xref: /openbmc/linux/mm/percpu.c (revision cd4d09ec)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71 
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76 
77 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 #define PCPU_ATOMIC_MAP_MARGIN_LOW	32
80 #define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
81 #define PCPU_EMPTY_POP_PAGES_LOW	2
82 #define PCPU_EMPTY_POP_PAGES_HIGH	4
83 
84 #ifdef CONFIG_SMP
85 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
86 #ifndef __addr_to_pcpu_ptr
87 #define __addr_to_pcpu_ptr(addr)					\
88 	(void __percpu *)((unsigned long)(addr) -			\
89 			  (unsigned long)pcpu_base_addr	+		\
90 			  (unsigned long)__per_cpu_start)
91 #endif
92 #ifndef __pcpu_ptr_to_addr
93 #define __pcpu_ptr_to_addr(ptr)						\
94 	(void __force *)((unsigned long)(ptr) +				\
95 			 (unsigned long)pcpu_base_addr -		\
96 			 (unsigned long)__per_cpu_start)
97 #endif
98 #else	/* CONFIG_SMP */
99 /* on UP, it's always identity mapped */
100 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
101 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
102 #endif	/* CONFIG_SMP */
103 
104 struct pcpu_chunk {
105 	struct list_head	list;		/* linked to pcpu_slot lists */
106 	int			free_size;	/* free bytes in the chunk */
107 	int			contig_hint;	/* max contiguous size hint */
108 	void			*base_addr;	/* base address of this chunk */
109 
110 	int			map_used;	/* # of map entries used before the sentry */
111 	int			map_alloc;	/* # of map entries allocated */
112 	int			*map;		/* allocation map */
113 	struct work_struct	map_extend_work;/* async ->map[] extension */
114 
115 	void			*data;		/* chunk data */
116 	int			first_free;	/* no free below this */
117 	bool			immutable;	/* no [de]population allowed */
118 	int			nr_populated;	/* # of populated pages */
119 	unsigned long		populated[];	/* populated bitmap */
120 };
121 
122 static int pcpu_unit_pages __read_mostly;
123 static int pcpu_unit_size __read_mostly;
124 static int pcpu_nr_units __read_mostly;
125 static int pcpu_atom_size __read_mostly;
126 static int pcpu_nr_slots __read_mostly;
127 static size_t pcpu_chunk_struct_size __read_mostly;
128 
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __read_mostly;
131 static unsigned int pcpu_high_unit_cpu __read_mostly;
132 
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __read_mostly;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136 
137 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
139 
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __read_mostly;
142 static const unsigned long *pcpu_group_offsets __read_mostly;
143 static const size_t *pcpu_group_sizes __read_mostly;
144 
145 /*
146  * The first chunk which always exists.  Note that unlike other
147  * chunks, this one can be allocated and mapped in several different
148  * ways and thus often doesn't live in the vmalloc area.
149  */
150 static struct pcpu_chunk *pcpu_first_chunk;
151 
152 /*
153  * Optional reserved chunk.  This chunk reserves part of the first
154  * chunk and serves it for reserved allocations.  The amount of
155  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
156  * area doesn't exist, the following variables contain NULL and 0
157  * respectively.
158  */
159 static struct pcpu_chunk *pcpu_reserved_chunk;
160 static int pcpu_reserved_chunk_limit;
161 
162 static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
163 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
164 
165 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166 
167 /*
168  * The number of empty populated pages, protected by pcpu_lock.  The
169  * reserved chunk doesn't contribute to the count.
170  */
171 static int pcpu_nr_empty_pop_pages;
172 
173 /*
174  * Balance work is used to populate or destroy chunks asynchronously.  We
175  * try to keep the number of populated free pages between
176  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
177  * empty chunk.
178  */
179 static void pcpu_balance_workfn(struct work_struct *work);
180 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
181 static bool pcpu_async_enabled __read_mostly;
182 static bool pcpu_atomic_alloc_failed;
183 
184 static void pcpu_schedule_balance_work(void)
185 {
186 	if (pcpu_async_enabled)
187 		schedule_work(&pcpu_balance_work);
188 }
189 
190 static bool pcpu_addr_in_first_chunk(void *addr)
191 {
192 	void *first_start = pcpu_first_chunk->base_addr;
193 
194 	return addr >= first_start && addr < first_start + pcpu_unit_size;
195 }
196 
197 static bool pcpu_addr_in_reserved_chunk(void *addr)
198 {
199 	void *first_start = pcpu_first_chunk->base_addr;
200 
201 	return addr >= first_start &&
202 		addr < first_start + pcpu_reserved_chunk_limit;
203 }
204 
205 static int __pcpu_size_to_slot(int size)
206 {
207 	int highbit = fls(size);	/* size is in bytes */
208 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
209 }
210 
211 static int pcpu_size_to_slot(int size)
212 {
213 	if (size == pcpu_unit_size)
214 		return pcpu_nr_slots - 1;
215 	return __pcpu_size_to_slot(size);
216 }
217 
218 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
219 {
220 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
221 		return 0;
222 
223 	return pcpu_size_to_slot(chunk->free_size);
224 }
225 
226 /* set the pointer to a chunk in a page struct */
227 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
228 {
229 	page->index = (unsigned long)pcpu;
230 }
231 
232 /* obtain pointer to a chunk from a page struct */
233 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
234 {
235 	return (struct pcpu_chunk *)page->index;
236 }
237 
238 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
239 {
240 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
241 }
242 
243 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
244 				     unsigned int cpu, int page_idx)
245 {
246 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
247 		(page_idx << PAGE_SHIFT);
248 }
249 
250 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
251 					   int *rs, int *re, int end)
252 {
253 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
254 	*re = find_next_bit(chunk->populated, end, *rs + 1);
255 }
256 
257 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
258 					 int *rs, int *re, int end)
259 {
260 	*rs = find_next_bit(chunk->populated, end, *rs);
261 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
262 }
263 
264 /*
265  * (Un)populated page region iterators.  Iterate over (un)populated
266  * page regions between @start and @end in @chunk.  @rs and @re should
267  * be integer variables and will be set to start and end page index of
268  * the current region.
269  */
270 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
271 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
272 	     (rs) < (re);						    \
273 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
274 
275 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
276 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
277 	     (rs) < (re);						    \
278 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
279 
280 /**
281  * pcpu_mem_zalloc - allocate memory
282  * @size: bytes to allocate
283  *
284  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
285  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
286  * memory is always zeroed.
287  *
288  * CONTEXT:
289  * Does GFP_KERNEL allocation.
290  *
291  * RETURNS:
292  * Pointer to the allocated area on success, NULL on failure.
293  */
294 static void *pcpu_mem_zalloc(size_t size)
295 {
296 	if (WARN_ON_ONCE(!slab_is_available()))
297 		return NULL;
298 
299 	if (size <= PAGE_SIZE)
300 		return kzalloc(size, GFP_KERNEL);
301 	else
302 		return vzalloc(size);
303 }
304 
305 /**
306  * pcpu_mem_free - free memory
307  * @ptr: memory to free
308  *
309  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
310  */
311 static void pcpu_mem_free(void *ptr)
312 {
313 	kvfree(ptr);
314 }
315 
316 /**
317  * pcpu_count_occupied_pages - count the number of pages an area occupies
318  * @chunk: chunk of interest
319  * @i: index of the area in question
320  *
321  * Count the number of pages chunk's @i'th area occupies.  When the area's
322  * start and/or end address isn't aligned to page boundary, the straddled
323  * page is included in the count iff the rest of the page is free.
324  */
325 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
326 {
327 	int off = chunk->map[i] & ~1;
328 	int end = chunk->map[i + 1] & ~1;
329 
330 	if (!PAGE_ALIGNED(off) && i > 0) {
331 		int prev = chunk->map[i - 1];
332 
333 		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
334 			off = round_down(off, PAGE_SIZE);
335 	}
336 
337 	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
338 		int next = chunk->map[i + 1];
339 		int nend = chunk->map[i + 2] & ~1;
340 
341 		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
342 			end = round_up(end, PAGE_SIZE);
343 	}
344 
345 	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
346 }
347 
348 /**
349  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
350  * @chunk: chunk of interest
351  * @oslot: the previous slot it was on
352  *
353  * This function is called after an allocation or free changed @chunk.
354  * New slot according to the changed state is determined and @chunk is
355  * moved to the slot.  Note that the reserved chunk is never put on
356  * chunk slots.
357  *
358  * CONTEXT:
359  * pcpu_lock.
360  */
361 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
362 {
363 	int nslot = pcpu_chunk_slot(chunk);
364 
365 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
366 		if (oslot < nslot)
367 			list_move(&chunk->list, &pcpu_slot[nslot]);
368 		else
369 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
370 	}
371 }
372 
373 /**
374  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
375  * @chunk: chunk of interest
376  * @is_atomic: the allocation context
377  *
378  * Determine whether area map of @chunk needs to be extended.  If
379  * @is_atomic, only the amount necessary for a new allocation is
380  * considered; however, async extension is scheduled if the left amount is
381  * low.  If !@is_atomic, it aims for more empty space.  Combined, this
382  * ensures that the map is likely to have enough available space to
383  * accomodate atomic allocations which can't extend maps directly.
