1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * This is percpu allocator which can handle both static and dynamic 10 * areas. Percpu areas are allocated in chunks. Each chunk is 11 * consisted of boot-time determined number of units and the first 12 * chunk is used for static percpu variables in the kernel image 13 * (special boot time alloc/init handling necessary as these areas 14 * need to be brought up before allocation services are running). 15 * Unit grows as necessary and all units grow or shrink in unison. 16 * When a chunk is filled up, another chunk is allocated. 17 * 18 * c0 c1 c2 19 * ------------------- ------------------- ------------ 20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 21 * ------------------- ...... ------------------- .... ------------ 22 * 23 * Allocation is done in offset-size areas of single unit space. Ie, 24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, 25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to 26 * cpus. On NUMA, the mapping can be non-linear and even sparse. 27 * Percpu access can be done by configuring percpu base registers 28 * according to cpu to unit mapping and pcpu_unit_size. 29 * 30 * There are usually many small percpu allocations many of them being 31 * as small as 4 bytes. The allocator organizes chunks into lists 32 * according to free size and tries to allocate from the fullest one. 33 * Each chunk keeps the maximum contiguous area size hint which is 34 * guaranteed to be equal to or larger than the maximum contiguous 35 * area in the chunk. This helps the allocator not to iterate the 36 * chunk maps unnecessarily. 37 * 38 * Allocation state in each chunk is kept using an array of integers 39 * on chunk->map. A positive value in the map represents a free 40 * region and negative allocated. Allocation inside a chunk is done 41 * by scanning this map sequentially and serving the first matching 42 * entry. This is mostly copied from the percpu_modalloc() allocator. 43 * Chunks can be determined from the address using the index field 44 * in the page struct. The index field contains a pointer to the chunk. 45 * 46 * To use this allocator, arch code should do the followings. 47 * 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 49 * regular address to percpu pointer and back if they need to be 50 * different from the default 51 * 52 * - use pcpu_setup_first_chunk() during percpu area initialization to 53 * setup the first chunk containing the kernel static percpu area 54 */ 55 56 #include <linux/bitmap.h> 57 #include <linux/bootmem.h> 58 #include <linux/err.h> 59 #include <linux/list.h> 60 #include <linux/log2.h> 61 #include <linux/mm.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/percpu.h> 65 #include <linux/pfn.h> 66 #include <linux/slab.h> 67 #include <linux/spinlock.h> 68 #include <linux/vmalloc.h> 69 #include <linux/workqueue.h> 70 71 #include <asm/cacheflush.h> 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/io.h> 75 76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ 77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ 78 79 #ifdef CONFIG_SMP 80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 81 #ifndef __addr_to_pcpu_ptr 82 #define __addr_to_pcpu_ptr(addr) \ 83 (void __percpu *)((unsigned long)(addr) - \ 84 (unsigned long)pcpu_base_addr + \ 85 (unsigned long)__per_cpu_start) 86 #endif 87 #ifndef __pcpu_ptr_to_addr 88 #define __pcpu_ptr_to_addr(ptr) \ 89 (void __force *)((unsigned long)(ptr) + \ 90 (unsigned long)pcpu_base_addr - \ 91 (unsigned long)__per_cpu_start) 92 #endif 93 #else /* CONFIG_SMP */ 94 /* on UP, it's always identity mapped */ 95 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 96 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 97 #endif /* CONFIG_SMP */ 98 99 struct pcpu_chunk { 100 struct list_head list; /* linked to pcpu_slot lists */ 101 int free_size; /* free bytes in the chunk */ 102 int contig_hint; /* max contiguous size hint */ 103 void *base_addr; /* base address of this chunk */ 104 int map_used; /* # of map entries used */ 105 int map_alloc; /* # of map entries allocated */ 106 int *map; /* allocation map */ 107 void *data; /* chunk data */ 108 bool immutable; /* no [de]population allowed */ 109 unsigned long populated[]; /* populated bitmap */ 110 }; 111 112 static int pcpu_unit_pages __read_mostly; 113 static int pcpu_unit_size __read_mostly; 114 static int pcpu_nr_units __read_mostly; 115 static int pcpu_atom_size __read_mostly; 116 static int pcpu_nr_slots __read_mostly; 117 static size_t pcpu_chunk_struct_size __read_mostly; 118 119 /* cpus with the lowest and highest unit numbers */ 120 static unsigned int pcpu_first_unit_cpu __read_mostly; 121 static unsigned int pcpu_last_unit_cpu __read_mostly; 122 123 /* the address of the first chunk which starts with the kernel static area */ 124 void *pcpu_base_addr __read_mostly; 125 EXPORT_SYMBOL_GPL(pcpu_base_addr); 126 127 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ 128 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ 129 130 /* group information, used for vm allocation */ 131 static int pcpu_nr_groups __read_mostly; 132 static const unsigned long *pcpu_group_offsets __read_mostly; 133 static const size_t *pcpu_group_sizes __read_mostly; 134 135 /* 136 * The first chunk which always exists. Note that unlike other 137 * chunks, this one can be allocated and mapped in several different 138 * ways and thus often doesn't live in the vmalloc area. 139 */ 140 static struct pcpu_chunk *pcpu_first_chunk; 141 142 /* 143 * Optional reserved chunk. This chunk reserves part of the first 144 * chunk and serves it for reserved allocations. The amount of 145 * reserved offset is in pcpu_reserved_chunk_limit. When reserved 146 * area doesn't exist, the following variables contain NULL and 0 147 * respectively. 148 */ 149 static struct pcpu_chunk *pcpu_reserved_chunk; 150 static int pcpu_reserved_chunk_limit; 151 152 /* 153 * Synchronization rules. 154 * 155 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former 156 * protects allocation/reclaim paths, chunks, populated bitmap and 157 * vmalloc mapping. The latter is a spinlock and protects the index 158 * data structures - chunk slots, chunks and area maps in chunks. 159 * 160 * During allocation, pcpu_alloc_mutex is kept locked all the time and 161 * pcpu_lock is grabbed and released as necessary. All actual memory 162 * allocations are done using GFP_KERNEL with pcpu_lock released. In 163 * general, percpu memory can't be allocated with irq off but 164 * irqsave/restore are still used in alloc path so that it can be used 165 * from early init path - sched_init() specifically. 166 * 167 * Free path accesses and alters only the index data structures, so it 168 * can be safely called from atomic context. When memory needs to be 169 * returned to the system, free path schedules reclaim_work which 170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be 171 * reclaimed, release both locks and frees the chunks. Note that it's 172 * necessary to grab both locks to remove a chunk from circulation as 173 * allocation path might be referencing the chunk with only 174 * pcpu_alloc_mutex locked. 