1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 #include <linux/kmemleak.h> 71 72 #include <asm/cacheflush.h> 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/io.h> 76 77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 79 80 #ifdef CONFIG_SMP 81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 82 #ifndef __addr_to_pcpu_ptr 83 #define __addr_to_pcpu_ptr(addr) \ 84 (void __percpu *)((unsigned long)(addr) - \ 85 (unsigned long)pcpu_base_addr + \ 86 (unsigned long)__per_cpu_start) 87 #endif 88 #ifndef __pcpu_ptr_to_addr 89 #define __pcpu_ptr_to_addr(ptr) \ 90 (void __force *)((unsigned long)(ptr) + \ 91 (unsigned long)pcpu_base_addr - \ 92 (unsigned long)__per_cpu_start) 93 #endif 94 #else /* CONFIG_SMP */ 95 /* on UP, it's always identity mapped */ 96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 98 #endif /* CONFIG_SMP */ 99 100 struct pcpu_chunk { 101 struct list_head list; /* linked to pcpu_slot lists */ 102 int free_size; /* free bytes in the chunk */ 103 int contig_hint; /* max contiguous size hint */ 104 void *base_addr; /* base address of this chunk */ 105 int map_used; /* # of map entries used before the sentry */ 106 int map_alloc; /* # of map entries allocated */ 107 int *map; /* allocation map */ 108 void *data; /* chunk data */ 109 int first_free; /* no free below this */ 110 bool immutable; /* no [de]population allowed */ 111 unsigned long populated[]; /* populated bitmap */ 112 }; 113 114 static int pcpu_unit_pages __read_mostly; 115 static int pcpu_unit_size __read_mostly; 116 static int pcpu_nr_units __read_mostly; 117 static int pcpu_atom_size __read_mostly; 118 static int pcpu_nr_slots __read_mostly; 119 static size_t pcpu_chunk_struct_size __read_mostly; 120 121 /* cpus with the lowest and highest unit addresses */ 122 static unsigned int pcpu_low_unit_cpu __read_mostly; 123 static unsigned int pcpu_high_unit_cpu __read_mostly; 124 125 /* the address of the first chunk which starts with the kernel static area */ 126 void *pcpu_base_addr __read_mostly; 127 EXPORT_SYMBOL_GPL(pcpu_base_addr); 128 129 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 130 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 131 132 /* group information, used for vm allocation */ 133 static int pcpu_nr_groups __read_mostly; 134 static const unsigned long *pcpu_group_offsets __read_mostly; 135 static const size_t *pcpu_group_sizes __read_mostly; 136 137 /* 138 * The first chunk which always exists. Note that unlike other 139 * chunks, this one can be allocated and mapped in several different 140 * ways and thus often doesn't live in the vmalloc area. 141 */ 142 static struct pcpu_chunk *pcpu_first_chunk; 143 144 /* 145 * Optional reserved chunk. This chunk reserves part of the first 146 * chunk and serves it for reserved allocations. The amount of 147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 148 * area doesn't exist, the following variables contain NULL and 0 149 * respectively. 150 */ 151 static struct pcpu_chunk *pcpu_reserved_chunk; 152 static int pcpu_reserved_chunk_limit; 153 154 /* 155 * Synchronization rules. 156 * 157 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 158 * protects allocation/reclaim paths, chunks, populated bitmap and 159 * vmalloc mapping. The latter is a spinlock and protects the index 160 * data structures - chunk slots, chunks and area maps in chunks. 161 * 162 * During allocation, pcpu_alloc_mutex is kept locked all the time and 163 * pcpu_lock is grabbed and released as necessary. All actual memory 164 * allocations are done using GFP_KERNEL with pcpu_lock released. In 165 * general, percpu memory can't be allocated with irq off but 166 * irqsave/restore are still used in alloc path so that it can be used 167 * from early init path - sched_init() specifically. 168 * 169 * Free path accesses and alters only the index data structures, so it 170 * can be safely called from atomic context. When memory needs to be 171 * returned to the system, free path schedules reclaim_work which 172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 173 * reclaimed, release both locks and frees the chunks. Note that it's 174 * necessary to grab both locks to remove a chunk from circulation as 175 * allocation path might be referencing the chunk with only 176 * pcpu_alloc_mutex locked. 177 */ 178 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 179 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 180 181 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 182 183 /* reclaim work to release fully free chunks, scheduled from free path */ 184 static void pcpu_reclaim(struct work_struct *work); 185 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 186 187 static bool pcpu_addr_in_first_chunk(void *addr) 188 { 189 void *first_start = pcpu_first_chunk->base_addr; 190 191 return addr >= first_start && addr < first_start + pcpu_unit_size; 192 } 193 194 static bool pcpu_addr_in_reserved_chunk(void *addr) 195 { 196 void *first_start = pcpu_first_chunk->base_addr; 197 198 return addr >= first_start && 199 addr < first_start + pcpu_reserved_chunk_limit; 200 } 201 202 static int __pcpu_size_to_slot(int size) 203 { 204 int highbit = fls(size); /* size is in bytes */ 205 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 206 } 207 208 static int pcpu_size_to_slot(int size) 209 { 210 if (size == pcpu_unit_size) 211 return pcpu_nr_slots - 1; 212 return __pcpu_size_to_slot(size); 213 } 214 215 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 216 { 217 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 218 return 0; 219 220 return pcpu_size_to_slot(chunk->free_size); 221 } 222 223 /* set the pointer to a chunk in a page struct */ 224 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 225 { 226 page->index = (unsigned long)pcpu; 227 } 228 229 /* obtain pointer to a chunk from a page struct */ 230 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 231 { 232 return (struct pcpu_chunk *)page->index; 233 } 234 235 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 236 { 237 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 238 } 239 240 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 241 unsigned int cpu, int page_idx) 242 { 243 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 244 (page_idx << PAGE_SHIFT); 245 } 246 247 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 248 int *rs, int *re, int end) 249 { 250 *rs = find_next_zero_bit(chunk->populated, end, *rs); 251 *re = find_next_bit(chunk->populated, end, *rs + 1); 252 } 253 254 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 255 int *rs, int *re, int end) 256 { 257 *rs = find_next_bit(chunk->populated, end, *rs); 258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 259 } 260 261 /* 262 * (Un)populated page region iterators. Iterate over (un)populated 263 * page regions between @start and @end in @chunk. @rs and @re should 264 * be integer variables and will be set to start and end page index of 265 * the current region. 266 */ 267 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 269 (rs) < (re); \ 270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 271 272 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 274 (rs) < (re); \ 275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 276 277 /** 278 * pcpu_mem_zalloc - allocate memory 279 * @size: bytes to allocate 280 * 281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 282 * kzalloc() is used; otherwise, vzalloc() is used. The returned 283 * memory is always zeroed. 