384  *
385  * CONTEXT:
386  * pcpu_lock.
387  *
388  * RETURNS:
389  * New target map allocation length if extension is necessary, 0
390  * otherwise.
391  */
392 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
393 {
394 	int margin, new_alloc;
395 
396 	if (is_atomic) {
397 		margin = 3;
398 
399 		if (chunk->map_alloc <
400 		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
401 		    pcpu_async_enabled)
402 			schedule_work(&chunk->map_extend_work);
403 	} else {
404 		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
405 	}
406 
407 	if (chunk->map_alloc >= chunk->map_used + margin)
408 		return 0;
409 
410 	new_alloc = PCPU_DFL_MAP_ALLOC;
411 	while (new_alloc < chunk->map_used + margin)
412 		new_alloc *= 2;
413 
414 	return new_alloc;
415 }
416 
417 /**
418  * pcpu_extend_area_map - extend area map of a chunk
419  * @chunk: chunk of interest
420  * @new_alloc: new target allocation length of the area map
421  *
422  * Extend area map of @chunk to have @new_alloc entries.
423  *
424  * CONTEXT:
425  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
426  *
427  * RETURNS:
428  * 0 on success, -errno on failure.
429  */
430 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
431 {
432 	int *old = NULL, *new = NULL;
433 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
434 	unsigned long flags;
435 
436 	new = pcpu_mem_zalloc(new_size);
437 	if (!new)
438 		return -ENOMEM;
439 
440 	/* acquire pcpu_lock and switch to new area map */
441 	spin_lock_irqsave(&pcpu_lock, flags);
442 
443 	if (new_alloc <= chunk->map_alloc)
444 		goto out_unlock;
445 
446 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
447 	old = chunk->map;
448 
449 	memcpy(new, old, old_size);
450 
451 	chunk->map_alloc = new_alloc;
452 	chunk->map = new;
453 	new = NULL;
454 
455 out_unlock:
456 	spin_unlock_irqrestore(&pcpu_lock, flags);
457 
458 	/*
459 	 * pcpu_mem_free() might end up calling vfree() which uses
460 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
461 	 */
462 	pcpu_mem_free(old);
463 	pcpu_mem_free(new);
464 
465 	return 0;
466 }
467 
468 static void pcpu_map_extend_workfn(struct work_struct *work)
469 {
470 	struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
471 						map_extend_work);
472 	int new_alloc;
473 
474 	spin_lock_irq(&pcpu_lock);
475 	new_alloc = pcpu_need_to_extend(chunk, false);
476 	spin_unlock_irq(&pcpu_lock);
477 
478 	if (new_alloc)
479 		pcpu_extend_area_map(chunk, new_alloc);
480 }
481 
482 /**
483  * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
484  * @chunk: chunk the candidate area belongs to
485  * @off: the offset to the start of the candidate area
486  * @this_size: the size of the candidate area
487  * @size: the size of the target allocation
488  * @align: the alignment of the target allocation
489  * @pop_only: only allocate from already populated region
490  *
491  * We're trying to allocate @size bytes aligned at @align.  @chunk's area
492  * at @off sized @this_size is a candidate.  This function determines
493  * whether the target allocation fits in the candidate area and returns the
494  * number of bytes to pad after @off.  If the target area doesn't fit, -1
495  * is returned.
496  *
497  * If @pop_only is %true, this function only considers the already
498  * populated part of the candidate area.
499  */
500 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
501 			    int size, int align, bool pop_only)
502 {
503 	int cand_off = off;
504 
505 	while (true) {
506 		int head = ALIGN(cand_off, align) - off;
507 		int page_start, page_end, rs, re;
508 
509 		if (this_size < head + size)
510 			return -1;
511 
512 		if (!pop_only)
513 			return head;
514 
515 		/*
516 		 * If the first unpopulated page is beyond the end of the
517 		 * allocation, the whole allocation is populated;
518 		 * otherwise, retry from the end of the unpopulated area.
519 		 */
520 		page_start = PFN_DOWN(head + off);
521 		page_end = PFN_UP(head + off + size);
522 
523 		rs = page_start;
524 		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
525 		if (rs >= page_end)
526 			return head;
527 		cand_off = re * PAGE_SIZE;
528 	}
529 }
530 
531 /**
532  * pcpu_alloc_area - allocate area from a pcpu_chunk
533  * @chunk: chunk of interest
534  * @size: wanted size in bytes
535  * @align: wanted align
536  * @pop_only: allocate only from the populated area
537  * @occ_pages_p: out param for the number of pages the area occupies
538  *
539  * Try to allocate @size bytes area aligned at @align from @chunk.
540  * Note that this function only allocates the offset.  It doesn't
541  * populate or map the area.
542  *
543  * @chunk->map must have at least two free slots.
544  *
545  * CONTEXT:
546  * pcpu_lock.
547  *
548  * RETURNS:
549  * Allocated offset in @chunk on success, -1 if no matching area is
550  * found.
551  */
552 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
553 			   bool pop_only, int *occ_pages_p)
554 {
555 	int oslot = pcpu_chunk_slot(chunk);
556 	int max_contig = 0;
557 	int i, off;
558 	bool seen_free = false;
559 	int *p;
560 
561 	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
562 		int head, tail;
563 		int this_size;
564 
565 		off = *p;
566 		if (off & 1)
567 			continue;
568 
569 		this_size = (p[1] & ~1) - off;
570 
571 		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
572 					pop_only);
573 		if (head < 0) {
574 			if (!seen_free) {
575 				chunk->first_free = i;
576 				seen_free = true;
577 			}
578 			max_contig = max(this_size, max_contig);
579 			continue;
580 		}
581 
582 		/*
583 		 * If head is small or the previous block is free,
584 		 * merge'em.  Note that 'small' is defined as smaller
585 		 * than sizeof(int), which is very small but isn't too
586 		 * uncommon for percpu allocations.
587 		 */
588 		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
589 			*p = off += head;
590 			if (p[-1] & 1)
591 				chunk->free_size -= head;
592 			else
593 				max_contig = max(*p - p[-1], max_contig);
594 			this_size -= head;
595 			head = 0;
596 		}
597 
598 		/* if tail is small, just keep it around */
599 		tail = this_size - head - size;
600 		if (tail < sizeof(int)) {
601 			tail = 0;
602 			size = this_size - head;
603 		}
604 
605 		/* split if warranted */
606 		if (head || tail) {
607 			int nr_extra = !!head + !!tail;
608 
609 			/* insert new subblocks */
610 			memmove(p + nr_extra + 1, p + 1,
611 				sizeof(chunk->map[0]) * (chunk->map_used - i));
612 			chunk->map_used += nr_extra;
613 
614 			if (head) {
615 				if (!seen_free) {
616 					chunk->first_free = i;
617 					seen_free = true;
618 				}
619 				*++p = off += head;
620 				++i;
621 				max_contig = max(head, max_contig);
622 			}
623 			if (tail) {
624 				p[1] = off + size;
625 				max_contig = max(tail, max_contig);
626 			}
627 		}
628 
629 		if (!seen_free)
630 			chunk->first_free = i + 1;
631 
632 		/* update hint and mark allocated */
633 		if (i + 1 == chunk->map_used)
634 			chunk->contig_hint = max_contig; /* fully scanned */
635 		else
636 			chunk->contig_hint = max(chunk->contig_hint,
637 						 max_contig);
638 
639 		chunk->free_size -= size;
640 		*p |= 1;
641 
642 		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
643 		pcpu_chunk_relocate(chunk, oslot);
644 		return off;
645 	}
646 
647 	chunk->contig_hint = max_contig;	/* fully scanned */
648 	pcpu_chunk_relocate(chunk, oslot);
649 
650 	/* tell the upper layer that this chunk has no matching area */
651 	return -1;
652 }
653 
654 /**
655  * pcpu_free_area - free area to a pcpu_chunk
656  * @chunk: chunk of interest
657  * @freeme: offset of area to free
658  * @occ_pages_p: out param for the number of pages the area occupies
659  *
660  * Free area starting from @freeme to @chunk.  Note that this function
661  * only modifies the allocation map.  It doesn't depopulate or unmap
662  * the area.
663  *
664  * CONTEXT:
665  * pcpu_lock.