175 */ 176 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ 177 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ 178 179 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ 180 181 /* reclaim work to release fully free chunks, scheduled from free path */ 182 static void pcpu_reclaim(struct work_struct *work); 183 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); 184 185 static bool pcpu_addr_in_first_chunk(void *addr) 186 { 187 void *first_start = pcpu_first_chunk->base_addr; 188 189 return addr >= first_start && addr < first_start + pcpu_unit_size; 190 } 191 192 static bool pcpu_addr_in_reserved_chunk(void *addr) 193 { 194 void *first_start = pcpu_first_chunk->base_addr; 195 196 return addr >= first_start && 197 addr < first_start + pcpu_reserved_chunk_limit; 198 } 199 200 static int __pcpu_size_to_slot(int size) 201 { 202 int highbit = fls(size); /* size is in bytes */ 203 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 204 } 205 206 static int pcpu_size_to_slot(int size) 207 { 208 if (size == pcpu_unit_size) 209 return pcpu_nr_slots - 1; 210 return __pcpu_size_to_slot(size); 211 } 212 213 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 214 { 215 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) 216 return 0; 217 218 return pcpu_size_to_slot(chunk->free_size); 219 } 220 221 /* set the pointer to a chunk in a page struct */ 222 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 223 { 224 page->index = (unsigned long)pcpu; 225 } 226 227 /* obtain pointer to a chunk from a page struct */ 228 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 229 { 230 return (struct pcpu_chunk *)page->index; 231 } 232 233 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 234 { 235 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 236 } 237 238 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 239 unsigned int cpu, int page_idx) 240 { 241 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + 242 (page_idx << PAGE_SHIFT); 243 } 244 245 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, 246 int *rs, int *re, int end) 247 { 248 *rs = find_next_zero_bit(chunk->populated, end, *rs); 249 *re = find_next_bit(chunk->populated, end, *rs + 1); 250 } 251 252 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, 253 int *rs, int *re, int end) 254 { 255 *rs = find_next_bit(chunk->populated, end, *rs); 256 *re = find_next_zero_bit(chunk->populated, end, *rs + 1); 257 } 258 259 /* 260 * (Un)populated page region iterators. Iterate over (un)populated 261 * page regions betwen @start and @end in @chunk. @rs and @re should 262 * be integer variables and will be set to start and end page index of 263 * the current region. 264 */ 265 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ 266 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ 267 (rs) < (re); \ 268 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) 269 270 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ 271 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ 272 (rs) < (re); \ 273 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) 274 275 /** 276 * pcpu_mem_alloc - allocate memory 277 * @size: bytes to allocate 278 * 279 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 280 * kzalloc() is used; otherwise, vmalloc() is used. The returned 281 * memory is always zeroed. 282 * 283 * CONTEXT: 284 * Does GFP_KERNEL allocation. 285 * 286 * RETURNS: 287 * Pointer to the allocated area on success, NULL on failure. 288 */ 289 static void *pcpu_mem_alloc(size_t size) 290 { 291 if (WARN_ON_ONCE(!slab_is_available())) 292 return NULL; 293 294 if (size <= PAGE_SIZE) 295 return kzalloc(size, GFP_KERNEL); 296 else { 297 void *ptr = vmalloc(size); 298 if (ptr) 299 memset(ptr, 0, size); 300 return ptr; 301 } 302 } 303 304 /** 305 * pcpu_mem_free - free memory 306 * @ptr: memory to free 307 * @size: size of the area 308 * 309 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). 310 */ 311 static void pcpu_mem_free(void *ptr, size_t size) 312 { 313 if (size <= PAGE_SIZE) 314 kfree(ptr); 315 else 316 vfree(ptr); 317 } 318 319 /** 320 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 321 * @chunk: chunk of interest 322 * @oslot: the previous slot it was on 323 * 324 * This function is called after an allocation or free changed @chunk. 325 * New slot according to the changed state is determined and @chunk is 326 * moved to the slot. Note that the reserved chunk is never put on 327 * chunk slots. 328 * 329 * CONTEXT: 330 * pcpu_lock. 331 */ 332 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 333 { 334 int nslot = pcpu_chunk_slot(chunk); 335 336 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 337 if (oslot < nslot) 338 list_move(&chunk->list, &pcpu_slot[nslot]); 339 else 340 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 341 } 342 } 343 344 /** 345 * pcpu_need_to_extend - determine whether chunk area map needs to be extended 346 * @chunk: chunk of interest 347 * 348 * Determine whether area map of @chunk needs to be extended to 349 * accomodate a new allocation. 350 * 351 * CONTEXT: 352 * pcpu_lock. 353 * 354 * RETURNS: 355 * New target map allocation length if extension is necessary, 0 356 * otherwise. 357 */ 358 static int pcpu_need_to_extend(struct pcpu_chunk *chunk) 359 { 360 int new_alloc; 361 362 if (chunk->map_alloc >= chunk->map_used + 2) 363 return 0; 364 365 new_alloc = PCPU_DFL_MAP_ALLOC; 366 while (new_alloc < chunk->map_used + 2) 367 new_alloc *= 2; 368 369 return new_alloc; 370 } 371 372 /** 373 * pcpu_extend_area_map - extend area map of a chunk 374 * @chunk: chunk of interest 375 * @new_alloc: new target allocation length of the area map 376 * 377 * Extend area map of @chunk to have @new_alloc entries. 378 * 379 * CONTEXT: 380 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. 381 * 382 * RETURNS: 383 * 0 on success, -errno on failure. 384 */ 385 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) 386 { 387 int *old = NULL, *new = NULL; 388 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); 389 unsigned long flags; 390 391 new = pcpu_mem_alloc(new_size); 392 if (!new) 393 return -ENOMEM; 394 395 /* acquire pcpu_lock and switch to new area map */ 396 spin_lock_irqsave(&pcpu_lock, flags); 397 398 if (new_alloc <= chunk->map_alloc) 399 goto out_unlock; 400 401 old_size = chunk->map_alloc * sizeof(chunk->map[0]); 402 old = chunk->map; 403 404 memcpy(new, old, old_size); 405 406 chunk->map_alloc = new_alloc; 407 chunk->map = new; 408 new = NULL; 409 410 out_unlock: 411 spin_unlock_irqrestore(&pcpu_lock, flags); 412 413 /* 414 * pcpu_mem_free() might end up calling vfree() which uses 415 * IRQ-unsafe lock and thus can't be called under pcpu_lock. 416 */ 417 pcpu_mem_free(old, old_size); 418 pcpu_mem_free(new, new_size); 419 420 return 0; 421 } 422 423 /** 424 * pcpu_split_block - split a map block 425 * @chunk: chunk of interest 426 * @i: index of map block to split 427 * @head: head size in bytes (can be 0) 428 * @tail: tail size in bytes (can be 0) 429 * 430 * Split the @i'th map block into two or three blocks. If @head is 431 * non-zero, @head bytes block is inserted before block @i moving it 432 * to @i+1 and reducing its size by @head bytes. 433 * 434 * If @tail is non-zero, the target block, which can be @i or @i+1 435 * depending on @head, is reduced by @tail bytes and @tail byte block 436 * is inserted after the target block. 437 * 438 * @chunk->map must have enough free slots to accomodate the split. 439 * 440 * CONTEXT: 441 * pcpu_lock. 442 */ 443 static void pcpu_split_block(struct pcpu_chunk *chunk, int i, 444 int head, int tail) 445 { 446 int nr_extra = !!head + !!tail; 447 448 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); 449 450 /* insert new subblocks */ 451 memmove(&chunk->map[i + nr_extra], &chunk->map[i], 452 sizeof(chunk->map[0]) * (chunk->map_used - i)); 453 chunk->map_used += nr_extra; 454 455 if (head) { 456 chunk->map[i + 1] = chunk->map[i] - head; 457 chunk->map[i++] = head; 458 } 459 if (tail) { 460 chunk->map[i++] -= tail; 461 chunk->map[i] = tail; 462 } 463 } 464 465 /** 466 * pcpu_alloc_area - allocate area from a pcpu_chunk 467 * @chunk: chunk of interest 468 * @size: wanted size in bytes 469 * @align: wanted align 470 * 471 * Try to allocate @size bytes area aligned at @align from @chunk. 