xref: /openbmc/linux/mm/percpu.c (revision b627b4ed)
1 /*
2  * linux/mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11  * chunk is consisted of num_possible_cpus() units and the first chunk
12  * is used for static percpu variables in the kernel image (special
13  * boot time alloc/init handling necessary as these areas need to be
14  * brought up before allocation services are running).  Unit grows as
15  * necessary and all units grow or shrink in unison.  When a chunk is
16  * filled up, another chunk is allocated.  ie. in vmalloc area
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  Percpu access can be done by configuring
26  * percpu base registers UNIT_SIZE apart.
27  *
28  * There are usually many small percpu allocations many of them as
29  * small as 4 bytes.  The allocator organizes chunks into lists
30  * according to free size and tries to allocate from the fullest one.
31  * Each chunk keeps the maximum contiguous area size hint which is
32  * guaranteed to be eqaul to or larger than the maximum contiguous
33  * area in the chunk.  This helps the allocator not to iterate the
34  * chunk maps unnecessarily.
35  *
36  * Allocation state in each chunk is kept using an array of integers
37  * on chunk->map.  A positive value in the map represents a free
38  * region and negative allocated.  Allocation inside a chunk is done
39  * by scanning this map sequentially and serving the first matching
40  * entry.  This is mostly copied from the percpu_modalloc() allocator.
41  * Chunks are also linked into a rb tree to ease address to chunk
42  * mapping during free.
43  *
44  * To use this allocator, arch code should do the followings.
45  *
46  * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/list.h>
59 #include <linux/mm.h>
60 #include <linux/module.h>
61 #include <linux/mutex.h>
62 #include <linux/percpu.h>
63 #include <linux/pfn.h>
64 #include <linux/rbtree.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/vmalloc.h>
68 #include <linux/workqueue.h>
69 
70 #include <asm/cacheflush.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 
74 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
75 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
76 
77 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
78 #ifndef __addr_to_pcpu_ptr
79 #define __addr_to_pcpu_ptr(addr)					\
80 	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
81 		 + (unsigned long)__per_cpu_start)
82 #endif
83 #ifndef __pcpu_ptr_to_addr
84 #define __pcpu_ptr_to_addr(ptr)						\
85 	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
86 		 - (unsigned long)__per_cpu_start)
87 #endif
88 
89 struct pcpu_chunk {
90 	struct list_head	list;		/* linked to pcpu_slot lists */
91 	struct rb_node		rb_node;	/* key is chunk->vm->addr */
92 	int			free_size;	/* free bytes in the chunk */
93 	int			contig_hint;	/* max contiguous size hint */
94 	struct vm_struct	*vm;		/* mapped vmalloc region */
95 	int			map_used;	/* # of map entries used */
96 	int			map_alloc;	/* # of map entries allocated */
97 	int			*map;		/* allocation map */
98 	bool			immutable;	/* no [de]population allowed */
99 	struct page		**page;		/* points to page array */
100 	struct page		*page_ar[];	/* #cpus * UNIT_PAGES */
101 };
102 
103 static int pcpu_unit_pages __read_mostly;
104 static int pcpu_unit_size __read_mostly;
105 static int pcpu_chunk_size __read_mostly;
106 static int pcpu_nr_slots __read_mostly;
107 static size_t pcpu_chunk_struct_size __read_mostly;
108 
109 /* the address of the first chunk which starts with the kernel static area */
110 void *pcpu_base_addr __read_mostly;
111 EXPORT_SYMBOL_GPL(pcpu_base_addr);
112 
113 /* optional reserved chunk, only accessible for reserved allocations */
114 static struct pcpu_chunk *pcpu_reserved_chunk;
115 /* offset limit of the reserved chunk */
116 static int pcpu_reserved_chunk_limit;
117 
118 /*
119  * Synchronization rules.
120  *
121  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
122  * protects allocation/reclaim paths, chunks and chunk->page arrays.
123  * The latter is a spinlock and protects the index data structures -
124  * chunk slots, rbtree, chunks and area maps in chunks.
125  *
126  * During allocation, pcpu_alloc_mutex is kept locked all the time and
127  * pcpu_lock is grabbed and released as necessary.  All actual memory
128  * allocations are done using GFP_KERNEL with pcpu_lock released.