666  */
667 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
668 			   int *occ_pages_p)
669 {
670 	int oslot = pcpu_chunk_slot(chunk);
671 	int off = 0;
672 	unsigned i, j;
673 	int to_free = 0;
674 	int *p;
675 
676 	freeme |= 1;	/* we are searching for <given offset, in use> pair */
677 
678 	i = 0;
679 	j = chunk->map_used;
680 	while (i != j) {
681 		unsigned k = (i + j) / 2;
682 		off = chunk->map[k];
683 		if (off < freeme)
684 			i = k + 1;
685 		else if (off > freeme)
686 			j = k;
687 		else
688 			i = j = k;
689 	}
690 	BUG_ON(off != freeme);
691 
692 	if (i < chunk->first_free)
693 		chunk->first_free = i;
694 
695 	p = chunk->map + i;
696 	*p = off &= ~1;
697 	chunk->free_size += (p[1] & ~1) - off;
698 
699 	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
700 
701 	/* merge with next? */
702 	if (!(p[1] & 1))
703 		to_free++;
704 	/* merge with previous? */
705 	if (i > 0 && !(p[-1] & 1)) {
706 		to_free++;
707 		i--;
708 		p--;
709 	}
710 	if (to_free) {
711 		chunk->map_used -= to_free;
712 		memmove(p + 1, p + 1 + to_free,
713 			(chunk->map_used - i) * sizeof(chunk->map[0]));
714 	}
715 
716 	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
717 	pcpu_chunk_relocate(chunk, oslot);
718 }
719 
720 static struct pcpu_chunk *pcpu_alloc_chunk(void)
721 {
722 	struct pcpu_chunk *chunk;
723 
724 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
725 	if (!chunk)
726 		return NULL;
727 
728 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
729 						sizeof(chunk->map[0]));
730 	if (!chunk->map) {
731 		pcpu_mem_free(chunk);
732 		return NULL;
733 	}
734 
735 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
736 	chunk->map[0] = 0;
737 	chunk->map[1] = pcpu_unit_size | 1;
738 	chunk->map_used = 1;
739 
740 	INIT_LIST_HEAD(&chunk->list);
741 	INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
742 	chunk->free_size = pcpu_unit_size;
743 	chunk->contig_hint = pcpu_unit_size;
744 
745 	return chunk;
746 }
747 
748 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
749 {
750 	if (!chunk)
751 		return;
752 	pcpu_mem_free(chunk->map);
753 	pcpu_mem_free(chunk);
754 }
755 
756 /**
757  * pcpu_chunk_populated - post-population bookkeeping
758  * @chunk: pcpu_chunk which got populated
759  * @page_start: the start page
760  * @page_end: the end page
761  *
762  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
763  * the bookkeeping information accordingly.  Must be called after each
764  * successful population.
765  */
766 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
767 				 int page_start, int page_end)
768 {
769 	int nr = page_end - page_start;
770 
771 	lockdep_assert_held(&pcpu_lock);
772 
773 	bitmap_set(chunk->populated, page_start, nr);
774 	chunk->nr_populated += nr;
775 	pcpu_nr_empty_pop_pages += nr;
776 }
777 
778 /**
779  * pcpu_chunk_depopulated - post-depopulation bookkeeping
780  * @chunk: pcpu_chunk which got depopulated
781  * @page_start: the start page
782  * @page_end: the end page
783  *
784  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
785  * Update the bookkeeping information accordingly.  Must be called after
786  * each successful depopulation.
787  */
788 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
789 				   int page_start, int page_end)
790 {
791 	int nr = page_end - page_start;
792 
793 	lockdep_assert_held(&pcpu_lock);
794 
795 	bitmap_clear(chunk->populated, page_start, nr);
796 	chunk->nr_populated -= nr;
797 	pcpu_nr_empty_pop_pages -= nr;
798 }
799 
800 /*
801  * Chunk management implementation.
802  *
803  * To allow different implementations, chunk alloc/free and
804  * [de]population are implemented in a separate file which is pulled
805  * into this file and compiled together.  The following functions
806  * should be implemented.
807  *
808  * pcpu_populate_chunk		- populate the specified range of a chunk
809  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
810  * pcpu_create_chunk		- create a new chunk
811  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
812  * pcpu_addr_to_page		- translate address to physical address
813  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
814  */
815 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
816 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
817 static struct pcpu_chunk *pcpu_create_chunk(void);
818 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
819 static struct page *pcpu_addr_to_page(void *addr);
820 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
821 
822 #ifdef CONFIG_NEED_PER_CPU_KM
823 #include "percpu-km.c"
824 #else
825 #include "percpu-vm.c"
826 #endif
827 
828 /**
829  * pcpu_chunk_addr_search - determine chunk containing specified address
830  * @addr: address for which the chunk needs to be determined.
831  *
832  * RETURNS:
833  * The address of the found chunk.
834  */
835 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
836 {
837 	/* is it in the first chunk? */
838 	if (pcpu_addr_in_first_chunk(addr)) {
839 		/* is it in the reserved area? */
840 		if (pcpu_addr_in_reserved_chunk(addr))
841 			return pcpu_reserved_chunk;
842 		return pcpu_first_chunk;
843 	}
844 
845 	/*
846 	 * The address is relative to unit0 which might be unused and
847 	 * thus unmapped.  Offset the address to the unit space of the
848 	 * current processor before looking it up in the vmalloc
849 	 * space.  Note that any possible cpu id can be used here, so
850 	 * there's no need to worry about preemption or cpu hotplug.
851 	 */
852 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
853 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
854 }
855 
856 /**
857  * pcpu_alloc - the percpu allocator
858  * @size: size of area to allocate in bytes
859  * @align: alignment of area (max PAGE_SIZE)
860  * @reserved: allocate from the reserved chunk if available
861  * @gfp: allocation flags
862  *
863  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
864  * contain %GFP_KERNEL, the allocation is atomic.
865  *
866  * RETURNS:
867  * Percpu pointer to the allocated area on success, NULL on failure.
868  */
869 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
870 				 gfp_t gfp)
871 {
872 	static int warn_limit = 10;
873 	struct pcpu_chunk *chunk;
874 	const char *err;
875 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
876 	int occ_pages = 0;
877 	int slot, off, new_alloc, cpu, ret;
878 	unsigned long flags;
879 	void __percpu *ptr;
880 
881 	/*
882 	 * We want the lowest bit of offset available for in-use/free
883 	 * indicator, so force >= 16bit alignment and make size even.
884 	 */
885 	if (unlikely(align < 2))
886 		align = 2;
887 
888 	size = ALIGN(size, 2);
889 
890 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
891 		WARN(true, "illegal size (%zu) or align (%zu) for "
892 		     "percpu allocation\n", size, align);
893 		return NULL;
894 	}
895 
896 	spin_lock_irqsave(&pcpu_lock, flags);
897 
898 	/* serve reserved allocations from the reserved chunk if available */
899 	if (reserved && pcpu_reserved_chunk) {
900 		chunk = pcpu_reserved_chunk;
901 
902 		if (size > chunk->contig_hint) {
903 			err = "alloc from reserved chunk failed";
904 			goto fail_unlock;
905 		}
906 
907 		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
908 			spin_unlock_irqrestore(&pcpu_lock, flags);
909 			if (is_atomic ||
910 			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
911 				err = "failed to extend area map of reserved chunk";
912 				goto fail;
913 			}
914 			spin_lock_irqsave(&pcpu_lock, flags);
915 		}
916 
917 		off = pcpu_alloc_area(chunk, size, align, is_atomic,
918 				      &occ_pages);
919 		if (off >= 0)
920 			goto area_found;
921 
922 		err = "alloc from reserved chunk failed";
923 		goto fail_unlock;
924 	}
925 
926 restart:
927 	/* search through normal chunks */
928 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
929 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
930 			if (size > chunk->contig_hint)
931 				continue;
932 
933 			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
934 			if (new_alloc) {
935 				if (is_atomic)
936 					continue;
937 				spin_unlock_irqrestore(&pcpu_lock, flags);
938 				if (pcpu_extend_area_map(chunk,
939 							 new_alloc) < 0) {
940 					err = "failed to extend area map";
941 					goto fail;
942 				}
943 				spin_lock_irqsave(&pcpu_lock, flags);
944 				/*
945 				 * pcpu_lock has been dropped, need to
946 				 * restart cpu_slot list walking.
947 				 */
948 				goto restart;
949 			}
950 
951 			off = pcpu_alloc_area(chunk, size, align, is_atomic,
952 					      &occ_pages);
953 			if (off >= 0)
954 				goto area_found;
955 		}
956 	}
957 
958 	spin_unlock_irqrestore(&pcpu_lock, flags);
959 
960 	/*
961 	 * No space left.  Create a new chunk.  We don't want multiple
962 	 * tasks to create chunks simultaneously.  Serialize and create iff
963 	 * there's still no empty chunk after grabbing the mutex.