472 * Note that this function only allocates the offset. It doesn't 473 * populate or map the area. 474 * 475 * @chunk->map must have at least two free slots. 476 * 477 * CONTEXT: 478 * pcpu_lock. 479 * 480 * RETURNS: 481 * Allocated offset in @chunk on success, -1 if no matching area is 482 * found. 483 */ 484 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) 485 { 486 int oslot = pcpu_chunk_slot(chunk); 487 int max_contig = 0; 488 int i, off; 489 490 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { 491 bool is_last = i + 1 == chunk->map_used; 492 int head, tail; 493 494 /* extra for alignment requirement */ 495 head = ALIGN(off, align) - off; 496 BUG_ON(i == 0 && head != 0); 497 498 if (chunk->map[i] < 0) 499 continue; 500 if (chunk->map[i] < head + size) { 501 max_contig = max(chunk->map[i], max_contig); 502 continue; 503 } 504 505 /* 506 * If head is small or the previous block is free, 507 * merge'em. Note that 'small' is defined as smaller 508 * than sizeof(int), which is very small but isn't too 509 * uncommon for percpu allocations. 510 */ 511 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { 512 if (chunk->map[i - 1] > 0) 513 chunk->map[i - 1] += head; 514 else { 515 chunk->map[i - 1] -= head; 516 chunk->free_size -= head; 517 } 518 chunk->map[i] -= head; 519 off += head; 520 head = 0; 521 } 522 523 /* if tail is small, just keep it around */ 524 tail = chunk->map[i] - head - size; 525 if (tail < sizeof(int)) 526 tail = 0; 527 528 /* split if warranted */ 529 if (head || tail) { 530 pcpu_split_block(chunk, i, head, tail); 531 if (head) { 532 i++; 533 off += head; 534 max_contig = max(chunk->map[i - 1], max_contig); 535 } 536 if (tail) 537 max_contig = max(chunk->map[i + 1], max_contig); 538 } 539 540 /* update hint and mark allocated */ 541 if (is_last) 542 chunk->contig_hint = max_contig; /* fully scanned */ 543 else 544 chunk->contig_hint = max(chunk->contig_hint, 545 max_contig); 546 547 chunk->free_size -= chunk->map[i]; 548 chunk->map[i] = -chunk->map[i]; 549 550 pcpu_chunk_relocate(chunk, oslot); 551 return off; 552 } 553 554 chunk->contig_hint = max_contig; /* fully scanned */ 555 pcpu_chunk_relocate(chunk, oslot); 556 557 /* tell the upper layer that this chunk has no matching area */ 558 return -1; 559 } 560 561 /** 562 * pcpu_free_area - free area to a pcpu_chunk 563 * @chunk: chunk of interest 564 * @freeme: offset of area to free 565 * 566 * Free area starting from @freeme to @chunk. Note that this function 567 * only modifies the allocation map. It doesn't depopulate or unmap 568 * the area. 569 * 570 * CONTEXT: 571 * pcpu_lock. 572 */ 573 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) 574 { 575 int oslot = pcpu_chunk_slot(chunk); 576 int i, off; 577 578 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) 579 if (off == freeme) 580 break; 581 BUG_ON(off != freeme); 582 BUG_ON(chunk->map[i] > 0); 583 584 chunk->map[i] = -chunk->map[i]; 585 chunk->free_size += chunk->map[i]; 586 587 /* merge with previous? */ 588 if (i > 0 && chunk->map[i - 1] >= 0) { 589 chunk->map[i - 1] += chunk->map[i]; 590 chunk->map_used--; 591 memmove(&chunk->map[i], &chunk->map[i + 1], 592 (chunk->map_used - i) * sizeof(chunk->map[0])); 593 i--; 594 } 595 /* merge with next? */ 596 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { 597 chunk->map[i] += chunk->map[i + 1]; 598 chunk->map_used--; 599 memmove(&chunk->map[i + 1], &chunk->map[i + 2], 600 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); 601 } 602 603 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); 604 pcpu_chunk_relocate(chunk, oslot); 605 } 606 607 static struct pcpu_chunk *pcpu_alloc_chunk(void) 608 { 609 struct pcpu_chunk *chunk; 610 611 chunk = pcpu_mem_alloc(pcpu_chunk_struct_size); 612 if (!chunk) 613 return NULL; 614 615 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); 616 if (!chunk->map) { 617 kfree(chunk); 618 return NULL; 619 } 620 621 chunk->map_alloc = PCPU_DFL_MAP_ALLOC; 622 chunk->map[chunk->map_used++] = pcpu_unit_size; 623 624 INIT_LIST_HEAD(&chunk->list); 625 chunk->free_size = pcpu_unit_size; 626 chunk->contig_hint = pcpu_unit_size; 627 628 return chunk; 629 } 630 631 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 632 { 633 if (!chunk) 634 return; 635 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); 636 kfree(chunk); 637 } 638 639 /* 640 * Chunk management implementation. 641 * 642 * To allow different implementations, chunk alloc/free and 643 * [de]population are implemented in a separate file which is pulled 644 * into this file and compiled together. The following functions 645 * should be implemented. 646 * 647 * pcpu_populate_chunk - populate the specified range of a chunk 648 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 649 * pcpu_create_chunk - create a new chunk 650 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 651 * pcpu_addr_to_page - translate address to physical address 652 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 653 */ 654 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 655 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 656 static struct pcpu_chunk *pcpu_create_chunk(void); 657 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 658 static struct page *pcpu_addr_to_page(void *addr); 659 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 660 661 #ifdef CONFIG_NEED_PER_CPU_KM 662 #include "percpu-km.c" 663 #else 664 #include "percpu-vm.c" 665 #endif 666 667 /** 668 * pcpu_chunk_addr_search - determine chunk containing specified address 669 * @addr: address for which the chunk needs to be determined. 670 * 671 * RETURNS: 672 * The address of the found chunk. 673 */ 674 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 675 { 676 /* is it in the first chunk? */ 677 if (pcpu_addr_in_first_chunk(addr)) { 678 /* is it in the reserved area? */ 679 if (pcpu_addr_in_reserved_chunk(addr)) 680 return pcpu_reserved_chunk; 681 return pcpu_first_chunk; 682 } 683 684 /* 685 * The address is relative to unit0 which might be unused and 686 * thus unmapped. Offset the address to the unit space of the 687 * current processor before looking it up in the vmalloc 688 * space. Note that any possible cpu id can be used here, so 689 * there's no need to worry about preemption or cpu hotplug. 690 */ 691 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 692 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 693 } 694 695 /** 696 * pcpu_alloc - the percpu allocator 697 * @size: size of area to allocate in bytes 698 * @align: alignment of area (max PAGE_SIZE) 699 * @reserved: allocate from the reserved chunk if available 700 * 701 * Allocate percpu area of @size bytes aligned at @align. 702 * 703 * CONTEXT: 704 * Does GFP_KERNEL allocation. 705 * 706 * RETURNS: 707 * Percpu pointer to the allocated area on success, NULL on failure. 