284 * 285 * CONTEXT: 286 * Does GFP_KERNEL allocation. 287 * 288 * RETURNS: 289 * Pointer to the allocated area on success, NULL on failure. 290 */ 291 static void *pcpu_mem_zalloc(size_t size) 292 { 293 if (WARN_ON_ONCE(!slab_is_available())) 294 return NULL; 295 296 if (size <= PAGE_SIZE) 297 return kzalloc(size, GFP_KERNEL); 298 else 299 return vzalloc(size); 300 } 301 302 /** 303 * pcpu_mem_free - free memory 304 * @ptr: memory to free 305 * @size: size of the area 306 * 307 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 308 */ 309 static void pcpu_mem_free(void *ptr, size_t size) 310 { 311 if (size <= PAGE_SIZE) 312 kfree(ptr); 313 else 314 vfree(ptr); 315 } 316 317 /** 318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 319 * @chunk: chunk of interest 320 * @oslot: the previous slot it was on 321 * 322 * This function is called after an allocation or free changed @chunk. 323 * New slot according to the changed state is determined and @chunk is 324 * moved to the slot. Note that the reserved chunk is never put on 325 * chunk slots. 326 * 327 * CONTEXT: 328 * pcpu_lock. 329 */ 330 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 331 { 332 int nslot = pcpu_chunk_slot(chunk); 333 334 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 335 if (oslot < nslot) 336 list_move(&chunk->list, &pcpu_slot[nslot]); 337 else 338 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 339 } 340 } 341 342 /** 343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 344 * @chunk: chunk of interest 345 * 346 * Determine whether area map of @chunk needs to be extended to 347 * accommodate a new allocation. 348 * 349 * CONTEXT: 350 * pcpu_lock. 351 * 352 * RETURNS: 353 * New target map allocation length if extension is necessary, 0 354 * otherwise. 355 */ 356 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 357 { 358 int new_alloc; 359 360 if (chunk->map_alloc >= chunk->map_used + 3) 361 return 0; 362 363 new_alloc = PCPU_DFL_MAP_ALLOC; 364 while (new_alloc < chunk->map_used + 3) 365 new_alloc *= 2; 366 367 return new_alloc; 368 } 369 370 /** 371 * pcpu_extend_area_map - extend area map of a chunk 372 * @chunk: chunk of interest 373 * @new_alloc: new target allocation length of the area map 374 * 375 * Extend area map of @chunk to have @new_alloc entries. 376 * 377 * CONTEXT: 378 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 379 * 380 * RETURNS: 381 * 0 on success, -errno on failure. 382 */ 383 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 384 { 385 int *old = NULL, *new = NULL; 386 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 387 unsigned long flags; 388 389 new = pcpu_mem_zalloc(new_size); 390 if (!new) 391 return -ENOMEM; 392 393 /* acquire pcpu_lock and switch to new area map */ 394 spin_lock_irqsave(&pcpu_lock, flags); 395 396 if (new_alloc <= chunk->map_alloc) 397 goto out_unlock; 398 399 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 400 old = chunk->map; 401 402 memcpy(new, old, old_size); 403 404 chunk->map_alloc = new_alloc; 405 chunk->map = new; 406 new = NULL; 407 408 out_unlock: 409 spin_unlock_irqrestore(&pcpu_lock, flags); 410 411 /* 412 * pcpu_mem_free() might end up calling vfree() which uses 413 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 414 */ 415 pcpu_mem_free(old, old_size); 416 pcpu_mem_free(new, new_size); 417 418 return 0; 419 } 420 421 /** 422 * pcpu_alloc_area - allocate area from a pcpu_chunk 423 * @chunk: chunk of interest 424 * @size: wanted size in bytes 425 * @align: wanted align 426 * 427 * Try to allocate @size bytes area aligned at @align from @chunk. 428 * Note that this function only allocates the offset. It doesn't 429 * populate or map the area. 430 * 431 * @chunk->map must have at least two free slots. 432 * 433 * CONTEXT: 434 * pcpu_lock. 435 * 436 * RETURNS: 437 * Allocated offset in @chunk on success, -1 if no matching area is 438 * found. 439 */ 440 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 441 { 442 int oslot = pcpu_chunk_slot(chunk); 443 int max_contig = 0; 444 int i, off; 445 bool seen_free = false; 446 int *p; 447 448 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { 449 int head, tail; 450 int this_size; 451 452 off = *p; 453 if (off & 1) 454 continue; 455 456 /* extra for alignment requirement */ 457 head = ALIGN(off, align) - off; 458 459 this_size = (p[1] & ~1) - off; 460 if (this_size < head + size) { 461 if (!seen_free) { 462 chunk->first_free = i; 463 seen_free = true; 464 } 465 max_contig = max(this_size, max_contig); 466 continue; 467 } 468 469 /* 470 * If head is small or the previous block is free, 471 * merge'em. Note that 'small' is defined as smaller 472 * than sizeof(int), which is very small but isn't too 473 * uncommon for percpu allocations. 474 */ 475 if (head && (head < sizeof(int) || !(p[-1] & 1))) { 476 *p = off += head; 477 if (p[-1] & 1) 478 chunk->free_size -= head; 479 else 480 max_contig = max(*p - p[-1], max_contig); 481 this_size -= head; 482 head = 0; 483 } 484 485 /* if tail is small, just keep it around */ 486 tail = this_size - head - size; 487 if (tail < sizeof(int)) { 488 tail = 0; 489 size = this_size - head; 490 } 491 492 /* split if warranted */ 493 if (head || tail) { 494 int nr_extra = !!head + !!tail; 495 496 /* insert new subblocks */ 497 memmove(p + nr_extra + 1, p + 1, 498 sizeof(chunk->map[0]) * (chunk->map_used - i)); 499 chunk->map_used += nr_extra; 500 501 if (head) { 502 if (!seen_free) { 503 chunk->first_free = i; 504 seen_free = true; 505 } 506 *++p = off += head; 507 ++i; 508 max_contig = max(head, max_contig); 509 } 510 if (tail) { 511 p[1] = off + size; 512 max_contig = max(tail, max_contig); 513 } 514 } 515 516 if (!seen_free) 517 chunk->first_free = i + 1; 518 519 /* update hint and mark allocated */ 520 if (i + 1 == chunk->map_used) 521 chunk->contig_hint = max_contig; /* fully scanned */ 522 else 523 chunk->contig_hint = max(chunk->contig_hint, 524 max_contig); 525 526 chunk->free_size -= size; 527 *p |= 1; 528 529 pcpu_chunk_relocate(chunk, oslot); 530 return off; 531 } 532 533 chunk->contig_hint = max_contig; /* fully scanned */ 534 pcpu_chunk_relocate(chunk, oslot); 535 536 /* tell the upper layer that this chunk has no matching area */ 537 return -1; 538 } 539 540 /** 541 * pcpu_free_area - free area to a pcpu_chunk 542 * @chunk: chunk of interest 543 * @freeme: offset of area to free 544 * 545 * Free area starting from @freeme to @chunk. Note that this function 546 * only modifies the allocation map. It doesn't depopulate or unmap 547 * the area. 548 * 549 * CONTEXT: 550 * pcpu_lock. 551 */ 552 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 553 { 554 int oslot = pcpu_chunk_slot(chunk); 555 int off = 0; 556 unsigned i, j; 557 int to_free = 0; 558 int *p; 559 560 freeme |= 1; /* we are searching for <given offset, in use> pair */ 561 562 i = 0; 563 j = chunk->map_used; 564 while (i != j) { 565 unsigned k = (i + j) / 2; 566 off = chunk->map[k]; 567 if (off < freeme) 568 i = k + 1; 569 else if (off > freeme) 570 j = k; 571 else 572 i = j = k; 573 } 574 BUG_ON(off != freeme); 575 576 if (i < chunk->first_free) 577 chunk->first_free = i; 578 579 p = chunk->map + i; 580 *p = off &= ~1; 581 chunk->free_size += (p[1] & ~1) - off; 582 583 /* merge with next? */ 584 if (!