964 	 */
965 	if (is_atomic)
966 		goto fail;
967 
968 	mutex_lock(&pcpu_alloc_mutex);
969 
970 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
971 		chunk = pcpu_create_chunk();
972 		if (!chunk) {
973 			mutex_unlock(&pcpu_alloc_mutex);
974 			err = "failed to allocate new chunk";
975 			goto fail;
976 		}
977 
978 		spin_lock_irqsave(&pcpu_lock, flags);
979 		pcpu_chunk_relocate(chunk, -1);
980 	} else {
981 		spin_lock_irqsave(&pcpu_lock, flags);
982 	}
983 
984 	mutex_unlock(&pcpu_alloc_mutex);
985 	goto restart;
986 
987 area_found:
988 	spin_unlock_irqrestore(&pcpu_lock, flags);
989 
990 	/* populate if not all pages are already there */
991 	if (!is_atomic) {
992 		int page_start, page_end, rs, re;
993 
994 		mutex_lock(&pcpu_alloc_mutex);
995 
996 		page_start = PFN_DOWN(off);
997 		page_end = PFN_UP(off + size);
998 
999 		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1000 			WARN_ON(chunk->immutable);
1001 
1002 			ret = pcpu_populate_chunk(chunk, rs, re);
1003 
1004 			spin_lock_irqsave(&pcpu_lock, flags);
1005 			if (ret) {
1006 				mutex_unlock(&pcpu_alloc_mutex);
1007 				pcpu_free_area(chunk, off, &occ_pages);
1008 				err = "failed to populate";
1009 				goto fail_unlock;
1010 			}
1011 			pcpu_chunk_populated(chunk, rs, re);
1012 			spin_unlock_irqrestore(&pcpu_lock, flags);
1013 		}
1014 
1015 		mutex_unlock(&pcpu_alloc_mutex);
1016 	}
1017 
1018 	if (chunk != pcpu_reserved_chunk)
1019 		pcpu_nr_empty_pop_pages -= occ_pages;
1020 
1021 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1022 		pcpu_schedule_balance_work();
1023 
1024 	/* clear the areas and return address relative to base address */
1025 	for_each_possible_cpu(cpu)
1026 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1027 
1028 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1029 	kmemleak_alloc_percpu(ptr, size, gfp);
1030 	return ptr;
1031 
1032 fail_unlock:
1033 	spin_unlock_irqrestore(&pcpu_lock, flags);
1034 fail:
1035 	if (!is_atomic && warn_limit) {
1036 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1037 			   size, align, is_atomic, err);
1038 		dump_stack();
1039 		if (!--warn_limit)
1040 			pr_info("PERCPU: limit reached, disable warning\n");
1041 	}
1042 	if (is_atomic) {
1043 		/* see the flag handling in pcpu_blance_workfn() */
1044 		pcpu_atomic_alloc_failed = true;
1045 		pcpu_schedule_balance_work();
1046 	}
1047 	return NULL;
1048 }
1049 
1050 /**
1051  * __alloc_percpu_gfp - allocate dynamic percpu area
1052  * @size: size of area to allocate in bytes
1053  * @align: alignment of area (max PAGE_SIZE)
1054  * @gfp: allocation flags
1055  *
1056  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1057  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1058  * be called from any context but is a lot more likely to fail.
1059  *
1060  * RETURNS:
1061  * Percpu pointer to the allocated area on success, NULL on failure.
1062  */
1063 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1064 {
1065 	return pcpu_alloc(size, align, false, gfp);
1066 }
1067 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1068 
1069 /**
1070  * __alloc_percpu - allocate dynamic percpu area
1071  * @size: size of area to allocate in bytes
1072  * @align: alignment of area (max PAGE_SIZE)
1073  *
1074  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1075  */
1076 void __percpu *__alloc_percpu(size_t size, size_t align)
1077 {
1078 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1079 }
1080 EXPORT_SYMBOL_GPL(__alloc_percpu);
1081 
1082 /**
1083  * __alloc_reserved_percpu - allocate reserved percpu area
1084  * @size: size of area to allocate in bytes
1085  * @align: alignment of area (max PAGE_SIZE)
1086  *
1087  * Allocate zero-filled percpu area of @size bytes aligned at @align
1088  * from reserved percpu area if arch has set it up; otherwise,
1089  * allocation is served from the same dynamic area.  Might sleep.
1090  * Might trigger writeouts.
1091  *
1092  * CONTEXT:
1093  * Does GFP_KERNEL allocation.
1094  *
1095  * RETURNS:
1096  * Percpu pointer to the allocated area on success, NULL on failure.
1097  */
1098 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1099 {
1100 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1101 }
1102 
1103 /**
1104  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1105  * @work: unused
1106  *
1107  * Reclaim all fully free chunks except for the first one.
1108  */
1109 static void pcpu_balance_workfn(struct work_struct *work)
1110 {
1111 	LIST_HEAD(to_free);
1112 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1113 	struct pcpu_chunk *chunk, *next;
1114 	int slot, nr_to_pop, ret;
1115 
1116 	/*
1117 	 * There's no reason to keep around multiple unused chunks and VM
1118 	 * areas can be scarce.  Destroy all free chunks except for one.
1119 	 */
1120 	mutex_lock(&pcpu_alloc_mutex);
1121 	spin_lock_irq(&pcpu_lock);
1122 
1123 	list_for_each_entry_safe(chunk, next, free_head, list) {
1124 		WARN_ON(chunk->immutable);
1125 
1126 		/* spare the first one */
1127 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1128 			continue;
1129 
1130 		list_move(&chunk->list, &to_free);
1131 	}
1132 
1133 	spin_unlock_irq(&pcpu_lock);
1134 
1135 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1136 		int rs, re;
1137 
1138 		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1139 			pcpu_depopulate_chunk(chunk, rs, re);
1140 			spin_lock_irq(&pcpu_lock);
1141 			pcpu_chunk_depopulated(chunk, rs, re);
1142 			spin_unlock_irq(&pcpu_lock);
1143 		}
1144 		pcpu_destroy_chunk(chunk);
1145 	}
1146 
1147 	/*
1148 	 * Ensure there are certain number of free populated pages for
1149 	 * atomic allocs.  Fill up from the most packed so that atomic
1150 	 * allocs don't increase fragmentation.  If atomic allocation
1151 	 * failed previously, always populate the maximum amount.  This
1152 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1153 	 * failing indefinitely; however, large atomic allocs are not
1154 	 * something we support properly and can be highly unreliable and
1155 	 * inefficient.
1156 	 */
1157 retry_pop:
1158 	if (pcpu_atomic_alloc_failed) {
1159 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1160 		/* best effort anyway, don't worry about synchronization */
1161 		pcpu_atomic_alloc_failed = false;
1162 	} else {
1163 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1164 				  pcpu_nr_empty_pop_pages,
1165 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1166 	}
1167 
1168 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1169 		int nr_unpop = 0, rs, re;
1170 
1171 		if (!nr_to_pop)
1172 			break;
1173 
1174 		spin_lock_irq(&pcpu_lock);
1175 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1176 			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1177 			if (nr_unpop)
1178 				break;
1179 		}
1180 		spin_unlock_irq(&pcpu_lock);
1181 
1182 		if (!nr_unpop)
1183 			continue;
1184 
1185 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1186 		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1187 			int nr = min(re - rs, nr_to_pop);
1188 
1189 			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1190 			if (!ret) {
1191 				nr_to_pop -= nr;
1192 				spin_lock_irq(&pcpu_lock);
1193 				pcpu_chunk_populated(chunk, rs, rs + nr);
1194 				spin_unlock_irq(&pcpu_lock);
1195 			} else {
1196 				nr_to_pop = 0;
1197 			}
1198 
1199 			if (!nr_to_pop)
1200 				break;
1201 		}
1202 	}
1203 
1204 	if (nr_to_pop) {
1205 		/* ran out of chunks to populate, create a new one and retry */
1206 		chunk = pcpu_create_chunk();
1207 		if (chunk) {
1208 			spin_lock_irq(&pcpu_lock);
1209 			pcpu_chunk_relocate(chunk, -1);
1210 			spin_unlock_irq(&pcpu_lock);
1211 			goto retry_pop;
1212 		}
1213 	}
1214 
1215 	mutex_unlock(&pcpu_alloc_mutex);
1216 }
1217 
1218 /**
1219  * free_percpu - free percpu area
1220  * @ptr: pointer to area to free
1221  *
1222  * Free percpu area @ptr.
1223  *
1224  * CONTEXT:
1225  * Can be called from atomic context.