129  *
130  * Free path accesses and alters only the index data structures, so it
131  * can be safely called from atomic context.  When memory needs to be
132  * returned to the system, free path schedules reclaim_work which
133  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
134  * reclaimed, release both locks and frees the chunks.  Note that it's
135  * necessary to grab both locks to remove a chunk from circulation as
136  * allocation path might be referencing the chunk with only
137  * pcpu_alloc_mutex locked.
138  */
139 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
140 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
141 
142 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
143 static struct rb_root pcpu_addr_root = RB_ROOT;	/* chunks by address */
144 
145 /* reclaim work to release fully free chunks, scheduled from free path */
146 static void pcpu_reclaim(struct work_struct *work);
147 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
148 
149 static int __pcpu_size_to_slot(int size)
150 {
151 	int highbit = fls(size);	/* size is in bytes */
152 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
153 }
154 
155 static int pcpu_size_to_slot(int size)
156 {
157 	if (size == pcpu_unit_size)
158 		return pcpu_nr_slots - 1;
159 	return __pcpu_size_to_slot(size);
160 }
161 
162 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
163 {
164 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
165 		return 0;
166 
167 	return pcpu_size_to_slot(chunk->free_size);
168 }
169 
170 static int pcpu_page_idx(unsigned int cpu, int page_idx)
171 {
172 	return cpu * pcpu_unit_pages + page_idx;
173 }
174 
175 static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
176 				      unsigned int cpu, int page_idx)
177 {
178 	return &chunk->page[pcpu_page_idx(cpu, page_idx)];
179 }
180 
181 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
182 				     unsigned int cpu, int page_idx)
183 {
184 	return (unsigned long)chunk->vm->addr +
185 		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
186 }
187 
188 static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
189 				     int page_idx)
190 {
191 	return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
192 }
193 
194 /**
195  * pcpu_mem_alloc - allocate memory
196  * @size: bytes to allocate
197  *
198  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
199  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
200  * memory is always zeroed.
201  *
202  * CONTEXT:
203  * Does GFP_KERNEL allocation.
204  *
205  * RETURNS:
206  * Pointer to the allocated area on success, NULL on failure.
207  */
208 static void *pcpu_mem_alloc(size_t size)
209 {
210 	if (size <= PAGE_SIZE)
211 		return kzalloc(size, GFP_KERNEL);
212 	else {
213 		void *ptr = vmalloc(size);
214 		if (ptr)
215 			memset(ptr, 0, size);
216 		return ptr;
217 	}
218 }
219 
220 /**
221  * pcpu_mem_free - free memory
222  * @ptr: memory to free
223  * @size: size of the area
224  *
225  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
226  */
227 static void pcpu_mem_free(void *ptr, size_t size)
228 {
229 	if (size <= PAGE_SIZE)
230 		kfree(ptr);
231 	else
232 		vfree(ptr);
233 }
234 
235 /**
236  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
237  * @chunk: chunk of interest
238  * @oslot: the previous slot it was on
239  *
240  * This function is called after an allocation or free changed @chunk.
241  * New slot according to the changed state is determined and @chunk is
242  * moved to the slot.  Note that the reserved chunk is never put on
243  * chunk slots.
244  *
245  * CONTEXT:
246  * pcpu_lock.
247  */
248 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
249 {
250 	int nslot = pcpu_chunk_slot(chunk);
251 
252 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
253 		if (oslot < nslot)
254 			list_move(&chunk->list, &pcpu_slot[nslot]);
255 		else
256 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
257 	}
258 }
259 
260 static struct rb_node **pcpu_chunk_rb_search(void *addr,
261 					     struct rb_node **parentp)
262 {
263 	struct rb_node **p = &pcpu_addr_root.rb_node;
264 	struct rb_node *parent = NULL;
265 	struct pcpu_chunk *chunk;
266 
267 	while (*p) {
268 		parent = *p;
269 		chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
270 
271 		if (addr < chunk->vm->addr)
272 			p = &(*p)->rb_left;
273 		else if (addr > chunk->vm->addr)
274 			p = &(*p)->rb_right;
275 		else
276 			break;
277 	}
278 
279 	if (parentp)
280 		*parentp = parent;
281 	return p;
282 }
283 
284 /**
285  * pcpu_chunk_addr_search - search for chunk containing specified address
286  * @addr: address to search for
287  *
288  * Look for chunk which might contain @addr.  More specifically, it
289  * searchs for the chunk with the highest start address which isn't
290  * beyond @addr.