(p[1] & 1)) 585 to_free++; 586 /* merge with previous? */ 587 if (i > 0 && !(p[-1] & 1)) { 588 to_free++; 589 i--; 590 p--; 591 } 592 if (to_free) { 593 chunk->map_used -= to_free; 594 memmove(p + 1, p + 1 + to_free, 595 (chunk->map_used - i) * sizeof(chunk->map[0])); 596 } 597 598 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); 599 pcpu_chunk_relocate(chunk, oslot); 600 } 601 602 static struct pcpu_chunk *pcpu_alloc_chunk(void) 603 { 604 struct pcpu_chunk *chunk; 605 606 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 607 if (!chunk) 608 return NULL; 609 610 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * 611 sizeof(chunk->map[0])); 612 if (!chunk->map) { 613 pcpu_mem_free(chunk, pcpu_chunk_struct_size); 614 return NULL; 615 } 616 617 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 618 chunk->map[0] = 0; 619 chunk->map[1] = pcpu_unit_size | 1; 620 chunk->map_used = 1; 621 622 INIT_LIST_HEAD(&chunk->list); 623 chunk->free_size = pcpu_unit_size; 624 chunk->contig_hint = pcpu_unit_size; 625 626 return chunk; 627 } 628 629 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 630 { 631 if (!chunk) 632 return; 633 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 634 pcpu_mem_free(chunk, pcpu_chunk_struct_size); 635 } 636 637 /* 638 * Chunk management implementation. 639 * 640 * To allow different implementations, chunk alloc/free and 641 * [de]population are implemented in a separate file which is pulled 642 * into this file and compiled together. The following functions 643 * should be implemented. 644 * 645 * pcpu_populate_chunk - populate the specified range of a chunk 646 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 647 * pcpu_create_chunk - create a new chunk 648 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 649 * pcpu_addr_to_page - translate address to physical address 650 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 651 */ 652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 654 static struct pcpu_chunk *pcpu_create_chunk(void); 655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 656 static struct page *pcpu_addr_to_page(void *addr); 657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 658 659 #ifdef CONFIG_NEED_PER_CPU_KM 660 #include "percpu-km.c" 661 #else 662 #include "percpu-vm.c" 663 #endif 664 665 /** 666 * pcpu_chunk_addr_search - determine chunk containing specified address 667 * @addr: address for which the chunk needs to be determined. 668 * 669 * RETURNS: 670 * The address of the found chunk. 671 */ 672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 673 { 674 /* is it in the first chunk? */ 675 if (pcpu_addr_in_first_chunk(addr)) { 676 /* is it in the reserved area? */ 677 if (pcpu_addr_in_reserved_chunk(addr)) 678 return pcpu_reserved_chunk; 679 return pcpu_first_chunk; 680 } 681 682 /* 683 * The address is relative to unit0 which might be unused and 684 * thus unmapped. Offset the address to the unit space of the 685 * current processor before looking it up in the vmalloc 686 * space. Note that any possible cpu id can be used here, so 687 * there's no need to worry about preemption or cpu hotplug. 688 */ 689 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 690 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 691 } 692 693 /** 694 * pcpu_alloc - the percpu allocator 695 * @size: size of area to allocate in bytes 696 * @align: alignment of area (max PAGE_SIZE) 697 * @reserved: allocate from the reserved chunk if available 698 * 699 * Allocate percpu area of @size bytes aligned at @align. 700 * 701 * CONTEXT: 702 * Does GFP_KERNEL allocation. 703 * 704 * RETURNS: 705 * Percpu pointer to the allocated area on success, NULL on failure. 706 */ 707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 708 { 709 static int warn_limit = 10; 710 struct pcpu_chunk *chunk; 711 const char *err; 712 int slot, off, new_alloc; 713 unsigned long flags; 714 void __percpu *ptr; 715 716 /* 717 * We want the lowest bit of offset available for in-use/free 718 * indicator, so force >= 16bit alignment and make size even. 719 */ 720 if (unlikely(align < 2)) 721 align = 2; 722 723 if (unlikely(size & 1)) 724 size++; 725 726 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 727 WARN(true, "illegal size (%zu) or align (%zu) for " 728 "percpu allocation\n", size, align); 729 return NULL; 730 } 731 732 mutex_lock(&pcpu_alloc_mutex); 733 spin_lock_irqsave(&pcpu_lock, flags); 734 735 /* serve reserved allocations from the reserved chunk if available */ 736 if (reserved && pcpu_reserved_chunk) { 737 chunk = pcpu_reserved_chunk; 738 739 if (size > chunk->contig_hint) { 740 err = "alloc from reserved chunk failed"; 741 goto fail_unlock; 742 } 743 744 while ((new_alloc = pcpu_need_to_extend(chunk))) { 745 spin_unlock_irqrestore(&pcpu_lock, flags); 746 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 747 err = "failed to extend area map of reserved chunk"; 748 goto fail_unlock_mutex; 749 } 750 spin_lock_irqsave(&pcpu_lock, flags); 751 } 752 753 off = pcpu_alloc_area(chunk, size, align); 754 if (off >= 0) 755 goto area_found; 756 757 err = "alloc from reserved chunk failed"; 758 goto fail_unlock; 759 } 760 761 restart: 762 /* search through normal chunks */ 763 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 764 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 765 if (size > chunk->contig_hint) 766 continue; 767 768 new_alloc = pcpu_need_to_extend(chunk); 769 if (new_alloc) { 770 spin_unlock_irqrestore(&pcpu_lock, flags); 771 if (pcpu_extend_area_map(chunk, 772 new_alloc) < 0) { 773 err = "failed to extend area map"; 774 goto fail_unlock_mutex; 775 } 776 spin_lock_irqsave(&pcpu_lock, flags); 777 /* 778 * pcpu_lock has been dropped, need to 779 * restart cpu_slot list walking. 780 */ 781 goto restart; 782 } 783 784 off = pcpu_alloc_area(chunk, size, align); 785 if (off >= 0) 786 goto area_found; 787 } 788 } 789 790 /* hmmm... no space left, create a new chunk */ 791 spin_unlock_irqrestore(&pcpu_lock, flags); 792 793 chunk = pcpu_create_chunk(); 794 if (!chunk) { 795 err = "failed to allocate new chunk"; 796 goto fail_unlock_mutex; 797 } 798 799 spin_lock_irqsave(&pcpu_lock, flags); 800 pcpu_chunk_relocate(chunk, -1); 801 goto restart; 802 803 area_found: 804 spin_unlock_irqrestore(&pcpu_lock, flags); 805 806 /* populate, map and clear the area */ 807 if (pcpu_populate_chunk(chunk, off, size)) { 808 spin_lock_irqsave(&pcpu_lock, flags); 809 pcpu_free_area(chunk, off); 810 err = "failed to populate"; 811 goto fail_unlock; 812 } 813 814 mutex_unlock(&pcpu_alloc_mutex); 815 816 /* return address relative to base address */ 817 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 818 kmemleak_alloc_percpu(ptr, size); 819 return ptr; 820 821 fail_unlock: 822 spin_unlock_irqrestore(&pcpu_lock, flags); 823 fail_unlock_mutex: 824 mutex_unlock(&pcpu_alloc_mutex); 825 if (warn_limit) { 826 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 827 "%s\n", size, align, err); 828 dump_stack(); 829 if (!--warn_limit) 830 pr_info("PERCPU: limit reached, disable warning\n"); 831 } 832 return NULL; 833 } 834 835 /** 836 * __alloc_percpu - allocate dynamic percpu area 837 * @size: size of area to allocate in bytes 838 * @align: alignment of area (max PAGE_SIZE) 839 * 840 * Allocate zero-filled percpu area of @size bytes aligned at @align. 841 * Might sleep. Might trigger writeouts. 842 * 843 * CONTEXT: 844 * Does GFP_KERNEL allocation. 