1226  */
1227 void free_percpu(void __percpu *ptr)
1228 {
1229 	void *addr;
1230 	struct pcpu_chunk *chunk;
1231 	unsigned long flags;
1232 	int off, occ_pages;
1233 
1234 	if (!ptr)
1235 		return;
1236 
1237 	kmemleak_free_percpu(ptr);
1238 
1239 	addr = __pcpu_ptr_to_addr(ptr);
1240 
1241 	spin_lock_irqsave(&pcpu_lock, flags);
1242 
1243 	chunk = pcpu_chunk_addr_search(addr);
1244 	off = addr - chunk->base_addr;
1245 
1246 	pcpu_free_area(chunk, off, &occ_pages);
1247 
1248 	if (chunk != pcpu_reserved_chunk)
1249 		pcpu_nr_empty_pop_pages += occ_pages;
1250 
1251 	/* if there are more than one fully free chunks, wake up grim reaper */
1252 	if (chunk->free_size == pcpu_unit_size) {
1253 		struct pcpu_chunk *pos;
1254 
1255 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1256 			if (pos != chunk) {
1257 				pcpu_schedule_balance_work();
1258 				break;
1259 			}
1260 	}
1261 
1262 	spin_unlock_irqrestore(&pcpu_lock, flags);
1263 }
1264 EXPORT_SYMBOL_GPL(free_percpu);
1265 
1266 /**
1267  * is_kernel_percpu_address - test whether address is from static percpu area
1268  * @addr: address to test
1269  *
1270  * Test whether @addr belongs to in-kernel static percpu area.  Module
1271  * static percpu areas are not considered.  For those, use
1272  * is_module_percpu_address().
1273  *
1274  * RETURNS:
1275  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1276  */
1277 bool is_kernel_percpu_address(unsigned long addr)
1278 {
1279 #ifdef CONFIG_SMP
1280 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1281 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1282 	unsigned int cpu;
1283 
1284 	for_each_possible_cpu(cpu) {
1285 		void *start = per_cpu_ptr(base, cpu);
1286 
1287 		if ((void *)addr >= start && (void *)addr < start + static_size)
1288 			return true;
1289         }
1290 #endif
1291 	/* on UP, can't distinguish from other static vars, always false */
1292 	return false;
1293 }
1294 
1295 /**
1296  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1297  * @addr: the address to be converted to physical address
1298  *
1299  * Given @addr which is dereferenceable address obtained via one of
1300  * percpu access macros, this function translates it into its physical
1301  * address.  The caller is responsible for ensuring @addr stays valid
1302  * until this function finishes.
1303  *
1304  * percpu allocator has special setup for the first chunk, which currently
1305  * supports either embedding in linear address space or vmalloc mapping,
1306  * and, from the second one, the backing allocator (currently either vm or
1307  * km) provides translation.
1308  *
1309  * The addr can be translated simply without checking if it falls into the
1310  * first chunk. But the current code reflects better how percpu allocator
1311  * actually works, and the verification can discover both bugs in percpu
1312  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1313  * code.
1314  *
1315  * RETURNS:
1316  * The physical address for @addr.
1317  */
1318 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1319 {
1320 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1321 	bool in_first_chunk = false;
1322 	unsigned long first_low, first_high;
1323 	unsigned int cpu;
1324 
1325 	/*
1326 	 * The following test on unit_low/high isn't strictly
1327 	 * necessary but will speed up lookups of addresses which
1328 	 * aren't in the first chunk.
1329 	 */
1330 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1331 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1332 				     pcpu_unit_pages);
1333 	if ((unsigned long)addr >= first_low &&
1334 	    (unsigned long)addr < first_high) {
1335 		for_each_possible_cpu(cpu) {
1336 			void *start = per_cpu_ptr(base, cpu);
1337 
1338 			if (addr >= start && addr < start + pcpu_unit_size) {
1339 				in_first_chunk = true;
1340 				break;
1341 			}
1342 		}
1343 	}
1344 
1345 	if (in_first_chunk) {
1346 		if (!is_vmalloc_addr(addr))
1347 			return __pa(addr);
1348 		else
1349 			return page_to_phys(vmalloc_to_page(addr)) +
1350 			       offset_in_page(addr);
1351 	} else
1352 		return page_to_phys(pcpu_addr_to_page(addr)) +
1353 		       offset_in_page(addr);
1354 }
1355 
1356 /**
1357  * pcpu_alloc_alloc_info - allocate percpu allocation info
1358  * @nr_groups: the number of groups
1359  * @nr_units: the number of units
1360  *
1361  * Allocate ai which is large enough for @nr_groups groups containing
1362  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1363  * cpu_map array which is long enough for @nr_units and filled with
1364  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1365  * pointer of other groups.
1366  *
1367  * RETURNS:
1368  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1369  * failure.
1370  */
1371 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1372 						      int nr_units)
1373 {
1374 	struct pcpu_alloc_info *ai;
1375 	size_t base_size, ai_size;
1376 	void *ptr;
1377 	int unit;
1378 
1379 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1380 			  __alignof__(ai->groups[0].cpu_map[0]));
1381 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1382 
1383 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1384 	if (!ptr)
1385 		return NULL;
1386 	ai = ptr;
1387 	ptr += base_size;
1388 
1389 	ai->groups[0].cpu_map = ptr;
1390 
1391 	for (unit = 0; unit < nr_units; unit++)
1392 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1393 
1394 	ai->nr_groups = nr_groups;
1395 	ai->__ai_size = PFN_ALIGN(ai_size);
1396 
1397 	return ai;
1398 }
1399 
1400 /**
1401  * pcpu_free_alloc_info - free percpu allocation info
1402  * @ai: pcpu_alloc_info to free
1403  *
1404  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1405  */
1406 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1407 {
1408 	memblock_free_early(__pa(ai), ai->__ai_size);
1409 }
1410 
1411 /**
1412  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1413  * @lvl: loglevel
1414  * @ai: allocation info to dump
1415  *
1416  * Print out information about @ai using loglevel @lvl.
1417  */
1418 static void pcpu_dump_alloc_info(const char *lvl,
1419 				 const struct pcpu_alloc_info *ai)
1420 {
1421 	int group_width = 1, cpu_width = 1, width;
1422 	char empty_str[] = "--------";
1423 	int alloc = 0, alloc_end = 0;
1424 	int group, v;
1425 	int upa, apl;	/* units per alloc, allocs per line */
1426 
1427 	v = ai->nr_groups;
1428 	while (v /= 10)
1429 		group_width++;
1430 
1431 	v = num_possible_cpus();
1432 	while (v /= 10)
1433 		cpu_width++;
1434 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1435 
1436 	upa = ai->alloc_size / ai->unit_size;
1437 	width = upa * (cpu_width + 1) + group_width + 3;
1438 	apl = rounddown_pow_of_two(max(60 / width, 1));
1439 
1440 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1441 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1442 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1443 
1444 	for (group = 0; group < ai->nr_groups; group++) {
1445 		const struct pcpu_group_info *gi = &ai->groups[group];
1446 		int unit = 0, unit_end = 0;
1447 
1448 		BUG_ON(gi->nr_units % upa);
1449 		for (alloc_end += gi->nr_units / upa;
1450 		     alloc < alloc_end; alloc++) {
1451 			if (!(alloc % apl)) {
1452 				printk(KERN_CONT "\n");
1453 				printk("%spcpu-alloc: ", lvl);
1454 			}
1455 			printk(KERN_CONT "[%0*d] ", group_width, group);
1456 
1457 			for (unit_end += upa; unit < unit_end; unit++)
1458 				if (gi->cpu_map[unit] != NR_CPUS)
1459 					printk(KERN_CONT "%0*d ", cpu_width,
1460 					       gi->cpu_map[unit]);
1461 				else
1462 					printk(KERN_CONT "%s ", empty_str);
1463 		}
1464 	}
1465 	printk(KERN_CONT "\n");
1466 }
1467 
1468 /**
1469  * pcpu_setup_first_chunk - initialize the first percpu chunk
1470  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1471  * @base_addr: mapped address
1472  *
1473  * Initialize the first percpu chunk which contains the kernel static
1474  * perpcu area.  This function is to be called from arch percpu area
1475  * setup path.
1476  *
1477  * @ai contains all information necessary to initialize the first
1478  * chunk and prime the dynamic percpu allocator.
1479  *
1480  * @ai->static_size is the size of static percpu area.
1481  *
1482  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1483  * reserve after the static area in the first chunk.  This reserves
1484  * the first chunk such that it's available only through reserved
1485  * percpu allocation.  This is primarily used to serve module percpu
1486  * static areas on architectures where the addressing model has
1487  * limited offset range for symbol relocations to guarantee module
1488  * percpu symbols fall inside the relocatable range.
1489  *
1490  * @ai->dyn_size determines the number of bytes available for dynamic
1491  * allocation in the first chunk.  The area between @ai->static_size +
1492  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1493  *
1494  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1495  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1496  * @ai->dyn_size.
1497  *
1498  * @ai->atom_size is the allocation atom size and used as alignment
1499  * for vm areas.
1500  *
1501  * @ai->alloc_size is the allocation size and always multiple of
1502  * @ai->atom_size.  This is larger than @ai->atom_size if
1503  * @ai->unit_size is larger than @ai->atom_size.
1504  *
1505  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1506  * percpu areas.  Units which should be colocated are put into the
1507  * same group.  Dynamic VM areas will be allocated according to these
1508  * groupings.  If @ai->nr_groups is zero, a single group containing
1509  * all units is assumed.