708 */ 709 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) 710 { 711 static int warn_limit = 10; 712 struct pcpu_chunk *chunk; 713 const char *err; 714 int slot, off, new_alloc; 715 unsigned long flags; 716 717 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { 718 WARN(true, "illegal size (%zu) or align (%zu) for " 719 "percpu allocation\n", size, align); 720 return NULL; 721 } 722 723 mutex_lock(&pcpu_alloc_mutex); 724 spin_lock_irqsave(&pcpu_lock, flags); 725 726 /* serve reserved allocations from the reserved chunk if available */ 727 if (reserved && pcpu_reserved_chunk) { 728 chunk = pcpu_reserved_chunk; 729 730 if (size > chunk->contig_hint) { 731 err = "alloc from reserved chunk failed"; 732 goto fail_unlock; 733 } 734 735 while ((new_alloc = pcpu_need_to_extend(chunk))) { 736 spin_unlock_irqrestore(&pcpu_lock, flags); 737 if (pcpu_extend_area_map(chunk, new_alloc) < 0) { 738 err = "failed to extend area map of reserved chunk"; 739 goto fail_unlock_mutex; 740 } 741 spin_lock_irqsave(&pcpu_lock, flags); 742 } 743 744 off = pcpu_alloc_area(chunk, size, align); 745 if (off >= 0) 746 goto area_found; 747 748 err = "alloc from reserved chunk failed"; 749 goto fail_unlock; 750 } 751 752 restart: 753 /* search through normal chunks */ 754 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 755 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 756 if (size > chunk->contig_hint) 757 continue; 758 759 new_alloc = pcpu_need_to_extend(chunk); 760 if (new_alloc) { 761 spin_unlock_irqrestore(&pcpu_lock, flags); 762 if (pcpu_extend_area_map(chunk, 763 new_alloc) < 0) { 764 err = "failed to extend area map"; 765 goto fail_unlock_mutex; 766 } 767 spin_lock_irqsave(&pcpu_lock, flags); 768 /* 769 * pcpu_lock has been dropped, need to 770 * restart cpu_slot list walking. 771 */ 772 goto restart; 773 } 774 775 off = pcpu_alloc_area(chunk, size, align); 776 if (off >= 0) 777 goto area_found; 778 } 779 } 780 781 /* hmmm... no space left, create a new chunk */ 782 spin_unlock_irqrestore(&pcpu_lock, flags); 783 784 chunk = pcpu_create_chunk(); 785 if (!chunk) { 786 err = "failed to allocate new chunk"; 787 goto fail_unlock_mutex; 788 } 789 790 spin_lock_irqsave(&pcpu_lock, flags); 791 pcpu_chunk_relocate(chunk, -1); 792 goto restart; 793 794 area_found: 795 spin_unlock_irqrestore(&pcpu_lock, flags); 796 797 /* populate, map and clear the area */ 798 if (pcpu_populate_chunk(chunk, off, size)) { 799 spin_lock_irqsave(&pcpu_lock, flags); 800 pcpu_free_area(chunk, off); 801 err = "failed to populate"; 802 goto fail_unlock; 803 } 804 805 mutex_unlock(&pcpu_alloc_mutex); 806 807 /* return address relative to base address */ 808 return __addr_to_pcpu_ptr(chunk->base_addr + off); 809 810 fail_unlock: 811 spin_unlock_irqrestore(&pcpu_lock, flags); 812 fail_unlock_mutex: 813 mutex_unlock(&pcpu_alloc_mutex); 814 if (warn_limit) { 815 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " 816 "%s\n", size, align, err); 817 dump_stack(); 818 if (!--warn_limit) 819 pr_info("PERCPU: limit reached, disable warning\n"); 820 } 821 return NULL; 822 } 823 824 /** 825 * __alloc_percpu - allocate dynamic percpu area 826 * @size: size of area to allocate in bytes 827 * @align: alignment of area (max PAGE_SIZE) 828 * 829 * Allocate zero-filled percpu area of @size bytes aligned at @align. 830 * Might sleep. Might trigger writeouts. 831 * 832 * CONTEXT: 833 * Does GFP_KERNEL allocation. 834 * 835 * RETURNS: 836 * Percpu pointer to the allocated area on success, NULL on failure. 837 */ 838 void __percpu *__alloc_percpu(size_t size, size_t align) 839 { 840 return pcpu_alloc(size, align, false); 841 } 842 EXPORT_SYMBOL_GPL(__alloc_percpu); 843 844 /** 845 * __alloc_reserved_percpu - allocate reserved percpu area 846 * @size: size of area to allocate in bytes 847 * @align: alignment of area (max PAGE_SIZE) 848 * 849 * Allocate zero-filled percpu area of @size bytes aligned at @align 850 * from reserved percpu area if arch has set it up; otherwise, 851 * allocation is served from the same dynamic area. Might sleep. 852 * Might trigger writeouts. 853 * 854 * CONTEXT: 855 * Does GFP_KERNEL allocation. 856 * 857 * RETURNS: 858 * Percpu pointer to the allocated area on success, NULL on failure. 859 */ 860 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 861 { 862 return pcpu_alloc(size, align, true); 863 } 864 865 /** 866 * pcpu_reclaim - reclaim fully free chunks, workqueue function 867 * @work: unused 868 * 869 * Reclaim all fully free chunks except for the first one. 870 * 871 * CONTEXT: 872 * workqueue context. 873 */ 874 static void pcpu_reclaim(struct work_struct *work) 875 { 876 LIST_HEAD(todo); 877 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; 878 struct pcpu_chunk *chunk, *next; 879 880 mutex_lock(&pcpu_alloc_mutex); 881 spin_lock_irq(&pcpu_lock); 882 883 list_for_each_entry_safe(chunk, next, head, list) { 884 WARN_ON(chunk->immutable); 885 886 /* spare the first one */ 887 if (chunk == list_first_entry(head, struct pcpu_chunk, list)) 888 continue; 889 890 list_move(&chunk->list, &todo); 891 } 892 893 spin_unlock_irq(&pcpu_lock); 894 895 list_for_each_entry_safe(chunk, next, &todo, list) { 896 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); 897 pcpu_destroy_chunk(chunk); 898 } 899 900 mutex_unlock(&pcpu_alloc_mutex); 901 } 902 903 /** 904 * free_percpu - free percpu area 905 * @ptr: pointer to area to free 906 * 907 * Free percpu area @ptr. 908 * 909 * CONTEXT: 910 * Can be called from atomic context. 911 */ 912 void free_percpu(void __percpu *ptr) 913 { 914 void *addr; 915 struct pcpu_chunk *chunk; 916 unsigned long flags; 917 int off; 918 919 if (!ptr) 920 return; 921 922 addr = __pcpu_ptr_to_addr(ptr); 923 924 spin_lock_irqsave(&pcpu_lock, flags); 925 926 chunk = pcpu_chunk_addr_search(addr); 927 off = addr - chunk->base_addr; 928 929 pcpu_free_area(chunk, off); 930 931 /* if there are more than one fully free chunks, wake up grim reaper */ 932 if (chunk->free_size == pcpu_unit_size) { 933 struct pcpu_chunk *pos; 934 935 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 936 if (pos != chunk) { 937 schedule_work(&pcpu_reclaim_work); 938 break; 939 } 940 } 941 942 spin_unlock_irqrestore(&pcpu_lock, flags); 943 } 944 EXPORT_SYMBOL_GPL(free_percpu); 945 946 /** 947 * is_kernel_percpu_address - test whether address is from static percpu area 948 * @addr: address to test 949 * 950 * Test whether @addr belongs to in-kernel static percpu area. Module 951 * static percpu areas are not considered. For those, use 952 * is_module_percpu_address(). 953 * 954 * RETURNS: 955 * %true if @addr is from in-kernel static percpu area, %false otherwise. 956 */ 957 bool is_kernel_percpu_address(unsigned long addr) 958 { 959 #ifdef CONFIG_SMP 960 const size_t static_size = __per_cpu_end - __per_cpu_start; 961 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 962 unsigned int cpu; 963 964 for_each_possible_cpu(cpu) { 965 void *start = per_cpu_ptr(base, cpu); 966 967 if ((void *)addr >= start && (void *)addr < start + static_size) 968 return true; 969 } 970 #endif 971 /* on UP, can't distinguish from other static vars, always false */ 972 return false; 973 } 974 975 /** 976 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 977 * @addr: the address to be converted to physical address 978 * 979 * Given @addr which is dereferenceable address obtained via one of 980 * percpu access macros, this function translates it into its physical 981 * address. The caller is responsible for ensuring @addr stays valid 982 * until this function finishes. 983 * 984 * RETURNS: 985 * The physical address for @addr. 986 */ 987 phys_addr_t per_cpu_ptr_to_phys(void *addr) 988 { 989 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 990 bool in_first_chunk = false; 991 unsigned long first_start, first_end; 992 unsigned int cpu; 993 994 /* 995 * The following test on first_start/end isn't strictly 996 * necessary but will speed up lookups of addresses which 997 * aren't in the first chunk. 