845 * 846 * RETURNS: 847 * Percpu pointer to the allocated area on success, NULL on failure. 848 */ 849 void __percpu *__alloc_percpu(size_t size, size_t align) 850 { 851 return pcpu_alloc(size, align, false); 852 } 853 EXPORT_SYMBOL_GPL(__alloc_percpu); 854 855 /** 856 * __alloc_reserved_percpu - allocate reserved percpu area 857 * @size: size of area to allocate in bytes 858 * @align: alignment of area (max PAGE_SIZE) 859 * 860 * Allocate zero-filled percpu area of @size bytes aligned at @align 861 * from reserved percpu area if arch has set it up; otherwise, 862 * allocation is served from the same dynamic area. Might sleep. 863 * Might trigger writeouts. 864 * 865 * CONTEXT: 866 * Does GFP_KERNEL allocation. 867 * 868 * RETURNS: 869 * Percpu pointer to the allocated area on success, NULL on failure. 870 */ 871 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 872 { 873 return pcpu_alloc(size, align, true); 874 } 875 876 /** 877 * pcpu_reclaim - reclaim fully free chunks, workqueue function 878 * @work: unused 879 * 880 * Reclaim all fully free chunks except for the first one. 881 * 882 * CONTEXT: 883 * workqueue context. 884 */ 885 static void pcpu_reclaim(struct work_struct *work) 886 { 887 LIST_HEAD(todo); 888 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 889 struct pcpu_chunk *chunk, *next; 890 891 mutex_lock(&pcpu_alloc_mutex); 892 spin_lock_irq(&pcpu_lock); 893 894 list_for_each_entry_safe(chunk, next, head, list) { 895 WARN_ON(chunk->immutable); 896 897 /* spare the first one */ 898 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 899 continue; 900 901 list_move(&chunk->list, &todo); 902 } 903 904 spin_unlock_irq(&pcpu_lock); 905 906 list_for_each_entry_safe(chunk, next, &todo, list) { 907 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 908 pcpu_destroy_chunk(chunk); 909 } 910 911 mutex_unlock(&pcpu_alloc_mutex); 912 } 913 914 /** 915 * free_percpu - free percpu area 916 * @ptr: pointer to area to free 917 * 918 * Free percpu area @ptr. 919 * 920 * CONTEXT: 921 * Can be called from atomic context. 922 */ 923 void free_percpu(void __percpu *ptr) 924 { 925 void *addr; 926 struct pcpu_chunk *chunk; 927 unsigned long flags; 928 int off; 929 930 if (!ptr) 931 return; 932 933 kmemleak_free_percpu(ptr); 934 935 addr = __pcpu_ptr_to_addr(ptr); 936 937 spin_lock_irqsave(&pcpu_lock, flags); 938 939 chunk = pcpu_chunk_addr_search(addr); 940 off = addr - chunk->base_addr; 941 942 pcpu_free_area(chunk, off); 943 944 /* if there are more than one fully free chunks, wake up grim reaper */ 945 if (chunk->free_size == pcpu_unit_size) { 946 struct pcpu_chunk *pos; 947 948 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 949 if (pos != chunk) { 950 schedule_work(&pcpu_reclaim_work); 951 break; 952 } 953 } 954 955 spin_unlock_irqrestore(&pcpu_lock, flags); 956 } 957 EXPORT_SYMBOL_GPL(free_percpu); 958 959 /** 960 * is_kernel_percpu_address - test whether address is from static percpu area 961 * @addr: address to test 962 * 963 * Test whether @addr belongs to in-kernel static percpu area. Module 964 * static percpu areas are not considered. For those, use 965 * is_module_percpu_address(). 966 * 967 * RETURNS: 968 * %true if @addr is from in-kernel static percpu area, %false otherwise. 969 */ 970 bool is_kernel_percpu_address(unsigned long addr) 971 { 972 #ifdef CONFIG_SMP 973 const size_t static_size = __per_cpu_end - __per_cpu_start; 974 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 975 unsigned int cpu; 976 977 for_each_possible_cpu(cpu) { 978 void *start = per_cpu_ptr(base, cpu); 979 980 if ((void *)addr >= start && (void *)addr < start + static_size) 981 return true; 982 } 983 #endif 984 /* on UP, can't distinguish from other static vars, always false */ 985 return false; 986 } 987 988 /** 989 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 990 * @addr: the address to be converted to physical address 991 * 992 * Given @addr which is dereferenceable address obtained via one of 993 * percpu access macros, this function translates it into its physical 994 * address. The caller is responsible for ensuring @addr stays valid 995 * until this function finishes. 996 * 997 * percpu allocator has special setup for the first chunk, which currently 998 * supports either embedding in linear address space or vmalloc mapping, 999 * and, from the second one, the backing allocator (currently either vm or 1000 * km) provides translation. 1001 * 1002 * The addr can be tranlated simply without checking if it falls into the 1003 * first chunk. But the current code reflects better how percpu allocator 1004 * actually works, and the verification can discover both bugs in percpu 1005 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1006 * code. 1007 * 1008 * RETURNS: 1009 * The physical address for @addr. 1010 */ 1011 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1012 { 1013 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1014 bool in_first_chunk = false; 1015 unsigned long first_low, first_high; 1016 unsigned int cpu; 1017 1018 /* 1019 * The following test on unit_low/high isn't strictly 1020 * necessary but will speed up lookups of addresses which 1021 * aren't in the first chunk. 1022 */ 1023 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); 1024 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, 1025 pcpu_unit_pages); 1026 if ((unsigned long)addr >= first_low && 1027 (unsigned long)addr < first_high) { 1028 for_each_possible_cpu(cpu) { 1029 void *start = per_cpu_ptr(base, cpu); 1030 1031 if (addr >= start && addr < start + pcpu_unit_size) { 1032 in_first_chunk = true; 1033 break; 1034 } 1035 } 1036 } 1037 1038 if (in_first_chunk) { 1039 if (!is_vmalloc_addr(addr)) 1040 return __pa(addr); 1041 else 1042 return page_to_phys(vmalloc_to_page(addr)) + 1043 offset_in_page(addr); 1044 } else 1045 return page_to_phys(pcpu_addr_to_page(addr)) + 1046 offset_in_page(addr); 1047 } 1048 1049 /** 1050 * pcpu_alloc_alloc_info - allocate percpu allocation info 1051 * @nr_groups: the number of groups 1052 * @nr_units: the number of units 1053 * 1054 * Allocate ai which is large enough for @nr_groups groups containing 1055 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1056 * cpu_map array which is long enough for @nr_units and filled with 1057 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1058 * pointer of other groups. 1059 * 1060 * RETURNS: 1061 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1062 * failure. 