291  *
292  * CONTEXT:
293  * pcpu_lock.
294  *
295  * RETURNS:
296  * The address of the found chunk.
297  */
298 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
299 {
300 	struct rb_node *n, *parent;
301 	struct pcpu_chunk *chunk;
302 
303 	/* is it in the reserved chunk? */
304 	if (pcpu_reserved_chunk) {
305 		void *start = pcpu_reserved_chunk->vm->addr;
306 
307 		if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
308 			return pcpu_reserved_chunk;
309 	}
310 
311 	/* nah... search the regular ones */
312 	n = *pcpu_chunk_rb_search(addr, &parent);
313 	if (!n) {
314 		/* no exactly matching chunk, the parent is the closest */
315 		n = parent;
316 		BUG_ON(!n);
317 	}
318 	chunk = rb_entry(n, struct pcpu_chunk, rb_node);
319 
320 	if (addr < chunk->vm->addr) {
321 		/* the parent was the next one, look for the previous one */
322 		n = rb_prev(n);
323 		BUG_ON(!n);
324 		chunk = rb_entry(n, struct pcpu_chunk, rb_node);
325 	}
326 
327 	return chunk;
328 }
329 
330 /**
331  * pcpu_chunk_addr_insert - insert chunk into address rb tree
332  * @new: chunk to insert
333  *
334  * Insert @new into address rb tree.
335  *
336  * CONTEXT:
337  * pcpu_lock.
338  */
339 static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
340 {
341 	struct rb_node **p, *parent;
342 
343 	p = pcpu_chunk_rb_search(new->vm->addr, &parent);
344 	BUG_ON(*p);
345 	rb_link_node(&new->rb_node, parent, p);
346 	rb_insert_color(&new->rb_node, &pcpu_addr_root);
347 }
348 
349 /**
350  * pcpu_extend_area_map - extend area map for allocation
351  * @chunk: target chunk
352  *
353  * Extend area map of @chunk so that it can accomodate an allocation.
354  * A single allocation can split an area into three areas, so this
355  * function makes sure that @chunk->map has at least two extra slots.
356  *
357  * CONTEXT:
358  * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
359  * if area map is extended.
360  *
361  * RETURNS:
362  * 0 if noop, 1 if successfully extended, -errno on failure.
363  */
364 static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
365 {
366 	int new_alloc;
367 	int *new;
368 	size_t size;
369 
370 	/* has enough? */
371 	if (chunk->map_alloc >= chunk->map_used + 2)
372 		return 0;
373 
374 	spin_unlock_irq(&pcpu_lock);
375 
376 	new_alloc = PCPU_DFL_MAP_ALLOC;
377 	while (new_alloc < chunk->map_used + 2)
378 		new_alloc *= 2;
379 
380 	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
381 	if (!new) {
382 		spin_lock_irq(&pcpu_lock);
383 		return -ENOMEM;
384 	}
385 
386 	/*
387 	 * Acquire pcpu_lock and switch to new area map.  Only free
388 	 * could have happened inbetween, so map_used couldn't have
389 	 * grown.
390 	 */
391 	spin_lock_irq(&pcpu_lock);
392 	BUG_ON(new_alloc < chunk->map_used + 2);
393 
394 	size = chunk->map_alloc * sizeof(chunk->map[0]);
395 	memcpy(new, chunk->map, size);
396 
397 	/*
398 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
399 	 * one of the first chunks and still using static map.