998 */ 999 first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0); 1000 first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu, 1001 pcpu_unit_pages); 1002 if ((unsigned long)addr >= first_start && 1003 (unsigned long)addr < first_end) { 1004 for_each_possible_cpu(cpu) { 1005 void *start = per_cpu_ptr(base, cpu); 1006 1007 if (addr >= start && addr < start + pcpu_unit_size) { 1008 in_first_chunk = true; 1009 break; 1010 } 1011 } 1012 } 1013 1014 if (in_first_chunk) { 1015 if ((unsigned long)addr < VMALLOC_START || 1016 (unsigned long)addr >= VMALLOC_END) 1017 return __pa(addr); 1018 else 1019 return page_to_phys(vmalloc_to_page(addr)); 1020 } else 1021 return page_to_phys(pcpu_addr_to_page(addr)); 1022 } 1023 1024 /** 1025 * pcpu_alloc_alloc_info - allocate percpu allocation info 1026 * @nr_groups: the number of groups 1027 * @nr_units: the number of units 1028 * 1029 * Allocate ai which is large enough for @nr_groups groups containing 1030 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1031 * cpu_map array which is long enough for @nr_units and filled with 1032 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1033 * pointer of other groups. 1034 * 1035 * RETURNS: 1036 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1037 * failure. 1038 */ 1039 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1040 int nr_units) 1041 { 1042 struct pcpu_alloc_info *ai; 1043 size_t base_size, ai_size; 1044 void *ptr; 1045 int unit; 1046 1047 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1048 __alignof__(ai->groups[0].cpu_map[0])); 1049 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1050 1051 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); 1052 if (!ptr) 1053 return NULL; 1054 ai = ptr; 1055 ptr += base_size; 1056 1057 ai->groups[0].cpu_map = ptr; 1058 1059 for (unit = 0; unit < nr_units; unit++) 1060 ai->groups[0].cpu_map[unit] = NR_CPUS; 1061 1062 ai->nr_groups = nr_groups; 1063 ai->__ai_size = PFN_ALIGN(ai_size); 1064 1065 return ai; 1066 } 1067 1068 /** 1069 * pcpu_free_alloc_info - free percpu allocation info 1070 * @ai: pcpu_alloc_info to free 1071 * 1072 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1073 */ 1074 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1075 { 1076 free_bootmem(__pa(ai), ai->__ai_size); 1077 } 1078 1079 /** 1080 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1081 * @lvl: loglevel 1082 * @ai: allocation info to dump 1083 * 1084 * Print out information about @ai using loglevel @lvl. 1085 */ 1086 static void pcpu_dump_alloc_info(const char *lvl, 1087 const struct pcpu_alloc_info *ai) 1088 { 1089 int group_width = 1, cpu_width = 1, width; 1090 char empty_str[] = "--------"; 1091 int alloc = 0, alloc_end = 0; 1092 int group, v; 1093 int upa, apl; /* units per alloc, allocs per line */ 1094 1095 v = ai->nr_groups; 1096 while (v /= 10) 1097 group_width++; 1098 1099 v = num_possible_cpus(); 1100 while (v /= 10) 1101 cpu_width++; 1102 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1103 1104 upa = ai->alloc_size / ai->unit_size; 1105 width = upa * (cpu_width + 1) + group_width + 3; 1106 apl = rounddown_pow_of_two(max(60 / width, 1)); 1107 1108 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1109 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1110 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1111 1112 for (group = 0; group < ai->nr_groups; group++) { 1113 const struct pcpu_group_info *gi = &ai->groups[group]; 1114 int unit = 0, unit_end = 0; 1115 1116 BUG_ON(gi->nr_units % upa); 1117 for (alloc_end += gi->nr_units / upa; 1118 alloc < alloc_end; alloc++) { 1119 if (!(alloc % apl)) { 1120 printk("\n"); 1121 printk("%spcpu-alloc: ", lvl); 1122 } 1123 printk("[%0*d] ", group_width, group); 1124 1125 for (unit_end += upa; unit < unit_end; unit++) 1126 if (gi->cpu_map[unit] != NR_CPUS) 1127 printk("%0*d ", cpu_width, 1128 gi->cpu_map[unit]); 1129 else 1130 printk("%s ", empty_str); 1131 } 1132 } 1133 printk("\n"); 1134 } 1135 1136 /** 1137 * pcpu_setup_first_chunk - initialize the first percpu chunk 1138 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1139 * @base_addr: mapped address 1140 * 1141 * Initialize the first percpu chunk which contains the kernel static 1142 * perpcu area. This function is to be called from arch percpu area 1143 * setup path. 1144 * 1145 * @ai contains all information necessary to initialize the first 1146 * chunk and prime the dynamic percpu allocator. 1147 * 1148 * @ai->static_size is the size of static percpu area. 1149 * 1150 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1151 * reserve after the static area in the first chunk. This reserves 1152 * the first chunk such that it's available only through reserved 1153 * percpu allocation. This is primarily used to serve module percpu 1154 * static areas on architectures where the addressing model has 1155 * limited offset range for symbol relocations to guarantee module 1156 * percpu symbols fall inside the relocatable range. 1157 * 1158 * @ai->dyn_size determines the number of bytes available for dynamic 1159 * allocation in the first chunk. The area between @ai->static_size + 1160 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1161 * 1162 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1163 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1164 * @ai->dyn_size. 1165 * 1166 * @ai->atom_size is the allocation atom size and used as alignment 1167 * for vm areas. 1168 * 1169 * @ai->alloc_size is the allocation size and always multiple of 1170 * @ai->atom_size. This is larger than @ai->atom_size if 1171 * @ai->unit_size is larger than @ai->atom_size. 1172 * 1173 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1174 * percpu areas. Units which should be colocated are put into the 1175 * same group. Dynamic VM areas will be allocated according to these 1176 * groupings. If @ai->nr_groups is zero, a single group containing 1177 * all units is assumed. 1178 * 1179 * The caller should have mapped the first chunk at @base_addr and 1180 * copied static data to each unit. 1181 * 1182 * If the first chunk ends up with both reserved and dynamic areas, it 1183 * is served by two chunks - one to serve the core static and reserved 1184 * areas and the other for the dynamic area. They share the same vm 1185 * and page map but uses different area allocation map to stay away 1186 * from each other. The latter chunk is circulated in the chunk slots 1187 * and available for dynamic allocation like any other chunks. 1188 * 1189 * RETURNS: 1190 * 0 on success, -errno on failure. 1191 */ 1192 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1193 void *base_addr) 1194 { 1195 static char cpus_buf[4096] __initdata; 1196 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1197 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; 1198 size_t dyn_size = ai->dyn_size; 1199 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; 1200 struct pcpu_chunk *schunk, *dchunk = NULL; 1201 unsigned long *group_offsets; 1202 size_t *group_sizes; 1203 unsigned long *unit_off; 1204 unsigned int cpu; 1205 int *unit_map; 1206 int group, unit, i; 1207 1208 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); 1209 1210 #define PCPU_SETUP_BUG_ON(cond) do { \ 1211 if (unlikely(cond)) { \ 1212 pr_emerg("PERCPU: failed to initialize, %s", #cond); \ 1213 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \ 1214 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 1215 BUG(); \ 1216 } \ 1217 } while (0) 1218 1219 /* sanity checks */ 1220 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 1221 #ifdef CONFIG_SMP 1222 PCPU_SETUP_BUG_ON(!ai->static_size); 1223 #endif 1224 PCPU_SETUP_BUG_ON(!base_addr); 1225 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 