1063 */ 1064 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1065 int nr_units) 1066 { 1067 struct pcpu_alloc_info *ai; 1068 size_t base_size, ai_size; 1069 void *ptr; 1070 int unit; 1071 1072 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1073 __alignof__(ai->groups[0].cpu_map[0])); 1074 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1075 1076 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1077 if (!ptr) 1078 return NULL; 1079 ai = ptr; 1080 ptr += base_size; 1081 1082 ai->groups[0].cpu_map = ptr; 1083 1084 for (unit = 0; unit < nr_units; unit++) 1085 ai->groups[0].cpu_map[unit] = NR_CPUS; 1086 1087 ai->nr_groups = nr_groups; 1088 ai->__ai_size = PFN_ALIGN(ai_size); 1089 1090 return ai; 1091 } 1092 1093 /** 1094 * pcpu_free_alloc_info - free percpu allocation info 1095 * @ai: pcpu_alloc_info to free 1096 * 1097 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1098 */ 1099 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1100 { 1101 memblock_free_early(__pa(ai), ai->__ai_size); 1102 } 1103 1104 /** 1105 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1106 * @lvl: loglevel 1107 * @ai: allocation info to dump 1108 * 1109 * Print out information about @ai using loglevel @lvl. 1110 */ 1111 static void pcpu_dump_alloc_info(const char *lvl, 1112 const struct pcpu_alloc_info *ai) 1113 { 1114 int group_width = 1, cpu_width = 1, width; 1115 char empty_str[] = "--------"; 1116 int alloc = 0, alloc_end = 0; 1117 int group, v; 1118 int upa, apl; /* units per alloc, allocs per line */ 1119 1120 v = ai->nr_groups; 1121 while (v /= 10) 1122 group_width++; 1123 1124 v = num_possible_cpus(); 1125 while (v /= 10) 1126 cpu_width++; 1127 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1128 1129 upa = ai->alloc_size / ai->unit_size; 1130 width = upa * (cpu_width + 1) + group_width + 3; 1131 apl = rounddown_pow_of_two(max(60 / width, 1)); 1132 1133 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1134 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1135 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1136 1137 for (group = 0; group < ai->nr_groups; group++) { 1138 const struct pcpu_group_info *gi = &ai->groups[group]; 1139 int unit = 0, unit_end = 0; 1140 1141 BUG_ON(gi->nr_units % upa); 1142 for (alloc_end += gi->nr_units / upa; 1143 alloc < alloc_end; alloc++) { 1144 if (!(alloc % apl)) { 1145 printk(KERN_CONT "\n"); 1146 printk("%spcpu-alloc: ", lvl); 1147 } 1148 printk(KERN_CONT "[%0*d] ", group_width, group); 1149 1150 for (unit_end += upa; unit < unit_end; unit++) 1151 if (gi->cpu_map[unit] != NR_CPUS) 1152 printk(KERN_CONT "%0*d ", cpu_width, 1153 gi->cpu_map[unit]); 1154 else 1155 printk(KERN_CONT "%s ", empty_str); 1156 } 1157 } 1158 printk(KERN_CONT "\n"); 1159 } 1160 1161 /** 1162 * pcpu_setup_first_chunk - initialize the first percpu chunk 1163 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1164 * @base_addr: mapped address 1165 * 1166 * Initialize the first percpu chunk which contains the kernel static 1167 * perpcu area. This function is to be called from arch percpu area 1168 * setup path. 1169 * 1170 * @ai contains all information necessary to initialize the first 1171 * chunk and prime the dynamic percpu allocator. 1172 * 1173 * @ai->static_size is the size of static percpu area. 1174 * 1175 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1176 * reserve after the static area in the first chunk. This reserves 1177 * the first chunk such that it's available only through reserved 1178 * percpu allocation. This is primarily used to serve module percpu 1179 * static areas on architectures where the addressing model has 1180 * limited offset range for symbol relocations to guarantee module 1181 * percpu symbols fall inside the relocatable range. 1182 * 1183 * @ai->dyn_size determines the number of bytes available for dynamic 1184 * allocation in the first chunk. The area between @ai->static_size + 1185 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1186 * 1187 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1188 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1189 * @ai->dyn_size. 1190 * 1191 * @ai->atom_size is the allocation atom size and used as alignment 1192 * for vm areas. 1193 * 1194 * @ai->alloc_size is the allocation size and always multiple of 1195 * @ai->atom_size. This is larger than @ai->atom_size if 1196 * @ai->unit_size is larger than @ai->atom_size. 1197 * 1198 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1199 * percpu areas. Units which should be colocated are put into the 1200 * same group. Dynamic VM areas will be allocated according to these 1201 * groupings. If @ai->nr_groups is zero, a single group containing 1202 * all units is assumed. 1203 * 1204 * The caller should have mapped the first chunk at @base_addr and 1205 * copied static data to each unit. 1206 * 1207 * If the first chunk ends up with both reserved and dynamic areas, it 1208 * is served by two chunks - one to serve the core static and reserved 1209 * areas and the other for the dynamic area. They share the same vm 1210 * and page map but uses different area allocation map to stay away 1211 * from each other. The latter chunk is circulated in the chunk slots 1212 * and available for dynamic allocation like any other chunks. 1213 * 1214 * RETURNS: 1215 * 0 on success, -errno on failure. 1216 */ 1217 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1218 void *base_addr) 1219 { 1220 static char cpus_buf[4096] __initdata; 1221 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1222 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1223 size_t dyn_size = ai->dyn_size; 1224 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1225 struct pcpu_chunk *schunk, *dchunk = NULL; 1226 unsigned long *group_offsets; 1227 size_t *group_sizes; 1228 unsigned long *unit_off; 1229 unsigned int cpu; 1230 int *unit_map; 1231 int group, unit, i; 1232 1233 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1234 1235 #define PCPU_SETUP_BUG_ON(cond) do { \ 1236 if (unlikely(cond)) { \ 1237 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1238 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1239 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1240 BUG(); \ 1241 } \ 1242 } while (0) 1243 1244 /* sanity checks */ 1245 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1246 #ifdef CONFIG_SMP 1247 PCPU_SETUP_BUG_ON(!ai->static_size); 1248 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); 1249 #endif 1250 PCPU_SETUP_BUG_ON(!base_addr); 1251 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); 1252 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1253 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1254 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1255 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1256 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1257 1258 /* process group information and build config tables accordingly */ 1259 group_offsets = memblock_virt_alloc(ai->nr_groups * 1260 sizeof(group_offsets[0]), 0); 1261 group_sizes = memblock_virt_alloc(ai->nr_groups * 1262 sizeof(group_sizes[0]), 0); 1263 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 1264 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 1265 1266 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1267 unit_map[cpu] = UINT_MAX; 1268 1269 pcpu_low_unit_cpu = NR_CPUS; 1270 pcpu_high_unit_cpu = NR_CPUS; 1271 1272 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1273 const struct pcpu_group_info *gi = &ai->groups[group]; 1274 1275 group_offsets[group] = gi->base_offset; 1276 group_sizes[group] = gi->nr_units * ai->unit_size; 1277 1278 for (i = 0; i < gi->nr_units; i++) { 1279 cpu = gi->cpu_map[i]; 1280 if (cpu == NR_CPUS) 1281 continue; 1282 1283 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1284 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1285 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1286 1287 unit_map[cpu] = unit + i; 1288 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1289 1290 /* determine low/high unit_cpu */ 1291 if (pcpu_low_unit_cpu == NR_CPUS || 1292 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 1293 pcpu_low_unit_cpu = cpu; 1294 if (pcpu_high_unit_cpu == NR_CPUS || 1295 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 1296 pcpu_high_unit_cpu = cpu; 1297 } 1298 } 1299 pcpu_nr_units = unit; 1300 1301 for_each_possible_cpu(cpu) 1302 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1303 1304 /* we're done parsing the input, undefine BUG macro and dump config */ 1305 #undef PCPU_SETUP_BUG_ON 1306 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1307 1308 pcpu_nr_groups = ai->nr_groups; 1309 pcpu_group_offsets = group_offsets; 1310 pcpu_group_sizes = group_sizes; 1311 pcpu_unit_map = unit_map; 1312 pcpu_unit_offsets = unit_off; 1313 1314 /* determine basic parameters */ 1315 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1316 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1317 pcpu_atom_size = ai->atom_size; 1318 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1319 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1320 1321 /* 1322 * Allocate chunk slots. The additional last slot is for 1323 * empty chunks. 