400 	 */
401 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
402 		pcpu_mem_free(chunk->map, size);
403 
404 	chunk->map_alloc = new_alloc;
405 	chunk->map = new;
406 	return 0;
407 }
408 
409 /**
410  * pcpu_split_block - split a map block
411  * @chunk: chunk of interest
412  * @i: index of map block to split
413  * @head: head size in bytes (can be 0)
414  * @tail: tail size in bytes (can be 0)
415  *
416  * Split the @i'th map block into two or three blocks.  If @head is
417  * non-zero, @head bytes block is inserted before block @i moving it
418  * to @i+1 and reducing its size by @head bytes.
419  *
420  * If @tail is non-zero, the target block, which can be @i or @i+1
421  * depending on @head, is reduced by @tail bytes and @tail byte block
422  * is inserted after the target block.
423  *
424  * @chunk->map must have enough free slots to accomodate the split.
425  *
426  * CONTEXT:
427  * pcpu_lock.
428  */
429 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
430 			     int head, int tail)
431 {
432 	int nr_extra = !!head + !!tail;
433 
434 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
435 
436 	/* insert new subblocks */
437 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
438 		sizeof(chunk->map[0]) * (chunk->map_used - i));
439 	chunk->map_used += nr_extra;
440 
441 	if (head) {
442 		chunk->map[i + 1] = chunk->map[i] - head;
443 		chunk->map[i++] = head;
444 	}
445 	if (tail) {
446 		chunk->map[i++] -= tail;
447 		chunk->map[i] = tail;
448 	}
449 }
450 
451 /**
452  * pcpu_alloc_area - allocate area from a pcpu_chunk
453  * @chunk: chunk of interest
454  * @size: wanted size in bytes
455  * @align: wanted align
456  *
457  * Try to allocate @size bytes area aligned at @align from @chunk.
458  * Note that this function only allocates the offset.  It doesn't
459  * populate or map the area.
460  *
461  * @chunk->map must have at least two free slots.
462  *
463  * CONTEXT:
464  * pcpu_lock.
465  *
466  * RETURNS:
467  * Allocated offset in @chunk on success, -1 if no matching area is
468  * found.
469  */
470 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
471 {
472 	int oslot = pcpu_chunk_slot(chunk);
473 	int max_contig = 0;
474 	int i, off;
475 
476 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
477 		bool is_last = i + 1 == chunk->map_used;
478 		int head, tail;
479 
480 		/* extra for alignment requirement */
481 		head = ALIGN(off, align) - off;
482 		BUG_ON(i == 0 && head != 0);
483 
484 		if (chunk->map[i] < 0)
485 			continue;
486 		if (chunk->map[i] < head + size) {
487 			max_contig = max(chunk->map[i], max_contig);
488 			continue;
489 		}
490 
491 		/*
492 		 * If head is small or the previous block is free,
493 		 * merge'em.  Note that 'small' is defined as smaller
494 		 * than sizeof(int), which is very small but isn't too
495 		 * uncommon for percpu allocations.
496 		 */
497 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
498 			if (chunk->map[i - 1] > 0)
499 				chunk->map[i - 1] += head;
500 			else {
501 				chunk->map[i - 1] -= head;
502 				chunk->free_size -= head;
503 			}
504 			chunk->map[i] -= head;
505 			off += head;
506 			head = 0;
507 		}
508 
509 		/* if tail is small, just keep it around */
510 		tail = chunk->map[i] - head - size;
511 		if (tail < sizeof(int))
512 			tail = 0;
513 
514 		/* split if warranted */
515 		if (head || tail) {
516 			pcpu_split_block(chunk, i, head, tail);
517 			if (head) {
518 				i++;
519 				off += head;
520 				max_contig = max(chunk->map[i - 1], max_contig);
521 			}
522 			if (tail)
523 				max_contig = max(chunk->map[i + 1], max_contig);
524 		}
525 
526 		/* update hint and mark allocated */
527 		if (is_last)
528 			chunk->contig_hint = max_contig; /* fully scanned */
529 		else
530 			chunk->contig_hint = max(chunk->contig_hint,
531 						 max_contig);
532 
533 		chunk->free_size -= chunk->map[i];
534 		chunk->map[i] = -chunk->map[i];
535 
536 		pcpu_chunk_relocate(chunk, oslot);
537 		return off;
538 	}
539 
540 	chunk->contig_hint = max_contig;	/* fully scanned */
541 	pcpu_chunk_relocate(chunk, oslot);
542 
543 	/* tell the upper layer that this chunk has no matching area */
544 	return -1;
545 }
546 
547 /**
548  * pcpu_free_area - free area to a pcpu_chunk
549  * @chunk: chunk of interest
550  * @freeme: offset of area to free
551  *
552  * Free area starting from @freeme to @chunk.  Note that this function
553  * only modifies the allocation map.  It doesn't depopulate or unmap
554  * the area.