1510  *
1511  * The caller should have mapped the first chunk at @base_addr and
1512  * copied static data to each unit.
1513  *
1514  * If the first chunk ends up with both reserved and dynamic areas, it
1515  * is served by two chunks - one to serve the core static and reserved
1516  * areas and the other for the dynamic area.  They share the same vm
1517  * and page map but uses different area allocation map to stay away
1518  * from each other.  The latter chunk is circulated in the chunk slots
1519  * and available for dynamic allocation like any other chunks.
1520  *
1521  * RETURNS:
1522  * 0 on success, -errno on failure.
1523  */
1524 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1525 				  void *base_addr)
1526 {
1527 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1528 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1529 	size_t dyn_size = ai->dyn_size;
1530 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1531 	struct pcpu_chunk *schunk, *dchunk = NULL;
1532 	unsigned long *group_offsets;
1533 	size_t *group_sizes;
1534 	unsigned long *unit_off;
1535 	unsigned int cpu;
1536 	int *unit_map;
1537 	int group, unit, i;
1538 
1539 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1540 	if (unlikely(cond)) {						\
1541 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1542 		pr_emerg("PERCPU: cpu_possible_mask=%*pb\n",		\
1543 			 cpumask_pr_args(cpu_possible_mask));		\
1544 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1545 		BUG();							\
1546 	}								\
1547 } while (0)
1548 
1549 	/* sanity checks */
1550 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1551 #ifdef CONFIG_SMP
1552 	PCPU_SETUP_BUG_ON(!ai->static_size);
1553 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1554 #endif
1555 	PCPU_SETUP_BUG_ON(!base_addr);
1556 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1557 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1558 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1559 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1560 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1561 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1562 
1563 	/* process group information and build config tables accordingly */
1564 	group_offsets = memblock_virt_alloc(ai->nr_groups *
1565 					     sizeof(group_offsets[0]), 0);
1566 	group_sizes = memblock_virt_alloc(ai->nr_groups *
1567 					   sizeof(group_sizes[0]), 0);
1568 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1569 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1570 
1571 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1572 		unit_map[cpu] = UINT_MAX;
1573 
1574 	pcpu_low_unit_cpu = NR_CPUS;
1575 	pcpu_high_unit_cpu = NR_CPUS;
1576 
1577 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1578 		const struct pcpu_group_info *gi = &ai->groups[group];
1579 
1580 		group_offsets[group] = gi->base_offset;
1581 		group_sizes[group] = gi->nr_units * ai->unit_size;
1582 
1583 		for (i = 0; i < gi->nr_units; i++) {
1584 			cpu = gi->cpu_map[i];
1585 			if (cpu == NR_CPUS)
1586 				continue;
1587 
1588 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1589 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1590 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1591 
1592 			unit_map[cpu] = unit + i;
1593 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1594 
1595 			/* determine low/high unit_cpu */
1596 			if (pcpu_low_unit_cpu == NR_CPUS ||
1597 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1598 				pcpu_low_unit_cpu = cpu;
1599 			if (pcpu_high_unit_cpu == NR_CPUS ||
1600 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1601 				pcpu_high_unit_cpu = cpu;
1602 		}
1603 	}
1604 	pcpu_nr_units = unit;
1605 
1606 	for_each_possible_cpu(cpu)
1607 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1608 
1609 	/* we're done parsing the input, undefine BUG macro and dump config */
1610 #undef PCPU_SETUP_BUG_ON
1611 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1612 
1613 	pcpu_nr_groups = ai->nr_groups;
1614 	pcpu_group_offsets = group_offsets;
1615 	pcpu_group_sizes = group_sizes;
1616 	pcpu_unit_map = unit_map;
1617 	pcpu_unit_offsets = unit_off;
1618 
1619 	/* determine basic parameters */
1620 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1621 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1622 	pcpu_atom_size = ai->atom_size;
1623 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1624 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1625 
1626 	/*
1627 	 * Allocate chunk slots.  The additional last slot is for
1628 	 * empty chunks.
1629 	 */
1630 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1631 	pcpu_slot = memblock_virt_alloc(
1632 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1633 	for (i = 0; i < pcpu_nr_slots; i++)
1634 		INIT_LIST_HEAD(&pcpu_slot[i]);
1635 
1636 	/*
1637 	 * Initialize static chunk.  If reserved_size is zero, the
1638 	 * static chunk covers static area + dynamic allocation area
1639 	 * in the first chunk.  If reserved_size is not zero, it
1640 	 * covers static area + reserved area (mostly used for module
1641 	 * static percpu allocation).
1642 	 */
1643 	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1644 	INIT_LIST_HEAD(&schunk->list);
1645 	INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1646 	schunk->base_addr = base_addr;
1647 	schunk->map = smap;
1648 	schunk->map_alloc = ARRAY_SIZE(smap);
1649 	schunk->immutable = true;
1650 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1651 	schunk->nr_populated = pcpu_unit_pages;
1652 
1653 	if (ai->reserved_size) {
1654 		schunk->free_size = ai->reserved_size;
1655 		pcpu_reserved_chunk = schunk;
1656 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1657 	} else {
1658 		schunk->free_size = dyn_size;
1659 		dyn_size = 0;			/* dynamic area covered */
1660 	}
1661 	schunk->contig_hint = schunk->free_size;
1662 
1663 	schunk->map[0] = 1;
1664 	schunk->map[1] = ai->static_size;
1665 	schunk->map_used = 1;
1666 	if (schunk->free_size)
1667 		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1668 	schunk->map[schunk->map_used] |= 1;
1669 
1670 	/* init dynamic chunk if necessary */
1671 	if (dyn_size) {
1672 		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1673 		INIT_LIST_HEAD(&dchunk->list);
1674 		INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1675 		dchunk->base_addr = base_addr;
1676 		dchunk->map = dmap;
1677 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1678 		dchunk->immutable = true;
1679 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1680 		dchunk->nr_populated = pcpu_unit_pages;
1681 
1682 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1683 		dchunk->map[0] = 1;
1684 		dchunk->map[1] = pcpu_reserved_chunk_limit;
1685 		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1686 		dchunk->map_used = 2;
1687 	}
1688 
1689 	/* link the first chunk in */
1690 	pcpu_first_chunk = dchunk ?: schunk;
1691 	pcpu_nr_empty_pop_pages +=
1692 		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1693 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1694 
1695 	/* we're done */
1696 	pcpu_base_addr = base_addr;
1697 	return 0;
1698 }
1699 
1700 #ifdef CONFIG_SMP
1701 
1702 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1703 	[PCPU_FC_AUTO]	= "auto",
1704 	[PCPU_FC_EMBED]	= "embed",
1705 	[PCPU_FC_PAGE]	= "page",
1706 };
1707 
1708 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1709 
1710 static int __init percpu_alloc_setup(char *str)
1711 {
1712 	if (!str)
1713 		return -EINVAL;
1714 
1715 	if (0)
1716 		/* nada */;
1717 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1718 	else if (!strcmp(str, "embed"))
1719 		pcpu_chosen_fc = PCPU_FC_EMBED;
1720 #endif
1721 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1722 	else if (!strcmp(str, "page"))
1723 		pcpu_chosen_fc = PCPU_FC_PAGE;
1724 #endif
1725 	else
1726 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1727 
1728 	return 0;
1729 }
1730 early_param("percpu_alloc", percpu_alloc_setup);
1731 
1732 /*
1733  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1734  * Build it if needed by the arch config or the generic setup is going
1735  * to be used.
1736  */
1737 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1738 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1739 #define BUILD_EMBED_FIRST_CHUNK
1740 #endif
1741 
1742 /* build pcpu_page_first_chunk() iff needed by the arch config */
1743 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1744 #define BUILD_PAGE_FIRST_CHUNK
1745 #endif
1746 
1747 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1748 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1749 /**
1750  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1751  * @reserved_size: the size of reserved percpu area in bytes
1752  * @dyn_size: minimum free size for dynamic allocation in bytes
1753  * @atom_size: allocation atom size
1754  * @cpu_distance_fn: callback to determine distance between cpus, optional
1755  *
1756  * This function determines grouping of units, their mappings to cpus
1757  * and other parameters considering needed percpu size, allocation
1758  * atom size and distances between CPUs.
1759  *
1760  * Groups are always multiples of atom size and CPUs which are of
1761  * LOCAL_DISTANCE both ways are grouped together and share space for
1762  * units in the same group.  The returned configuration is guaranteed
1763  * to have CPUs on different nodes on different groups and >=75% usage
1764  * of allocated virtual address space.
1765  *
1766  * RETURNS:
1767  * On success, pointer to the new allocation_info is returned.  On
1768  * failure, ERR_PTR value is returned.