1324 */ 1325 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1326 pcpu_slot = memblock_virt_alloc( 1327 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 1328 for (i = 0; i < pcpu_nr_slots; i++) 1329 INIT_LIST_HEAD(&pcpu_slot[i]); 1330 1331 /* 1332 * Initialize static chunk. If reserved_size is zero, the 1333 * static chunk covers static area + dynamic allocation area 1334 * in the first chunk. If reserved_size is not zero, it 1335 * covers static area + reserved area (mostly used for module 1336 * static percpu allocation). 1337 */ 1338 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1339 INIT_LIST_HEAD(&schunk->list); 1340 schunk->base_addr = base_addr; 1341 schunk->map = smap; 1342 schunk->map_alloc = ARRAY_SIZE(smap); 1343 schunk->immutable = true; 1344 bitmap_fill(schunk->populated, pcpu_unit_pages); 1345 1346 if (ai->reserved_size) { 1347 schunk->free_size = ai->reserved_size; 1348 pcpu_reserved_chunk = schunk; 1349 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1350 } else { 1351 schunk->free_size = dyn_size; 1352 dyn_size = 0; /* dynamic area covered */ 1353 } 1354 schunk->contig_hint = schunk->free_size; 1355 1356 schunk->map[0] = 1; 1357 schunk->map[1] = ai->static_size; 1358 schunk->map_used = 1; 1359 if (schunk->free_size) 1360 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size); 1361 else 1362 schunk->map[1] |= 1; 1363 1364 /* init dynamic chunk if necessary */ 1365 if (dyn_size) { 1366 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); 1367 INIT_LIST_HEAD(&dchunk->list); 1368 dchunk->base_addr = base_addr; 1369 dchunk->map = dmap; 1370 dchunk->map_alloc = ARRAY_SIZE(dmap); 1371 dchunk->immutable = true; 1372 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1373 1374 dchunk->contig_hint = dchunk->free_size = dyn_size; 1375 dchunk->map[0] = 1; 1376 dchunk->map[1] = pcpu_reserved_chunk_limit; 1377 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; 1378 dchunk->map_used = 2; 1379 } 1380 1381 /* link the first chunk in */ 1382 pcpu_first_chunk = dchunk ?: schunk; 1383 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1384 1385 /* we're done */ 1386 pcpu_base_addr = base_addr; 1387 return 0; 1388 } 1389 1390 #ifdef CONFIG_SMP 1391 1392 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 1393 [PCPU_FC_AUTO] = "auto", 1394 [PCPU_FC_EMBED] = "embed", 1395 [PCPU_FC_PAGE] = "page", 1396 }; 1397 1398 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1399 1400 static int __init percpu_alloc_setup(char *str) 1401 { 1402 if (!str) 1403 return -EINVAL; 1404 1405 if (0) 1406 /* nada */; 1407 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1408 else if (!strcmp(str, "embed")) 1409 pcpu_chosen_fc = PCPU_FC_EMBED; 1410 #endif 1411 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1412 else if (!strcmp(str, "page")) 1413 pcpu_chosen_fc = PCPU_FC_PAGE; 1414 #endif 1415 else 1416 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1417 1418 return 0; 1419 } 1420 early_param("percpu_alloc", percpu_alloc_setup); 1421 1422 /* 1423 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1424 * Build it if needed by the arch config or the generic setup is going 1425 * to be used. 1426 */ 1427 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1428 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1429 #define BUILD_EMBED_FIRST_CHUNK 1430 #endif 1431 1432 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1433 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1434 #define BUILD_PAGE_FIRST_CHUNK 1435 #endif 1436 1437 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1438 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1439 /** 1440 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1441 * @reserved_size: the size of reserved percpu area in bytes 1442 * @dyn_size: minimum free size for dynamic allocation in bytes 1443 * @atom_size: allocation atom size 1444 * @cpu_distance_fn: callback to determine distance between cpus, optional 1445 * 1446 * This function determines grouping of units, their mappings to cpus 1447 * and other parameters considering needed percpu size, allocation 1448 * atom size and distances between CPUs. 1449 * 1450 * Groups are always mutliples of atom size and CPUs which are of 1451 * LOCAL_DISTANCE both ways are grouped together and share space for 1452 * units in the same group. The returned configuration is guaranteed 1453 * to have CPUs on different nodes on different groups and >=75% usage 1454 * of allocated virtual address space. 1455 * 1456 * RETURNS: 1457 * On success, pointer to the new allocation_info is returned. On 1458 * failure, ERR_PTR value is returned. 1459 */ 1460 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1461 size_t reserved_size, size_t dyn_size, 1462 size_t atom_size, 1463 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1464 { 1465 static int group_map[NR_CPUS] __initdata; 1466 static int group_cnt[NR_CPUS] __initdata; 1467 const size_t static_size = __per_cpu_end - __per_cpu_start; 1468 int nr_groups = 1, nr_units = 0; 1469 size_t size_sum, min_unit_size, alloc_size; 1470 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1471 int last_allocs, group, unit; 1472 unsigned int cpu, tcpu; 1473 struct pcpu_alloc_info *ai; 1474 unsigned int *cpu_map; 1475 1476 /* this function may be called multiple times */ 1477 memset(group_map, 0, sizeof(group_map)); 1478 memset(group_cnt, 0, sizeof(group_cnt)); 1479 1480 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1481 size_sum = PFN_ALIGN(static_size + reserved_size + 1482 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1483 dyn_size = size_sum - static_size - reserved_size; 1484 1485 /* 1486 * Determine min_unit_size, alloc_size and max_upa such that 1487 * alloc_size is multiple of atom_size and is the smallest 1488 * which can accommodate 4k aligned segments which are equal to 1489 * or larger than min_unit_size. 1490 */ 1491 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1492 1493 alloc_size = roundup(min_unit_size, atom_size); 1494 upa = alloc_size / min_unit_size; 1495 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1496 upa--; 1497 max_upa = upa; 1498 1499 /* group cpus according to their proximity */ 1500 for_each_possible_cpu(cpu) { 1501 group = 0; 1502 next_group: 1503 for_each_possible_cpu(tcpu) { 1504 if (cpu == tcpu) 1505 break; 1506 if (group_map[tcpu] == group && cpu_distance_fn && 1507 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1508 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1509 group++; 1510 nr_groups = max(nr_groups, group + 1); 1511 goto next_group; 1512 } 1513 } 1514 group_map[cpu] = group; 1515 group_cnt[group]++; 1516 } 1517 1518 /* 1519 * Expand unit size until address space usage goes over 75% 1520 * and then as much as possible without using more address 1521 * space. 