555  *
556  * CONTEXT:
557  * pcpu_lock.
558  */
559 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
560 {
561 	int oslot = pcpu_chunk_slot(chunk);
562 	int i, off;
563 
564 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
565 		if (off == freeme)
566 			break;
567 	BUG_ON(off != freeme);
568 	BUG_ON(chunk->map[i] > 0);
569 
570 	chunk->map[i] = -chunk->map[i];
571 	chunk->free_size += chunk->map[i];
572 
573 	/* merge with previous? */
574 	if (i > 0 && chunk->map[i - 1] >= 0) {
575 		chunk->map[i - 1] += chunk->map[i];
576 		chunk->map_used--;
577 		memmove(&chunk->map[i], &chunk->map[i + 1],
578 			(chunk->map_used - i) * sizeof(chunk->map[0]));
579 		i--;
580 	}
581 	/* merge with next? */
582 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
583 		chunk->map[i] += chunk->map[i + 1];
584 		chunk->map_used--;
585 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
586 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
587 	}
588 
589 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
590 	pcpu_chunk_relocate(chunk, oslot);
591 }
592 
593 /**
594  * pcpu_unmap - unmap pages out of a pcpu_chunk
595  * @chunk: chunk of interest
596  * @page_start: page index of the first page to unmap
597  * @page_end: page index of the last page to unmap + 1
598  * @flush: whether to flush cache and tlb or not
599  *
600  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
601  * If @flush is true, vcache is flushed before unmapping and tlb
602  * after.
603  */
604 static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
605 		       bool flush)
606 {
607 	unsigned int last = num_possible_cpus() - 1;
608 	unsigned int cpu;
609 
610 	/* unmap must not be done on immutable chunk */
611 	WARN_ON(chunk->immutable);
612 
613 	/*
614 	 * Each flushing trial can be very expensive, issue flush on
615 	 * the whole region at once rather than doing it for each cpu.
616 	 * This could be an overkill but is more scalable.
617 	 */
618 	if (flush)
619 		flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
620 				   pcpu_chunk_addr(chunk, last, page_end));
621 
622 	for_each_possible_cpu(cpu)
623 		unmap_kernel_range_noflush(
624 				pcpu_chunk_addr(chunk, cpu, page_start),
625 				(page_end - page_start) << PAGE_SHIFT);
626 
627 	/* ditto as flush_cache_vunmap() */
628 	if (flush)
629 		flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
630 				       pcpu_chunk_addr(chunk, last, page_end));
631 }
632 
633 /**
634  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
635  * @chunk: chunk to depopulate
636  * @off: offset to the area to depopulate
637  * @size: size of the area to depopulate in bytes
638  * @flush: whether to flush cache and tlb or not
639  *
640  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
641  * from @chunk.  If @flush is true, vcache is flushed before unmapping
642  * and tlb after.
643  *
644  * CONTEXT:
645  * pcpu_alloc_mutex.
646  */
647 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
648 				  bool flush)
649 {
650 	int page_start = PFN_DOWN(off);
651 	int page_end = PFN_UP(off + size);
652 	int unmap_start = -1;
653 	int uninitialized_var(unmap_end);
654 	unsigned int cpu;
655 	int i;
656 
657 	for (i = page_start; i < page_end; i++) {
658 		for_each_possible_cpu(cpu) {
659 			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
660 
661 			if (!*pagep)
662 				continue;
663 
664 			__free_page(*pagep);
665 
666 			/*
667 			 * If it's partial depopulation, it might get
668 			 * populated or depopulated again.  Mark the
669 			 * page gone.