1226 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); 1227 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 1228 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 1229 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 1230 1231 /* process group information and build config tables accordingly */ 1232 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); 1233 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); 1234 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); 1235 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); 1236 1237 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 1238 unit_map[cpu] = UINT_MAX; 1239 pcpu_first_unit_cpu = NR_CPUS; 1240 1241 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 1242 const struct pcpu_group_info *gi = &ai->groups[group]; 1243 1244 group_offsets[group] = gi->base_offset; 1245 group_sizes[group] = gi->nr_units * ai->unit_size; 1246 1247 for (i = 0; i < gi->nr_units; i++) { 1248 cpu = gi->cpu_map[i]; 1249 if (cpu == NR_CPUS) 1250 continue; 1251 1252 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); 1253 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 1254 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 1255 1256 unit_map[cpu] = unit + i; 1257 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 1258 1259 if (pcpu_first_unit_cpu == NR_CPUS) 1260 pcpu_first_unit_cpu = cpu; 1261 pcpu_last_unit_cpu = cpu; 1262 } 1263 } 1264 pcpu_nr_units = unit; 1265 1266 for_each_possible_cpu(cpu) 1267 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 1268 1269 /* we're done parsing the input, undefine BUG macro and dump config */ 1270 #undef PCPU_SETUP_BUG_ON 1271 pcpu_dump_alloc_info(KERN_DEBUG, ai); 1272 1273 pcpu_nr_groups = ai->nr_groups; 1274 pcpu_group_offsets = group_offsets; 1275 pcpu_group_sizes = group_sizes; 1276 pcpu_unit_map = unit_map; 1277 pcpu_unit_offsets = unit_off; 1278 1279 /* determine basic parameters */ 1280 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 1281 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 1282 pcpu_atom_size = ai->atom_size; 1283 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 1284 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 1285 1286 /* 1287 * Allocate chunk slots. The additional last slot is for 1288 * empty chunks. 1289 */ 1290 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 1291 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); 1292 for (i = 0; i < pcpu_nr_slots; i++) 1293 INIT_LIST_HEAD(&pcpu_slot[i]); 1294 1295 /* 1296 * Initialize static chunk. If reserved_size is zero, the 1297 * static chunk covers static area + dynamic allocation area 1298 * in the first chunk. If reserved_size is not zero, it 1299 * covers static area + reserved area (mostly used for module 1300 * static percpu allocation). 1301 */ 1302 schunk = alloc_bootmem(pcpu_chunk_struct_size); 1303 INIT_LIST_HEAD(&schunk->list); 1304 schunk->base_addr = base_addr; 1305 schunk->map = smap; 1306 schunk->map_alloc = ARRAY_SIZE(smap); 1307 schunk->immutable = true; 1308 bitmap_fill(schunk->populated, pcpu_unit_pages); 1309 1310 if (ai->reserved_size) { 1311 schunk->free_size = ai->reserved_size; 1312 pcpu_reserved_chunk = schunk; 1313 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; 1314 } else { 1315 schunk->free_size = dyn_size; 1316 dyn_size = 0; /* dynamic area covered */ 1317 } 1318 schunk->contig_hint = schunk->free_size; 1319 1320 schunk->map[schunk->map_used++] = -ai->static_size; 1321 if (schunk->free_size) 1322 schunk->map[schunk->map_used++] = schunk->free_size; 1323 1324 /* init dynamic chunk if necessary */ 1325 if (dyn_size) { 1326 dchunk = alloc_bootmem(pcpu_chunk_struct_size); 1327 INIT_LIST_HEAD(&dchunk->list); 1328 dchunk->base_addr = base_addr; 1329 dchunk->map = dmap; 1330 dchunk->map_alloc = ARRAY_SIZE(dmap); 1331 dchunk->immutable = true; 1332 bitmap_fill(dchunk->populated, pcpu_unit_pages); 1333 1334 dchunk->contig_hint = dchunk->free_size = dyn_size; 1335 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; 1336 dchunk->map[dchunk->map_used++] = dchunk->free_size; 1337 } 1338 1339 /* link the first chunk in */ 1340 pcpu_first_chunk = dchunk ?: schunk; 1341 pcpu_chunk_relocate(pcpu_first_chunk, -1); 1342 1343 /* we're done */ 1344 pcpu_base_addr = base_addr; 1345 return 0; 1346 } 1347 1348 #ifdef CONFIG_SMP 1349 1350 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { 1351 [PCPU_FC_AUTO] = "auto", 1352 [PCPU_FC_EMBED] = "embed", 1353 [PCPU_FC_PAGE] = "page", 1354 }; 1355 1356 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 1357 1358 static int __init percpu_alloc_setup(char *str) 1359 { 1360 if (0) 1361 /* nada */; 1362 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 1363 else if (!strcmp(str, "embed")) 1364 pcpu_chosen_fc = PCPU_FC_EMBED; 1365 #endif 1366 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1367 else if (!strcmp(str, "page")) 1368 pcpu_chosen_fc = PCPU_FC_PAGE; 1369 #endif 1370 else 1371 pr_warning("PERCPU: unknown allocator %s specified\n", str); 1372 1373 return 0; 1374 } 1375 early_param("percpu_alloc", percpu_alloc_setup); 1376 1377 /* 1378 * pcpu_embed_first_chunk() is used by the generic percpu setup. 1379 * Build it if needed by the arch config or the generic setup is going 1380 * to be used. 1381 */ 1382 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 1383 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 1384 #define BUILD_EMBED_FIRST_CHUNK 1385 #endif 1386 1387 /* build pcpu_page_first_chunk() iff needed by the arch config */ 1388 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 1389 #define BUILD_PAGE_FIRST_CHUNK 1390 #endif 1391 1392 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 1393 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 1394 /** 1395 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 1396 * @reserved_size: the size of reserved percpu area in bytes 1397 * @dyn_size: minimum free size for dynamic allocation in bytes 1398 * @atom_size: allocation atom size 1399 * @cpu_distance_fn: callback to determine distance between cpus, optional 1400 * 1401 * This function determines grouping of units, their mappings to cpus 1402 * and other parameters considering needed percpu size, allocation 1403 * atom size and distances between CPUs. 1404 * 1405 * Groups are always mutliples of atom size and CPUs which are of 1406 * LOCAL_DISTANCE both ways are grouped together and share space for 1407 * units in the same group. The returned configuration is guaranteed 1408 * to have CPUs on different nodes on different groups and >=75% usage 1409 * of allocated virtual address space. 1410 * 1411 * RETURNS: 1412 * On success, pointer to the new allocation_info is returned. On 1413 * failure, ERR_PTR value is returned. 