1522 */ 1523 last_allocs = INT_MAX; 1524 for (upa = max_upa; upa; upa--) { 1525 int allocs = 0, wasted = 0; 1526 1527 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1528 continue; 1529 1530 for (group = 0; group < nr_groups; group++) { 1531 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1532 allocs += this_allocs; 1533 wasted += this_allocs * upa - group_cnt[group]; 1534 } 1535 1536 /* 1537 * Don't accept if wastage is over 1/3. The 1538 * greater-than comparison ensures upa==1 always 1539 * passes the following check. 1540 */ 1541 if (wasted > num_possible_cpus() / 3) 1542 continue; 1543 1544 /* and then don't consume more memory */ 1545 if (allocs > last_allocs) 1546 break; 1547 last_allocs = allocs; 1548 best_upa = upa; 1549 } 1550 upa = best_upa; 1551 1552 /* allocate and fill alloc_info */ 1553 for (group = 0; group < nr_groups; group++) 1554 nr_units += roundup(group_cnt[group], upa); 1555 1556 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1557 if (!ai) 1558 return ERR_PTR(-ENOMEM); 1559 cpu_map = ai->groups[0].cpu_map; 1560 1561 for (group = 0; group < nr_groups; group++) { 1562 ai->groups[group].cpu_map = cpu_map; 1563 cpu_map += roundup(group_cnt[group], upa); 1564 } 1565 1566 ai->static_size = static_size; 1567 ai->reserved_size = reserved_size; 1568 ai->dyn_size = dyn_size; 1569 ai->unit_size = alloc_size / upa; 1570 ai->atom_size = atom_size; 1571 ai->alloc_size = alloc_size; 1572 1573 for (group = 0, unit = 0; group_cnt[group]; group++) { 1574 struct pcpu_group_info *gi = &ai->groups[group]; 1575 1576 /* 1577 * Initialize base_offset as if all groups are located 1578 * back-to-back. The caller should update this to 1579 * reflect actual allocation. 1580 */ 1581 gi->base_offset = unit * ai->unit_size; 1582 1583 for_each_possible_cpu(cpu) 1584 if (group_map[cpu] == group) 1585 gi->cpu_map[gi->nr_units++] = cpu; 1586 gi->nr_units = roundup(gi->nr_units, upa); 1587 unit += gi->nr_units; 1588 } 1589 BUG_ON(unit != nr_units); 1590 1591 return ai; 1592 } 1593 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1594 1595 #if defined(BUILD_EMBED_FIRST_CHUNK) 1596 /** 1597 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1598 * @reserved_size: the size of reserved percpu area in bytes 1599 * @dyn_size: minimum free size for dynamic allocation in bytes 1600 * @atom_size: allocation atom size 1601 * @cpu_distance_fn: callback to determine distance between cpus, optional 1602 * @alloc_fn: function to allocate percpu page 1603 * @free_fn: function to free percpu page 1604 * 1605 * This is a helper to ease setting up embedded first percpu chunk and 1606 * can be called where pcpu_setup_first_chunk() is expected. 1607 * 1608 * If this function is used to setup the first chunk, it is allocated 1609 * by calling @alloc_fn and used as-is without being mapped into 1610 * vmalloc area. Allocations are always whole multiples of @atom_size 1611 * aligned to @atom_size. 1612 * 1613 * This enables the first chunk to piggy back on the linear physical 1614 * mapping which often uses larger page size. Please note that this 1615 * can result in very sparse cpu->unit mapping on NUMA machines thus 1616 * requiring large vmalloc address space. Don't use this allocator if 1617 * vmalloc space is not orders of magnitude larger than distances 1618 * between node memory addresses (ie. 32bit NUMA machines). 1619 * 1620 * @dyn_size specifies the minimum dynamic area size. 1621 * 1622 * If the needed size is smaller than the minimum or specified unit 1623 * size, the leftover is returned using @free_fn. 1624 * 1625 * RETURNS: 1626 * 0 on success, -errno on failure. 1627 */ 1628 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1629 size_t atom_size, 1630 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1631 pcpu_fc_alloc_fn_t alloc_fn, 1632 pcpu_fc_free_fn_t free_fn) 1633 { 1634 void *base = (void *)ULONG_MAX; 1635 void **areas = NULL; 1636 struct pcpu_alloc_info *ai; 1637 size_t size_sum, areas_size, max_distance; 1638 int group, i, rc; 1639 1640 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1641 cpu_distance_fn); 1642 if (IS_ERR(ai)) 1643 return PTR_ERR(ai); 1644 1645 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1646 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1647 1648 areas = memblock_virt_alloc_nopanic(areas_size, 0); 1649 if (!areas) { 1650 rc = -ENOMEM; 1651 goto out_free; 1652 } 1653 1654 /* allocate, copy and determine base address */ 1655 for (group = 0; group < ai->nr_groups; group++) { 1656 struct pcpu_group_info *gi = &ai->groups[group]; 1657 unsigned int cpu = NR_CPUS; 1658 void *ptr; 1659 1660 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1661 cpu = gi->cpu_map[i]; 1662 BUG_ON(cpu == NR_CPUS); 1663 1664 /* allocate space for the whole group */ 1665 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1666 if (!ptr) { 1667 rc = -ENOMEM; 1668 goto out_free_areas; 1669 } 1670 /* kmemleak tracks the percpu allocations separately */ 1671 kmemleak_free(ptr); 1672 areas[group] = ptr; 1673 1674 base = min(ptr, base); 1675 } 1676 1677 /* 1678 * Copy data and free unused parts. This should happen after all 1679 * allocations are complete; otherwise, we may end up with 1680 * overlapping groups. 1681 */ 1682 for (group = 0; group < ai->nr_groups; group++) { 1683 struct pcpu_group_info *gi = &ai->groups[group]; 1684 void *ptr = areas[group]; 1685 1686 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1687 if (gi->cpu_map[i] == NR_CPUS) { 1688 /* unused unit, free whole */ 1689 free_fn(ptr, ai->unit_size); 1690 continue; 1691 } 1692 /* copy and return the unused part */ 1693 memcpy(ptr, __per_cpu_load, ai->static_size); 1694 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1695 } 1696 } 1697 1698 /* base address is now known, determine group base offsets */ 1699 max_distance = 0; 1700 for (group = 0; group < ai->nr_groups; group++) { 1701 ai->groups[group].base_offset = areas[group] - base; 1702 max_distance = max_t(size_t, max_distance, 1703 ai->groups[group].base_offset); 1704 } 1705 max_distance += ai->unit_size; 1706 1707 /* warn if maximum distance is further than 75% of vmalloc space */ 1708 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 1709 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1710 "space 0x%lx\n", max_distance, 1711 VMALLOC_TOTAL); 1712 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1713 /* and fail if we have fallback */ 1714 rc = -EINVAL; 1715 goto out_free; 1716 #endif 1717 } 1718 1719 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1720 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1721 ai->dyn_size, ai->unit_size); 1722 1723 rc = pcpu_setup_first_chunk(ai, base); 1724 goto out_free; 1725 1726 out_free_areas: 1727 for (group = 0; group < ai->nr_groups; group++) 1728 if (areas[group]) 1729 free_fn(areas[group], 1730 ai->groups[group].nr_units * ai->unit_size); 1731 out_free: 1732 pcpu_free_alloc_info(ai); 1733 if (areas) 1734 memblock_free_early(__pa(areas), areas_size); 1735 return rc; 1736 } 1737 #endif /* BUILD_EMBED_FIRST_CHUNK */ 1738 1739 #ifdef BUILD_PAGE_FIRST_CHUNK 1740 /** 1741 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1742 * @reserved_size: the size of reserved percpu area in bytes 1743 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1744 * @free_fn: function to free percpu page, always called with PAGE_SIZE 1745 * @populate_pte_fn: function to populate pte 1746 * 1747 * This is a helper to ease setting up page-remapped first percpu 1748 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1749 * 1750 * This is the basic allocator. Static percpu area is allocated 1751 * page-by-page into vmalloc area. 1752 * 1753 * RETURNS: 1754 * 0 on success, -errno on failure. 