670 			 */
671 			*pagep = NULL;
672 
673 			unmap_start = unmap_start < 0 ? i : unmap_start;
674 			unmap_end = i + 1;
675 		}
676 	}
677 
678 	if (unmap_start >= 0)
679 		pcpu_unmap(chunk, unmap_start, unmap_end, flush);
680 }
681 
682 /**
683  * pcpu_map - map pages into a pcpu_chunk
684  * @chunk: chunk of interest
685  * @page_start: page index of the first page to map
686  * @page_end: page index of the last page to map + 1
687  *
688  * For each cpu, map pages [@page_start,@page_end) into @chunk.
689  * vcache is flushed afterwards.
690  */
691 static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
692 {
693 	unsigned int last = num_possible_cpus() - 1;
694 	unsigned int cpu;
695 	int err;
696 
697 	/* map must not be done on immutable chunk */
698 	WARN_ON(chunk->immutable);
699 
700 	for_each_possible_cpu(cpu) {
701 		err = map_kernel_range_noflush(
702 				pcpu_chunk_addr(chunk, cpu, page_start),
703 				(page_end - page_start) << PAGE_SHIFT,
704 				PAGE_KERNEL,
705 				pcpu_chunk_pagep(chunk, cpu, page_start));
706 		if (err < 0)
707 			return err;
708 	}
709 
710 	/* flush at once, please read comments in pcpu_unmap() */
711 	flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
712 			 pcpu_chunk_addr(chunk, last, page_end));
713 	return 0;
714 }
715 
716 /**
717  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
718  * @chunk: chunk of interest
719  * @off: offset to the area to populate
720  * @size: size of the area to populate in bytes
721  *
722  * For each cpu, populate and map pages [@page_start,@page_end) into
723  * @chunk.  The area is cleared on return.
724  *
725  * CONTEXT:
726  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
727  */
728 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
729 {
730 	const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
731 	int page_start = PFN_DOWN(off);
732 	int page_end = PFN_UP(off + size);
733 	int map_start = -1;
734 	int uninitialized_var(map_end);
735 	unsigned int cpu;
736 	int i;
737 
738 	for (i = page_start; i < page_end; i++) {
739 		if (pcpu_chunk_page_occupied(chunk, i)) {
740 			if (map_start >= 0) {
741 				if (pcpu_map(chunk, map_start, map_end))
742 					goto err;
743 				map_start = -1;
744 			}
745 			continue;
746 		}
747 
748 		map_start = map_start < 0 ? i : map_start;
749 		map_end = i + 1;
750 
751 		for_each_possible_cpu(cpu) {
752 			struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
753 
754 			*pagep = alloc_pages_node(cpu_to_node(cpu),
755 						  alloc_mask, 0);
756 			if (!*pagep)
757 				goto err;
758 		}
759 	}
760 
761 	if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
762 		goto err;
763 
764 	for_each_possible_cpu(cpu)
765 		memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
766 		       size);
767 
768 	return 0;
769 err:
770 	/* likely under heavy memory pressure, give memory back */
771 	pcpu_depopulate_chunk(chunk, off, size, true);
772 	return -ENOMEM;
773 }
774 
775 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
776 {
777 	if (!chunk)
778 		return;
779 	if (chunk->vm)
780 		free_vm_area(chunk->vm);
781 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
782 	kfree(chunk);
783 }
784 
785 static struct pcpu_chunk *alloc_pcpu_chunk(void)
786 {
787 	struct pcpu_chunk *chunk;
788 
789 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
790 	if (!chunk)
791 		return NULL;
792 
793 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
794 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
795 	chunk->map[chunk->map_used++] = pcpu_unit_size;
796 	chunk->page = chunk->page_ar;
797 
798 	chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
799 	if (!chunk->vm) {
800 		free_pcpu_chunk(chunk);
801 		return NULL;
802 	}
803 
804 	INIT_LIST_HEAD(&chunk->list);
805 	chunk->free_size = pcpu_unit_size;
806 	chunk->contig_hint = pcpu_unit_size;
807 
808 	return chunk;
809 }
810 
811 /**
812  * pcpu_alloc - the percpu allocator
813  * @size: size of area to allocate in bytes
814  * @align: alignment of area (max PAGE_SIZE)
815  * @reserved: allocate from the reserved chunk if available
816  *
817  * Allocate percpu area of @size bytes aligned at @align.