1414 */ 1415 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 1416 size_t reserved_size, size_t dyn_size, 1417 size_t atom_size, 1418 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 1419 { 1420 static int group_map[NR_CPUS] __initdata; 1421 static int group_cnt[NR_CPUS] __initdata; 1422 const size_t static_size = __per_cpu_end - __per_cpu_start; 1423 int nr_groups = 1, nr_units = 0; 1424 size_t size_sum, min_unit_size, alloc_size; 1425 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 1426 int last_allocs, group, unit; 1427 unsigned int cpu, tcpu; 1428 struct pcpu_alloc_info *ai; 1429 unsigned int *cpu_map; 1430 1431 /* this function may be called multiple times */ 1432 memset(group_map, 0, sizeof(group_map)); 1433 memset(group_cnt, 0, sizeof(group_cnt)); 1434 1435 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 1436 size_sum = PFN_ALIGN(static_size + reserved_size + 1437 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 1438 dyn_size = size_sum - static_size - reserved_size; 1439 1440 /* 1441 * Determine min_unit_size, alloc_size and max_upa such that 1442 * alloc_size is multiple of atom_size and is the smallest 1443 * which can accomodate 4k aligned segments which are equal to 1444 * or larger than min_unit_size. 1445 */ 1446 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 1447 1448 alloc_size = roundup(min_unit_size, atom_size); 1449 upa = alloc_size / min_unit_size; 1450 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1451 upa--; 1452 max_upa = upa; 1453 1454 /* group cpus according to their proximity */ 1455 for_each_possible_cpu(cpu) { 1456 group = 0; 1457 next_group: 1458 for_each_possible_cpu(tcpu) { 1459 if (cpu == tcpu) 1460 break; 1461 if (group_map[tcpu] == group && cpu_distance_fn && 1462 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 1463 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 1464 group++; 1465 nr_groups = max(nr_groups, group + 1); 1466 goto next_group; 1467 } 1468 } 1469 group_map[cpu] = group; 1470 group_cnt[group]++; 1471 } 1472 1473 /* 1474 * Expand unit size until address space usage goes over 75% 1475 * and then as much as possible without using more address 1476 * space. 1477 */ 1478 last_allocs = INT_MAX; 1479 for (upa = max_upa; upa; upa--) { 1480 int allocs = 0, wasted = 0; 1481 1482 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) 1483 continue; 1484 1485 for (group = 0; group < nr_groups; group++) { 1486 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 1487 allocs += this_allocs; 1488 wasted += this_allocs * upa - group_cnt[group]; 1489 } 1490 1491 /* 1492 * Don't accept if wastage is over 1/3. The 1493 * greater-than comparison ensures upa==1 always 1494 * passes the following check. 1495 */ 1496 if (wasted > num_possible_cpus() / 3) 1497 continue; 1498 1499 /* and then don't consume more memory */ 1500 if (allocs > last_allocs) 1501 break; 1502 last_allocs = allocs; 1503 best_upa = upa; 1504 } 1505 upa = best_upa; 1506 1507 /* allocate and fill alloc_info */ 1508 for (group = 0; group < nr_groups; group++) 1509 nr_units += roundup(group_cnt[group], upa); 1510 1511 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 1512 if (!ai) 1513 return ERR_PTR(-ENOMEM); 1514 cpu_map = ai->groups[0].cpu_map; 1515 1516 for (group = 0; group < nr_groups; group++) { 1517 ai->groups[group].cpu_map = cpu_map; 1518 cpu_map += roundup(group_cnt[group], upa); 1519 } 1520 1521 ai->static_size = static_size; 1522 ai->reserved_size = reserved_size; 1523 ai->dyn_size = dyn_size; 1524 ai->unit_size = alloc_size / upa; 1525 ai->atom_size = atom_size; 1526 ai->alloc_size = alloc_size; 1527 1528 for (group = 0, unit = 0; group_cnt[group]; group++) { 1529 struct pcpu_group_info *gi = &ai->groups[group]; 1530 1531 /* 1532 * Initialize base_offset as if all groups are located 1533 * back-to-back. The caller should update this to 1534 * reflect actual allocation. 1535 */ 1536 gi->base_offset = unit * ai->unit_size; 1537 1538 for_each_possible_cpu(cpu) 1539 if (group_map[cpu] == group) 1540 gi->cpu_map[gi->nr_units++] = cpu; 1541 gi->nr_units = roundup(gi->nr_units, upa); 1542 unit += gi->nr_units; 1543 } 1544 BUG_ON(unit != nr_units); 1545 1546 return ai; 1547 } 1548 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 1549 1550 #if defined(BUILD_EMBED_FIRST_CHUNK) 1551 /** 1552 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 1553 * @reserved_size: the size of reserved percpu area in bytes 1554 * @dyn_size: minimum free size for dynamic allocation in bytes 1555 * @atom_size: allocation atom size 1556 * @cpu_distance_fn: callback to determine distance between cpus, optional 1557 * @alloc_fn: function to allocate percpu page 1558 * @free_fn: funtion to free percpu page 1559 * 1560 * This is a helper to ease setting up embedded first percpu chunk and 1561 * can be called where pcpu_setup_first_chunk() is expected. 1562 * 1563 * If this function is used to setup the first chunk, it is allocated 1564 * by calling @alloc_fn and used as-is without being mapped into 1565 * vmalloc area. Allocations are always whole multiples of @atom_size 1566 * aligned to @atom_size. 1567 * 1568 * This enables the first chunk to piggy back on the linear physical 1569 * mapping which often uses larger page size. Please note that this 1570 * can result in very sparse cpu->unit mapping on NUMA machines thus 1571 * requiring large vmalloc address space. Don't use this allocator if 1572 * vmalloc space is not orders of magnitude larger than distances 1573 * between node memory addresses (ie. 32bit NUMA machines). 1574 * 1575 * @dyn_size specifies the minimum dynamic area size. 1576 * 1577 * If the needed size is smaller than the minimum or specified unit 1578 * size, the leftover is returned using @free_fn. 1579 * 1580 * RETURNS: 1581 * 0 on success, -errno on failure. 1582 */ 1583 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 1584 size_t atom_size, 1585 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 1586 pcpu_fc_alloc_fn_t alloc_fn, 1587 pcpu_fc_free_fn_t free_fn) 1588 { 1589 void *base = (void *)ULONG_MAX; 1590 void **areas = NULL; 1591 struct pcpu_alloc_info *ai; 1592 size_t size_sum, areas_size, max_distance; 1593 int group, i, rc; 1594 1595 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 1596 cpu_distance_fn); 1597 if (IS_ERR(ai)) 1598 return PTR_ERR(ai); 1599 1600 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1601 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 1602 1603 areas = alloc_bootmem_nopanic(areas_size); 1604 if (!areas) { 1605 rc = -ENOMEM; 1606 goto out_free; 1607 } 1608 1609 /* allocate, copy and determine base address */ 1610 for (group = 0; group < ai->nr_groups; group++) { 1611 struct pcpu_group_info *gi = &ai->groups[group]; 1612 unsigned int cpu = NR_CPUS; 1613 void *ptr; 1614 1615 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 1616 cpu = gi->cpu_map[i]; 1617 BUG_ON(cpu == NR_CPUS); 1618 1619 /* allocate space for the whole group */ 1620 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 1621 if (!ptr) { 1622 rc = -ENOMEM; 1623 goto out_free_areas; 1624 } 1625 areas[group] = ptr; 1626 1627 base = min(ptr, base); 1628 1629 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 1630 if (gi->cpu_map[i] == NR_CPUS) { 1631 /* unused unit, free whole */ 1632 free_fn(ptr, ai->unit_size); 1633 continue; 1634 } 1635 /* copy and return the unused part */ 1636 memcpy(ptr, __per_cpu_load, ai->static_size); 1637 free_fn(ptr + size_sum, ai->unit_size - size_sum); 1638 } 1639 } 1640 1641 /* base address is now known, determine group base offsets */ 1642 max_distance = 0; 1643 for (group = 0; group < ai->nr_groups; group++) { 1644 ai->groups[group].base_offset = areas[group] - base; 1645 max_distance = max_t(size_t, max_distance, 1646 ai->groups[group].base_offset); 1647 } 1648 max_distance += ai->unit_size; 1649 1650 /* warn if maximum distance is further than 75% of vmalloc space */ 1651 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { 1652 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " 1653 "space 0x%lx\n", 1654 max_distance, VMALLOC_END - VMALLOC_START); 1655 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 1656 /* and fail if we have fallback */ 1657 rc = -EINVAL; 1658 goto out_free; 1659 #endif 1660 } 1661 1662 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 1663 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 1664 ai->dyn_size, ai->unit_size); 1665 1666 rc = pcpu_setup_first_chunk(ai, base); 1667 goto out_free; 1668 1669 out_free_areas: 1670 for (group = 0; group < ai->nr_groups; group++) 1671 free_fn(areas[group], 1672 ai->groups[group].nr_units * ai->unit_size); 1673 out_free: 1674 pcpu_free_alloc_info(ai); 1675 if (areas) 1676 free_bootmem(__pa(areas), areas_size); 1677 return rc; 1678 } 1679 #endif /* BUILD_EMBED_FIRST_CHUNK */ 1680 1681 #ifdef BUILD_PAGE_FIRST_CHUNK 1682 /** 1683 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 1684 * @reserved_size: the size of reserved percpu area in bytes 1685 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 1686 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE 1687 * @populate_pte_fn: function to populate pte 1688 * 1689 * This is a helper to ease setting up page-remapped first percpu 1690 * chunk and can be called where pcpu_setup_first_chunk() is expected. 