1769  */
1770 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1771 				size_t reserved_size, size_t dyn_size,
1772 				size_t atom_size,
1773 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1774 {
1775 	static int group_map[NR_CPUS] __initdata;
1776 	static int group_cnt[NR_CPUS] __initdata;
1777 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1778 	int nr_groups = 1, nr_units = 0;
1779 	size_t size_sum, min_unit_size, alloc_size;
1780 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1781 	int last_allocs, group, unit;
1782 	unsigned int cpu, tcpu;
1783 	struct pcpu_alloc_info *ai;
1784 	unsigned int *cpu_map;
1785 
1786 	/* this function may be called multiple times */
1787 	memset(group_map, 0, sizeof(group_map));
1788 	memset(group_cnt, 0, sizeof(group_cnt));
1789 
1790 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1791 	size_sum = PFN_ALIGN(static_size + reserved_size +
1792 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1793 	dyn_size = size_sum - static_size - reserved_size;
1794 
1795 	/*
1796 	 * Determine min_unit_size, alloc_size and max_upa such that
1797 	 * alloc_size is multiple of atom_size and is the smallest
1798 	 * which can accommodate 4k aligned segments which are equal to
1799 	 * or larger than min_unit_size.
1800 	 */
1801 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1802 
1803 	alloc_size = roundup(min_unit_size, atom_size);
1804 	upa = alloc_size / min_unit_size;
1805 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1806 		upa--;
1807 	max_upa = upa;
1808 
1809 	/* group cpus according to their proximity */
1810 	for_each_possible_cpu(cpu) {
1811 		group = 0;
1812 	next_group:
1813 		for_each_possible_cpu(tcpu) {
1814 			if (cpu == tcpu)
1815 				break;
1816 			if (group_map[tcpu] == group && cpu_distance_fn &&
1817 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1818 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1819 				group++;
1820 				nr_groups = max(nr_groups, group + 1);
1821 				goto next_group;
1822 			}
1823 		}
1824 		group_map[cpu] = group;
1825 		group_cnt[group]++;
1826 	}
1827 
1828 	/*
1829 	 * Expand unit size until address space usage goes over 75%
1830 	 * and then as much as possible without using more address
1831 	 * space.
1832 	 */
1833 	last_allocs = INT_MAX;
1834 	for (upa = max_upa; upa; upa--) {
1835 		int allocs = 0, wasted = 0;
1836 
1837 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1838 			continue;
1839 
1840 		for (group = 0; group < nr_groups; group++) {
1841 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1842 			allocs += this_allocs;
1843 			wasted += this_allocs * upa - group_cnt[group];
1844 		}
1845 
1846 		/*
1847 		 * Don't accept if wastage is over 1/3.  The
1848 		 * greater-than comparison ensures upa==1 always
1849 		 * passes the following check.
1850 		 */
1851 		if (wasted > num_possible_cpus() / 3)
1852 			continue;
1853 
1854 		/* and then don't consume more memory */
1855 		if (allocs > last_allocs)
1856 			break;
1857 		last_allocs = allocs;
1858 		best_upa = upa;
1859 	}
1860 	upa = best_upa;
1861 
1862 	/* allocate and fill alloc_info */
1863 	for (group = 0; group < nr_groups; group++)
1864 		nr_units += roundup(group_cnt[group], upa);
1865 
1866 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1867 	if (!ai)
1868 		return ERR_PTR(-ENOMEM);
1869 	cpu_map = ai->groups[0].cpu_map;
1870 
1871 	for (group = 0; group < nr_groups; group++) {
1872 		ai->groups[group].cpu_map = cpu_map;
1873 		cpu_map += roundup(group_cnt[group], upa);
1874 	}
1875 
1876 	ai->static_size = static_size;
1877 	ai->reserved_size = reserved_size;
1878 	ai->dyn_size = dyn_size;
1879 	ai->unit_size = alloc_size / upa;
1880 	ai->atom_size = atom_size;
1881 	ai->alloc_size = alloc_size;
1882 
1883 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1884 		struct pcpu_group_info *gi = &ai->groups[group];
1885 
1886 		/*
1887 		 * Initialize base_offset as if all groups are located
1888 		 * back-to-back.  The caller should update this to
1889 		 * reflect actual allocation.
1890 		 */
1891 		gi->base_offset = unit * ai->unit_size;
1892 
1893 		for_each_possible_cpu(cpu)
1894 			if (group_map[cpu] == group)
1895 				gi->cpu_map[gi->nr_units++] = cpu;
1896 		gi->nr_units = roundup(gi->nr_units, upa);
1897 		unit += gi->nr_units;
1898 	}
1899 	BUG_ON(unit != nr_units);
1900 
1901 	return ai;
1902 }
1903 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1904 
1905 #if defined(BUILD_EMBED_FIRST_CHUNK)
1906 /**
1907  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1908  * @reserved_size: the size of reserved percpu area in bytes
1909  * @dyn_size: minimum free size for dynamic allocation in bytes
1910  * @atom_size: allocation atom size
1911  * @cpu_distance_fn: callback to determine distance between cpus, optional
1912  * @alloc_fn: function to allocate percpu page
1913  * @free_fn: function to free percpu page
1914  *
1915  * This is a helper to ease setting up embedded first percpu chunk and
1916  * can be called where pcpu_setup_first_chunk() is expected.
1917  *
1918  * If this function is used to setup the first chunk, it is allocated
1919  * by calling @alloc_fn and used as-is without being mapped into
1920  * vmalloc area.  Allocations are always whole multiples of @atom_size
1921  * aligned to @atom_size.
1922  *
1923  * This enables the first chunk to piggy back on the linear physical
1924  * mapping which often uses larger page size.  Please note that this
1925  * can result in very sparse cpu->unit mapping on NUMA machines thus
1926  * requiring large vmalloc address space.  Don't use this allocator if
1927  * vmalloc space is not orders of magnitude larger than distances
1928  * between node memory addresses (ie. 32bit NUMA machines).
1929  *
1930  * @dyn_size specifies the minimum dynamic area size.
1931  *
1932  * If the needed size is smaller than the minimum or specified unit
1933  * size, the leftover is returned using @free_fn.
1934  *
1935  * RETURNS:
1936  * 0 on success, -errno on failure.
1937  */
1938 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1939 				  size_t atom_size,
1940 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1941 				  pcpu_fc_alloc_fn_t alloc_fn,
1942 				  pcpu_fc_free_fn_t free_fn)
1943 {
1944 	void *base = (void *)ULONG_MAX;
1945 	void **areas = NULL;
1946 	struct pcpu_alloc_info *ai;
1947 	size_t size_sum, areas_size, max_distance;
1948 	int group, i, rc;
1949 
1950 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1951 				   cpu_distance_fn);
1952 	if (IS_ERR(ai))
1953 		return PTR_ERR(ai);
1954 
1955 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1956 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1957 
1958 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1959 	if (!areas) {
1960 		rc = -ENOMEM;
1961 		goto out_free;
1962 	}
1963 
1964 	/* allocate, copy and determine base address */
1965 	for (group = 0; group < ai->nr_groups; group++) {
1966 		struct pcpu_group_info *gi = &ai->groups[group];
1967 		unsigned int cpu = NR_CPUS;
1968 		void *ptr;
1969 
1970 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1971 			cpu = gi->cpu_map[i];
1972 		BUG_ON(cpu == NR_CPUS);
1973 
1974 		/* allocate space for the whole group */
1975 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1976 		if (!ptr) {
1977 			rc = -ENOMEM;
1978 			goto out_free_areas;
1979 		}
1980 		/* kmemleak tracks the percpu allocations separately */
1981 		kmemleak_free(ptr);
1982 		areas[group] = ptr;
1983 
1984 		base = min(ptr, base);
1985 	}
1986 
1987 	/*
1988 	 * Copy data and free unused parts.  This should happen after all
1989 	 * allocations are complete; otherwise, we may end up with
1990 	 * overlapping groups.
