1467 group_cnt[group]++; 1468 } 1469 1470 /* 1471 * Expand unit size until address space usage goes over 75% 1472 * and then as much as possible without using more address 1473 * space. 1474 */ 1475 last_allocs = INT_MAX; 1476 for (upa = max_upa; upa; upa--) { 1477 int allocs = 0, wasted = 0; 1478 1479 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1480 continue; 1481 1482 for (group = 0; group < nr_groups; group++) { 1483 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1484 allocs += this_allocs; 1485 wasted += this_allocs * upa - group_cnt[group]; 1486 } 1487 1488 /* 1489 * Don't accept if wastage is over 1/3. The 1490 * greater-than comparison ensures upa==1 always 1491 * passes the following check. 1492 */ 1493 if (wasted > num_possible_cpus() / 3) 1494 continue; 1495 1496 /* and then don't consume more memory */ 1497 if (allocs > last_allocs) 1498 break; 1499 last_allocs = allocs; 1500 best_upa = upa; 1501 } 1502 upa = best_upa; 1503 1504 /* allocate and fill alloc_info */ 1505 for (group = 0; group < nr_groups; group++) 1506 nr_units += roundup(group_cnt[group], upa); 1507 1508 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1509 if (!ai) 1510 return ERR_PTR(-ENOMEM); 1511 cpu_map = ai->groups[0].cpu_map; 1512 1513 for (group = 0; group < nr_groups; group++) { 1514 ai->groups[group].cpu_map = cpu_map; 1515 cpu_map += roundup(group_cnt[group], upa); 1516 } 1517 1518 ai->static_size = static_size; 1519 ai->reserved_size = reserved_size; 1520 ai->dyn_size = dyn_size; 1521 ai->unit_size = alloc_size / upa; 1522 ai->atom_size = atom_size; 1523 ai->alloc_size = alloc_size; 1524 1525 for (group = 0, unit = 0; group_cnt[group]; group++) { 1526 struct pcpu_group_info *gi = &ai->groups[group]; 1527 1528 /* 1529 * Initialize base_offset as if all groups are located 1530 * back-to-back. The caller should update this to 1531 * reflect actual allocation. 1532 */ 1533 gi->base_offset = unit * ai->unit_size; 1534 1535 for_each_possible_cpu(cpu) 1536 if (group_map[cpu] == group) 1537 gi->cpu_map[gi->nr_units++] = cpu; 1538 gi->nr_units = roundup(gi->nr_units, upa); 1539 unit += gi->nr_units; 1540 } 1541 BUG_ON(unit != nr_units); 1542 1543 return ai; 1544 } 1545 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1546 1547 #if defined(BUILD_EMBED_FIRST_CHUNK) 1548 /** 1549 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1550 * @reserved_size: the size of reserved percpu area in bytes 1551 * @dyn_size: minimum free size for dynamic allocation in bytes 1552 * @atom_size: allocation atom size 1553 * @cpu_distance_fn: callback to determine distance between cpus, optional 1554 * @alloc_fn: function to allocate percpu page 1555 * @free_fn: function to free percpu page 1556 * 1557 * This is a helper to ease setting up embedded first percpu chunk and 1558 * can be called where pcpu_setup_first_chunk() is expected. 1559 * 1560 * If this function is used to setup the first chunk, it is allocated 1561 * by calling @alloc_fn and used as-is without being mapped into 1562 * vmalloc area. Allocations are always whole multiples of @atom_size 1563 * aligned to @atom_size. 1564 * 1565 * This enables the first chunk to piggy back on the linear physical 1566 * mapping which often uses larger page size. Please note that this 1567 * can result in very sparse cpu->unit mapping on NUMA machines thus 1568 * requiring large vmalloc address space. Don't use this allocator if 1569 * vmalloc space is not orders of magnitude larger than distances 1570 * between node memory addresses (ie. 32bit NUMA machines). 1571 * 1572 * @dyn_size specifies the minimum dynamic area size. 1573 * 1574 * If the needed size is smaller than the minimum or specified unit 1575 * size, the leftover is returned using @free_fn. 1576 * 1577 * RETURNS: 1578 * 0 on success, -errno on failure. 1579 */ 1580 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1581 size_t atom_size, 1582 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1583 pcpu_fc_alloc_fn_t alloc_fn, 1584 pcpu_fc_free_fn_t free_fn) 1585 { 1586 void *base = (void *)ULONG_MAX; 1587 void **areas = NULL; 1588 struct pcpu_alloc_info *ai; 1589 size_t size_sum, areas_size, max_distance; 1590 int group, i, rc; 1591 1592 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1593 cpu_distance_fn); 1594 if (IS_ERR(ai)) 1595 return PTR_ERR(ai); 1596 1597 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1598 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1599 1600 areas = alloc_bootmem_nopanic(areas_size); 1601 if (!areas) { 1602 rc = -ENOMEM; 1603 goto out_free; 1604 } 1605 1606 /* allocate, copy and determine base address */ 1607 for (group = 0; group < ai->nr_groups; group++) { 1608 