1755 */ 1756 int __init pcpu_page_first_chunk(size_t reserved_size, 1757 pcpu_fc_alloc_fn_t alloc_fn, 1758 pcpu_fc_free_fn_t free_fn, 1759 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1760 { 1761 static struct vm_struct vm; 1762 struct pcpu_alloc_info *ai; 1763 char psize_str[16]; 1764 int unit_pages; 1765 size_t pages_size; 1766 struct page **pages; 1767 int unit, i, j, rc; 1768 1769 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1770 1771 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1772 if (IS_ERR(ai)) 1773 return PTR_ERR(ai); 1774 BUG_ON(ai->nr_groups != 1); 1775 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1776 1777 unit_pages = ai->unit_size >> PAGE_SHIFT; 1778 1779 /* unaligned allocations can't be freed, round up to page size */ 1780 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1781 sizeof(pages[0])); 1782 pages = memblock_virt_alloc(pages_size, 0); 1783 1784 /* allocate pages */ 1785 j = 0; 1786 for (unit = 0; unit < num_possible_cpus(); unit++) 1787 for (i = 0; i < unit_pages; i++) { 1788 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1789 void *ptr; 1790 1791 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1792 if (!ptr) { 1793 pr_warning("PERCPU: failed to allocate %s page " 1794 "for cpu%u\n", psize_str, cpu); 1795 goto enomem; 1796 } 1797 /* kmemleak tracks the percpu allocations separately */ 1798 kmemleak_free(ptr); 1799 pages[j++] = virt_to_page(ptr); 1800 } 1801 1802 /* allocate vm area, map the pages and copy static data */ 1803 vm.flags = VM_ALLOC; 1804 vm.size = num_possible_cpus() * ai->unit_size; 1805 vm_area_register_early(&vm, PAGE_SIZE); 1806 1807 for (unit = 0; unit < num_possible_cpus(); unit++) { 1808 unsigned long unit_addr = 1809 (unsigned long)vm.addr + unit * ai->unit_size; 1810 1811 for (i = 0; i < unit_pages; i++) 1812 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1813 1814 /* pte already populated, the following shouldn't fail */ 1815 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1816 unit_pages); 1817 if (rc < 0) 1818 panic("failed to map percpu area, err=%d\n", rc); 1819 1820 /* 1821 * FIXME: Archs with virtual cache should flush local 1822 * cache for the linear mapping here - something 1823 * equivalent to flush_cache_vmap() on the local cpu. 1824 * flush_cache_vmap() can't be used as most supporting 1825 * data structures are not set up yet. 1826 */ 1827 1828 /* copy static data */ 1829 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1830 } 1831 1832 /* we're ready, commit */ 1833 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1834 unit_pages, psize_str, vm.addr, ai->static_size, 1835 ai->reserved_size, ai->dyn_size); 1836 1837 rc = pcpu_setup_first_chunk(ai, vm.addr); 1838 goto out_free_ar; 1839 1840 enomem: 1841 while (--j >= 0) 1842 free_fn(page_address(pages[j]), PAGE_SIZE); 1843 rc = -ENOMEM; 1844 out_free_ar: 1845 memblock_free_early(__pa(pages), pages_size); 1846 pcpu_free_alloc_info(ai); 1847 return rc; 1848 } 1849 #endif /* BUILD_PAGE_FIRST_CHUNK */ 1850 1851 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1852 /* 1853 * Generic SMP percpu area setup. 1854 * 1855 * The embedding helper is used because its behavior closely resembles 1856 * the original non-dynamic generic percpu area setup. This is 1857 * important because many archs have addressing restrictions and might 1858 * fail if the percpu area is located far away from the previous 1859 * location. As an added bonus, in non-NUMA cases, embedding is 1860 * generally a good idea TLB-wise because percpu area can piggy back 1861 * on the physical linear memory mapping which uses large page 1862 * mappings on applicable archs. 1863 */ 1864 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1865 EXPORT_SYMBOL(__per_cpu_offset); 1866 1867 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1868 size_t align) 1869 { 1870 return memblock_virt_alloc_from_nopanic( 1871 size, align, __pa(MAX_DMA_ADDRESS)); 1872 } 1873 1874 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1875 { 1876 memblock_free_early(__pa(ptr), size); 1877 } 1878 1879 void __init setup_per_cpu_areas(void) 1880 { 1881 unsigned long delta; 1882 unsigned int cpu; 1883 int rc; 1884 1885 /* 1886 * Always reserve area for module percpu variables. That's 1887 * what the legacy allocator did. 1888 */ 1889 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1890 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1891 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1892 if (rc < 0) 1893 panic("Failed to initialize percpu areas."); 1894 1895 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1896 for_each_possible_cpu(cpu) 1897 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1898 } 1899 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1900 1901 #else /* CONFIG_SMP */ 1902 1903 /* 1904 * UP percpu area setup. 1905 * 1906 * UP always uses km-based percpu allocator with identity mapping. 1907 * Static percpu variables are indistinguishable from the usual static 1908 * variables and don't require any special preparation. 1909 */ 1910 void __init setup_per_cpu_areas(void) 1911 { 1912 const size_t unit_size = 1913 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 1914 PERCPU_DYNAMIC_RESERVE)); 1915 struct pcpu_alloc_info *ai; 1916 void *fc; 1917 1918 ai = pcpu_alloc_alloc_info(1, 1); 1919 fc = memblock_virt_alloc_from_nopanic(unit_size, 1920 PAGE_SIZE, 1921 __pa(MAX_DMA_ADDRESS)); 1922 if (!ai || !fc) 1923 panic("Failed to allocate memory for percpu areas."); 1924 /* kmemleak tracks the percpu allocations separately */ 1925 kmemleak_free(fc); 1926 1927 ai->dyn_size = unit_size; 1928 ai->unit_size = unit_size; 1929 ai->atom_size = unit_size; 1930 ai->alloc_size = unit_size; 1931 ai->groups[0].nr_units = 1; 1932 ai->groups[0].cpu_map[0] = 0; 1933 1934 if (pcpu_setup_first_chunk(ai, fc) < 0) 1935 panic("Failed to initialize percpu areas."); 1936 } 1937 1938 #endif /* CONFIG_SMP */ 1939 1940 /* 1941 * First and reserved chunks are initialized with temporary allocation 1942 * map in initdata so that they can be used before slab is online. 1943 * This function is called after slab is brought up and replaces those 1944 * with properly allocated maps. 1945 */ 1946 void __init percpu_init_late(void) 1947 { 1948 struct pcpu_chunk *target_chunks[] = 1949 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1950 struct pcpu_chunk *chunk; 1951 unsigned long flags; 1952 int i; 1953 1954 for (i = 0; (chunk = target_chunks[i]); i++) { 1955 int *map; 1956 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1957 1958 BUILD_BUG_ON(size > PAGE_SIZE); 1959 1960 map = pcpu_mem_zalloc(size); 1961 BUG_ON(!map); 1962 1963 spin_lock_irqsave(&pcpu_lock, flags); 1964 memcpy(map, chunk->map, size); 1965 chunk->map = map; 1966 spin_unlock_irqrestore(&pcpu_lock, flags); 1967 } 1968 } 1969