1991 	 */
1992 	for (group = 0; group < ai->nr_groups; group++) {
1993 		struct pcpu_group_info *gi = &ai->groups[group];
1994 		void *ptr = areas[group];
1995 
1996 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1997 			if (gi->cpu_map[i] == NR_CPUS) {
1998 				/* unused unit, free whole */
1999 				free_fn(ptr, ai->unit_size);
2000 				continue;
2001 			}
2002 			/* copy and return the unused part */
2003 			memcpy(ptr, __per_cpu_load, ai->static_size);
2004 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2005 		}
2006 	}
2007 
2008 	/* base address is now known, determine group base offsets */
2009 	max_distance = 0;
2010 	for (group = 0; group < ai->nr_groups; group++) {
2011 		ai->groups[group].base_offset = areas[group] - base;
2012 		max_distance = max_t(size_t, max_distance,
2013 				     ai->groups[group].base_offset);
2014 	}
2015 	max_distance += ai->unit_size;
2016 
2017 	/* warn if maximum distance is further than 75% of vmalloc space */
2018 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2019 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2020 			   "space 0x%lx\n", max_distance,
2021 			   VMALLOC_TOTAL);
2022 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2023 		/* and fail if we have fallback */
2024 		rc = -EINVAL;
2025 		goto out_free;
2026 #endif
2027 	}
2028 
2029 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2030 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2031 		ai->dyn_size, ai->unit_size);
2032 
2033 	rc = pcpu_setup_first_chunk(ai, base);
2034 	goto out_free;
2035 
2036 out_free_areas:
2037 	for (group = 0; group < ai->nr_groups; group++)
2038 		if (areas[group])
2039 			free_fn(areas[group],
2040 				ai->groups[group].nr_units * ai->unit_size);
2041 out_free:
2042 	pcpu_free_alloc_info(ai);
2043 	if (areas)
2044 		memblock_free_early(__pa(areas), areas_size);
2045 	return rc;
2046 }
2047 #endif /* BUILD_EMBED_FIRST_CHUNK */
2048 
2049 #ifdef BUILD_PAGE_FIRST_CHUNK
2050 /**
2051  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2052  * @reserved_size: the size of reserved percpu area in bytes
2053  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2054  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2055  * @populate_pte_fn: function to populate pte
2056  *
2057  * This is a helper to ease setting up page-remapped first percpu
2058  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2059  *
2060  * This is the basic allocator.  Static percpu area is allocated
2061  * page-by-page into vmalloc area.
2062  *
2063  * RETURNS:
2064  * 0 on success, -errno on failure.
2065  */
2066 int __init pcpu_page_first_chunk(size_t reserved_size,
2067 				 pcpu_fc_alloc_fn_t alloc_fn,
2068 				 pcpu_fc_free_fn_t free_fn,
2069 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2070 {
2071 	static struct vm_struct vm;
2072 	struct pcpu_alloc_info *ai;
2073 	char psize_str[16];
2074 	int unit_pages;
2075 	size_t pages_size;
2076 	struct page **pages;
2077 	int unit, i, j, rc;
2078 
2079 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2080 
2081 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2082 	if (IS_ERR(ai))
2083 		return PTR_ERR(ai);
2084 	BUG_ON(ai->nr_groups != 1);
2085 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2086 
2087 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2088 
2089 	/* unaligned allocations can't be freed, round up to page size */
2090 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2091 			       sizeof(pages[0]));
2092 	pages = memblock_virt_alloc(pages_size, 0);
2093 
2094 	/* allocate pages */
2095 	j = 0;
2096 	for (unit = 0; unit < num_possible_cpus(); unit++)
2097 		for (i = 0; i < unit_pages; i++) {
2098 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2099 			void *ptr;
2100 
2101 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2102 			if (!ptr) {
2103 				pr_warning("PERCPU: failed to allocate %s page "
2104 					   "for cpu%u\n", psize_str, cpu);
2105 				goto enomem;
2106 			}
2107 			/* kmemleak tracks the percpu allocations separately */
2108 			kmemleak_free(ptr);
2109 			pages[j++] = virt_to_page(ptr);
2110 		}
2111 
2112 	/* allocate vm area, map the pages and copy static data */
2113 	vm.flags = VM_ALLOC;
2114 	vm.size = num_possible_cpus() * ai->unit_size;
2115 	vm_area_register_early(&vm, PAGE_SIZE);
2116 
2117 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2118 		unsigned long unit_addr =
2119 			(unsigned long)vm.addr + unit * ai->unit_size;
2120 
2121 		for (i = 0; i < unit_pages; i++)
2122 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2123 
2124 		/* pte already populated, the following shouldn't fail */
2125 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2126 				      unit_pages);
2127 		if (rc < 0)
2128 			panic("failed to map percpu area, err=%d\n", rc);
2129 
2130 		/*
2131 		 * FIXME: Archs with virtual cache should flush local
2132 		 * cache for the linear mapping here - something
2133 		 * equivalent to flush_cache_vmap() on the local cpu.
2134 		 * flush_cache_vmap() can't be used as most supporting
2135 		 * data structures are not set up yet.
2136 		 */
2137 
2138 		/* copy static data */
2139 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2140 	}
2141 
2142 	/* we're ready, commit */
2143 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2144 		unit_pages, psize_str, vm.addr, ai->static_size,
2145 		ai->reserved_size, ai->dyn_size);
2146 
2147 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2148 	goto out_free_ar;
2149 
2150 enomem:
2151 	while (--j >= 0)
2152 		free_fn(page_address(pages[j]), PAGE_SIZE);
2153 	rc = -ENOMEM;
2154 out_free_ar:
2155 	memblock_free_early(__pa(pages), pages_size);
2156 	pcpu_free_alloc_info(ai);
2157 	return rc;
2158 }
2159 #endif /* BUILD_PAGE_FIRST_CHUNK */
2160 
2161 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2162 /*
2163  * Generic SMP percpu area setup.
2164  *
2165  * The embedding helper is used because its behavior closely resembles
2166  * the original non-dynamic generic percpu area setup.  This is
2167  * important because many archs have addressing restrictions and might
2168  * fail if the percpu area is located far away from the previous
2169  * location.  As an added bonus, in non-NUMA cases, embedding is
2170  * generally a good idea TLB-wise because percpu area can piggy back
2171  * on the physical linear memory mapping which uses large page
2172  * mappings on applicable archs.
2173  */
2174 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2175 EXPORT_SYMBOL(__per_cpu_offset);
2176 
2177 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2178 				       size_t align)
2179 {
2180 	return  memblock_virt_alloc_from_nopanic(
2181 			size, align, __pa(MAX_DMA_ADDRESS));
2182 }
2183 
2184 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2185 {
2186 	memblock_free_early(__pa(ptr), size);
2187 }
2188 
2189 void __init setup_per_cpu_areas(void)
2190 {
2191 	unsigned long delta;
2192 	unsigned int cpu;
2193 	int rc;
2194 
2195 	/*
2196 	 * Always reserve area for module percpu variables.  That's
2197 	 * what the legacy allocator did.
2198 	 */
2199 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2200 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2201 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2202 	if (rc < 0)
2203 		panic("Failed to initialize percpu areas.");
2204 
2205 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2206 	for_each_possible_cpu(cpu)
2207 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2208 }
2209 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2210 
2211 #else	/* CONFIG_SMP */
2212 
2213 /*
2214  * UP percpu area setup.
2215  *
2216  * UP always uses km-based percpu allocator with identity mapping.
2217  * Static percpu variables are indistinguishable from the usual static
2218  * variables and don't require any special preparation.
2219  */
2220 void __init setup_per_cpu_areas(void)
2221 {
2222 	const size_t unit_size =
2223 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2224 					 PERCPU_DYNAMIC_RESERVE));
2225 	struct pcpu_alloc_info *ai;
2226 	void *fc;
2227 
2228 	ai = pcpu_alloc_alloc_info(1, 1);
2229 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2230 					      PAGE_SIZE,
2231 					      __pa(MAX_DMA_ADDRESS));
2232 	if (!ai || !fc)
2233 		panic("Failed to allocate memory for percpu areas.");
2234 	/* kmemleak tracks the percpu allocations separately */
2235 	kmemleak_free(fc);
2236 
2237 	ai->dyn_size = unit_size;
2238 	ai->unit_size = unit_size;
2239 	ai->atom_size = unit_size;
2240 	ai->alloc_size = unit_size;
2241 	ai->groups[0].nr_units = 1;
2242 	ai->groups[0].cpu_map[0] = 0;
2243 
2244 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2245 		panic("Failed to initialize percpu areas.");
2246 }
2247 
2248 #endif	/* CONFIG_SMP */
2249 
2250 /*
2251  * First and reserved chunks are initialized with temporary allocation
2252  * map in initdata so that they can be used before slab is online.
2253  * This function is called after slab is brought up and replaces those
2254  * with properly allocated maps.
2255  */
2256 void __init percpu_init_late(void)
2257 {
2258 	struct pcpu_chunk *target_chunks[] =
2259 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2260 	struct pcpu_chunk *chunk;
2261 	unsigned long flags;
2262 	int i;
2263 
2264 	for (i = 0; (chunk = target_chunks[i]); i++) {
2265 		int *map;
2266 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2267 
2268 		BUILD_BUG_ON(size > PAGE_SIZE);
2269 
2270 		map = pcpu_mem_zalloc(size);
2271 		BUG_ON(!map);
2272 
2273 		spin_lock_irqsave(&pcpu_lock, flags);
2274 		memcpy(map, chunk->map, size);
2275 		chunk->map = map;
2276 		spin_unlock_irqrestore(&pcpu_lock, flags);
2277 	}
2278 }
2279 
2280 /*
2281  * Percpu allocator is initialized early during boot when neither slab or
2282  * workqueue is available.  Plug async management until everything is up
2283  * and running.
2284  */
2285 static int __init percpu_enable_async(void)
2286 {
2287 	pcpu_async_enabled = true;
2288 	return 0;
2289 }
2290 subsys_initcall(percpu_enable_async);
2291