struct pcpu_group_info *gi = &ai->groups[group]; 1609 unsigned int cpu = NR_CPUS; 1610 void *ptr; 1611 1612 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1613 cpu = gi->cpu_map[i]; 1614 BUG_ON(cpu == NR_CPUS); 1615 1616 /* allocate space for the whole group */ 1617 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1618 if (!ptr) { 1619 rc = -ENOMEM; 1620 goto out_free_areas; 1621 } 1622 areas[group] = ptr; 1623 1624 base = min(ptr, base); 1625 1626 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1627 if (gi->cpu_map[i] == NR_CPUS) { 1628 /* unused unit, free whole */ 1629 free_fn(ptr, ai->unit_size); 1630 continue; 1631 } 1632 /* copy and return the unused part */ 1633 memcpy(ptr, __per_cpu_load, ai->static_size); 1634 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1635 } 1636 } 1637 1638 /* base address is now known, determine group base offsets */ 1639 max_distance = 0; 1640 for (group = 0; group < ai->nr_groups; group++) { 1641 ai->groups[group].base_offset = areas[group] - base; 1642 max_distance = max_t(size_t, max_distance, 1643 ai->groups[group].base_offset); 1644 } 1645 max_distance += ai->unit_size; 1646 1647 /* warn if maximum distance is further than 75% of vmalloc space */ 1648 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1649 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1650 "space 0x%lx\n", max_distance, 1651 (unsigned long)(VMALLOC_END - VMALLOC_START)); 1652 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1653 /* and fail if we have fallback */ 1654 rc = -EINVAL; 1655 goto out_free; 1656 #endif 1657 } 1658 1659 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1660 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1661 ai->dyn_size, ai->unit_size); 1662 1663 rc = pcpu_setup_first_chunk(ai, base); 1664 goto out_free; 1665 1666 out_free_areas: 1667 for (group = 0; group < ai->nr_groups; group++) 1668 free_fn(areas[group], 1669 ai->groups[group].nr_units * ai->unit_size); 1670 out_free: 1671 pcpu_free_alloc_info(ai); 1672 if (areas) 1673 free_bootmem(__pa(areas), areas_size); 1674 return rc; 1675 } 1676 #endif /* BUILD_EMBED_FIRST_CHUNK */ 1677 1678 #ifdef BUILD_PAGE_FIRST_CHUNK 1679 /** 1680 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1681 * @reserved_size: the size of reserved percpu area in bytes 1682 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1683 * @free_fn: function to free percpu page, always called with PAGE_SIZE 1684 * @populate_pte_fn: function to populate pte 1685 * 1686 * This is a helper to ease setting up page-remapped first percpu 1687 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1688 * 1689 * This is the basic allocator. Static percpu area is allocated 1690 * page-by-page into vmalloc area. 1691 * 1692 * RETURNS: 1693 * 0 on success, -errno on failure. 1694 */ 1695 int __init pcpu_page_first_chunk(size_t reserved_size, 1696 pcpu_fc_alloc_fn_t alloc_fn, 1697 pcpu_fc_free_fn_t free_fn, 1698 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1699 { 1700 static struct vm_struct vm; 1701 struct pcpu_alloc_info *ai; 1702 char psize_str[16]; 1703 int unit_pages; 1704 size_t pages_size; 1705 struct page **pages; 1706 int unit, i, j, rc; 1707 1708 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1709 1710 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1711 if (IS_ERR(ai)) 1712 return PTR_ERR(ai); 1713 BUG_ON(ai->nr_groups != 1); 1714 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1715 1716 unit_pages = ai->unit_size >> PAGE_SHIFT; 1717 1718 /* unaligned allocations can't be freed, round up to page size */ 1719 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1720 sizeof(pages[0])); 1721 pages = alloc_bootmem(pages_size); 1722 1723 /* allocate pages */ 1724 j = 0; 1725 for (unit = 0; unit < num_possible_cpus(); unit++) 1726 for (i = 0; i < unit_pages; i++) { 1727 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1728 void *ptr; 1729 1730 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1731 if (!ptr) { 1732 pr_warning("PERCPU: failed to allocate %s page " 1733 "for cpu%u\n", psize_str, cpu); 1734 goto enomem; 1735 } 1736 pages[j++] = virt_to_page(ptr); 1737 } 1738 1739 /* allocate vm area, map the pages and copy static data */ 1740 vm.flags = VM_ALLOC; 1741 vm.size = num_possible_cpus() * ai->unit_size; 1742 vm_area_register_early(&vm, PAGE_SIZE); 1743 1744 for (unit = 0; unit < num_possible_cpus(); unit++) { 1745 unsigned long unit_addr = 1746 (unsigned long)vm.addr + unit * ai->unit_size; 1747 1748 for (i = 0; i < unit_pages; i++) 1749 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1750 1751 /* pte already populated, the following shouldn't fail */ 1752 