1691 * 1692 * This is the basic allocator. Static percpu area is allocated 1693 * page-by-page into vmalloc area. 1694 * 1695 * RETURNS: 1696 * 0 on success, -errno on failure. 1697 */ 1698 int __init pcpu_page_first_chunk(size_t reserved_size, 1699 pcpu_fc_alloc_fn_t alloc_fn, 1700 pcpu_fc_free_fn_t free_fn, 1701 pcpu_fc_populate_pte_fn_t populate_pte_fn) 1702 { 1703 static struct vm_struct vm; 1704 struct pcpu_alloc_info *ai; 1705 char psize_str[16]; 1706 int unit_pages; 1707 size_t pages_size; 1708 struct page **pages; 1709 int unit, i, j, rc; 1710 1711 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 1712 1713 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 1714 if (IS_ERR(ai)) 1715 return PTR_ERR(ai); 1716 BUG_ON(ai->nr_groups != 1); 1717 BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); 1718 1719 unit_pages = ai->unit_size >> PAGE_SHIFT; 1720 1721 /* unaligned allocations can't be freed, round up to page size */ 1722 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 1723 sizeof(pages[0])); 1724 pages = alloc_bootmem(pages_size); 1725 1726 /* allocate pages */ 1727 j = 0; 1728 for (unit = 0; unit < num_possible_cpus(); unit++) 1729 for (i = 0; i < unit_pages; i++) { 1730 unsigned int cpu = ai->groups[0].cpu_map[unit]; 1731 void *ptr; 1732 1733 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 1734 if (!ptr) { 1735 pr_warning("PERCPU: failed to allocate %s page " 1736 "for cpu%u\n", psize_str, cpu); 1737 goto enomem; 1738 } 1739 pages[j++] = virt_to_page(ptr); 1740 } 1741 1742 /* allocate vm area, map the pages and copy static data */ 1743 vm.flags = VM_ALLOC; 1744 vm.size = num_possible_cpus() * ai->unit_size; 1745 vm_area_register_early(&vm, PAGE_SIZE); 1746 1747 for (unit = 0; unit < num_possible_cpus(); unit++) { 1748 unsigned long unit_addr = 1749 (unsigned long)vm.addr + unit * ai->unit_size; 1750 1751 for (i = 0; i < unit_pages; i++) 1752 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 1753 1754 /* pte already populated, the following shouldn't fail */ 1755 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 1756 unit_pages); 1757 if (rc < 0) 1758 panic("failed to map percpu area, err=%d\n", rc); 1759 1760 /* 1761 * FIXME: Archs with virtual cache should flush local 1762 * cache for the linear mapping here - something 1763 * equivalent to flush_cache_vmap() on the local cpu. 1764 * flush_cache_vmap() can't be used as most supporting 1765 * data structures are not set up yet. 1766 */ 1767 1768 /* copy static data */ 1769 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 1770 } 1771 1772 /* we're ready, commit */ 1773 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", 1774 unit_pages, psize_str, vm.addr, ai->static_size, 1775 ai->reserved_size, ai->dyn_size); 1776 1777 rc = pcpu_setup_first_chunk(ai, vm.addr); 1778 goto out_free_ar; 1779 1780 enomem: 1781 while (--j >= 0) 1782 free_fn(page_address(pages[j]), PAGE_SIZE); 1783 rc = -ENOMEM; 1784 out_free_ar: 1785 free_bootmem(__pa(pages), pages_size); 1786 pcpu_free_alloc_info(ai); 1787 return rc; 1788 } 1789 #endif /* BUILD_PAGE_FIRST_CHUNK */ 1790 1791 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 1792 /* 1793 * Generic SMP percpu area setup. 1794 * 1795 * The embedding helper is used because its behavior closely resembles 1796 * the original non-dynamic generic percpu area setup. This is 1797 * important because many archs have addressing restrictions and might 1798 * fail if the percpu area is located far away from the previous 1799 * location. As an added bonus, in non-NUMA cases, embedding is 1800 * generally a good idea TLB-wise because percpu area can piggy back 1801 * on the physical linear memory mapping which uses large page 1802 * mappings on applicable archs. 1803 */ 1804 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 1805 EXPORT_SYMBOL(__per_cpu_offset); 1806 1807 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 1808 size_t align) 1809 { 1810 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); 1811 } 1812 1813 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 1814 { 1815 free_bootmem(__pa(ptr), size); 1816 } 1817 1818 void __init setup_per_cpu_areas(void) 1819 { 1820 unsigned long delta; 1821 unsigned int cpu; 1822 int rc; 1823 1824 /* 1825 * Always reserve area for module percpu variables. That's 1826 * what the legacy allocator did. 1827 */ 1828 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 1829 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 1830 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 1831 if (rc < 0) 1832 panic("Failed to initialize percpu areas."); 1833 1834 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 1835 for_each_possible_cpu(cpu) 1836 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 1837 } 1838 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 1839 1840 #else /* CONFIG_SMP */ 1841 1842 /* 1843 * UP percpu area setup. 1844 * 1845 * UP always uses km-based percpu allocator with identity mapping. 1846 * Static percpu variables are indistinguishable from the usual static 1847 * variables and don't require any special preparation. 1848 */ 1849 void __init setup_per_cpu_areas(void) 1850 { 1851 const size_t unit_size = 1852 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 1853 PERCPU_DYNAMIC_RESERVE)); 1854 struct pcpu_alloc_info *ai; 1855 void *fc; 1856 1857 ai = pcpu_alloc_alloc_info(1, 1); 1858 fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 1859 if (!ai || !fc) 1860 panic("Failed to allocate memory for percpu areas."); 1861 1862 ai->dyn_size = unit_size; 1863 ai->unit_size = unit_size; 1864 ai->atom_size = unit_size; 1865 ai->alloc_size = unit_size; 1866 ai->groups[0].nr_units = 1; 1867 ai->groups[0].cpu_map[0] = 0; 1868 1869 if (pcpu_setup_first_chunk(ai, fc) < 0) 1870 panic("Failed to initialize percpu areas."); 1871 } 1872 1873 #endif /* CONFIG_SMP */ 1874 1875 /* 1876 * First and reserved chunks are initialized with temporary allocation 1877 * map in initdata so that they can be used before slab is online. 1878 * This function is called after slab is brought up and replaces those 1879 * with properly allocated maps. 1880 */ 1881 void __init percpu_init_late(void) 1882 { 1883 struct pcpu_chunk *target_chunks[] = 1884 { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; 1885 struct pcpu_chunk *chunk; 1886 unsigned long flags; 1887 int i; 1888 1889 for (i = 0; (chunk = target_chunks[i]); i++) { 1890 int *map; 1891 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); 1892 1893 BUILD_BUG_ON(size > PAGE_SIZE); 1894 1895 map = pcpu_mem_alloc(size); 1896 BUG_ON(!map); 1897 1898 spin_lock_irqsave(&pcpu_lock, flags); 1899 memcpy(map, chunk->map, size); 1900 chunk->map = map; 1901 spin_unlock_irqrestore(&pcpu_lock, flags); 1902 } 1903 } 1904