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1753 unit_pages); 1754 if (rc < 0) 1755 panic("failed to map percpu area, err=%d\n", rc); 1756 1757 /* 1758 * FIXME: Archs with virtual cache should flush local 1759 * cache for the linear mapping here - something 1760 * equivalent to flush_cache_vmap() on the local cpu. 1761 * flush_cache_vmap() can't be used as most supporting 1762 * data structures are not set up yet. 1763 */ 1764 1765 /* copy static data */ 1766 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1767 } 1768 1769 /* we're ready, commit */ 1770 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1771 unit_pages, psize_str, vm.addr, ai->static_size, 1772 ai->reserved_size, ai->dyn_size); 1773 1774 rc = pcpu_setup_first_chunk(ai, vm.addr); 1775 goto out_free_ar; 1776 1777 enomem: 1778 while (--j >= 0) 1779 free_fn(page_address(pages[j]), PAGE_SIZE); 1780 rc = -ENOMEM; 1781 out_free_ar: 1782 free_bootmem(__pa(pages), pages_size); 1783 pcpu_free_alloc_info(ai); 1784 return rc; 1785 } 1786 #endif /* BUILD_PAGE_FIRST_CHUNK */ 1787 1788 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1789 /* 1790 * Generic SMP percpu area setup. 1791 * 1792 * The embedding helper is used because its behavior closely resembles 1793 * the original non-dynamic generic percpu area setup. This is 1794 * important because many archs have addressing restrictions and might 1795 * fail if the percpu area is located far away from the previous 1796 * location. As an added bonus, in non-NUMA cases, embedding is 1797 * generally a good idea TLB-wise because percpu area can piggy back 1798 * on the physical linear memory mapping which uses large page 1799 * mappings on applicable archs. 1800 */ 1801 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1802 EXPORT_SYMBOL(__per_cpu_offset); 1803 1804 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1805 size_t align) 1806 { 1807 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1808 } 1809 1810 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1811 { 1812 free_bootmem(__pa(ptr), size); 1813 } 1814 1815 void __init setup_per_cpu_areas(void) 1816 { 1817 unsigned long delta; 1818 unsigned int cpu; 1819 int rc; 1820 1821 /* 1822 * Always reserve area for module percpu variables. That's 1823 * what the legacy allocator did. 1824 */ 1825 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1826 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1827 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1828 if (rc < 0) 1829 panic("Failed to initialize percpu areas."); 1830 1831 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1832 for_each_possible_cpu(cpu) 1833 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1834 } 1835 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1836 1837 #else /* CONFIG_SMP */ 1838 1839 /* 1840 * UP percpu area setup. 1841 * 1842 * UP always uses km-based percpu allocator with identity mapping. 1843 * Static percpu variables are indistinguishable from the usual static 1844 * variables and don't require any special preparation. 1845 */ 1846 void __init setup_per_cpu_areas(void) 1847 { 1848 const size_t unit_size = 1849 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 1850 PERCPU_DYNAMIC_RESERVE)); 1851 struct pcpu_alloc_info *ai; 1852 void *fc; 1853 1854 ai = pcpu_alloc_alloc_info(1, 1); 1855 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 1856 if (!ai || !fc) 1857 panic("Failed to allocate memory for percpu areas."); 1858 1859 ai->dyn_size = unit_size; 1860 ai->unit_size = unit_size; 1861 ai->atom_size = unit_size; 1862 ai->alloc_size = unit_size; 1863 ai->groups[0].nr_units = 1; 1864 ai->groups[0].cpu_map[0] = 0; 1865 1866 if (pcpu_setup_first_chunk(ai, fc) < 0) 1867 panic("Failed to initialize percpu areas."); 1868 } 1869 1870 #endif /* CONFIG_SMP */ 1871 1872 /* 1873 * First and reserved chunks are initialized with temporary allocation 1874 * map in initdata so that they can be used before slab is online. 1875 * This function is called after slab is brought up and replaces those 1876 * with properly allocated maps. 1877 */ 1878 void __init percpu_init_late(void) 1879 { 1880 struct pcpu_chunk *target_chunks[] = 1881 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1882 struct pcpu_chunk *chunk; 1883 unsigned long flags; 1884 int i; 1885 1886 for (i = 0; (chunk = target_chunks[i]); i++) { 1887 int *map; 1888 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1889 1890 BUILD_BUG_ON(size > PAGE_SIZE); 1891 1892 map = pcpu_mem_alloc(size); 1893 BUG_ON(!map); 1894 1895 spin_lock_irqsave(&pcpu_lock, flags); 1896 memcpy(map, chunk->map, size); 1897 chunk->map = map; 1898 spin_unlock_irqrestore(&pcpu_lock, flags); 1899 } 1900 } 1901