818  *
819  * CONTEXT:
820  * Does GFP_KERNEL allocation.
821  *
822  * RETURNS:
823  * Percpu pointer to the allocated area on success, NULL on failure.
824  */
825 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
826 {
827 	struct pcpu_chunk *chunk;
828 	int slot, off;
829 
830 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
831 		WARN(true, "illegal size (%zu) or align (%zu) for "
832 		     "percpu allocation\n", size, align);
833 		return NULL;
834 	}
835 
836 	mutex_lock(&pcpu_alloc_mutex);
837 	spin_lock_irq(&pcpu_lock);
838 
839 	/* serve reserved allocations from the reserved chunk if available */
840 	if (reserved && pcpu_reserved_chunk) {
841 		chunk = pcpu_reserved_chunk;
842 		if (size > chunk->contig_hint ||
843 		    pcpu_extend_area_map(chunk) < 0)
844 			goto fail_unlock;
845 		off = pcpu_alloc_area(chunk, size, align);
846 		if (off >= 0)
847 			goto area_found;
848 		goto fail_unlock;
849 	}
850 
851 restart:
852 	/* search through normal chunks */
853 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
854 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
855 			if (size > chunk->contig_hint)
856 				continue;
857 
858 			switch (pcpu_extend_area_map(chunk)) {
859 			case 0:
860 				break;
861 			case 1:
862 				goto restart;	/* pcpu_lock dropped, restart */
863 			default:
864 				goto fail_unlock;
865 			}
866 
867 			off = pcpu_alloc_area(chunk, size, align);
868 			if (off >= 0)
869 				goto area_found;
870 		}
871 	}
872 
873 	/* hmmm... no space left, create a new chunk */
874 	spin_unlock_irq(&pcpu_lock);
875 
876 	chunk = alloc_pcpu_chunk();
877 	if (!chunk)
878 		goto fail_unlock_mutex;
879 
880 	spin_lock_irq(&pcpu_lock);
881 	pcpu_chunk_relocate(chunk, -1);
882 	pcpu_chunk_addr_insert(chunk);
883 	goto restart;
884 
885 area_found:
886 	spin_unlock_irq(&pcpu_lock);
887 
888 	/* populate, map and clear the area */
889 	if (pcpu_populate_chunk(chunk, off, size)) {
890 		spin_lock_irq(&pcpu_lock);
891 		pcpu_free_area(chunk, off);
892 		goto fail_unlock;
893 	}
894 
895 	mutex_unlock(&pcpu_alloc_mutex);
896 
897 	return __addr_to_pcpu_ptr(chunk->vm->addr + off);
898 
899 fail_unlock:
900 	spin_unlock_irq(&pcpu_lock);
901 fail_unlock_mutex:
902 	mutex_unlock(&pcpu_alloc_mutex);
903 	return NULL;
904 }
905 
906 /**
907  * __alloc_percpu - allocate dynamic percpu area
908  * @size: size of area to allocate in bytes
909  * @align: alignment of area (max PAGE_SIZE)
910  *
911  * Allocate percpu area of @size bytes aligned at @align.  Might
912  * sleep.  Might trigger writeouts.
913  *
914  * CONTEXT:
915  * Does GFP_KERNEL allocation.
916  *
917  * RETURNS:
918  * Percpu pointer to the allocated area on success, NULL on failure.
919  */
920 void *__alloc_percpu(size_t size, size_t align)
921 {
922 	return pcpu_alloc(size, align, false);
923 }
924 EXPORT_SYMBOL_GPL(__alloc_percpu);
925 
926 /**
927  * __alloc_reserved_percpu - allocate reserved percpu area
928  * @size: size of area to allocate in bytes
929  * @align: alignment of area (max PAGE_SIZE)
930  *
931  * Allocate percpu area of @size bytes aligned at @align from reserved
932  * percpu area if arch has set it up; otherwise, allocation is served
933  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
934  *
935  * CONTEXT:
936  * Does GFP_KERNEL allocation.
937  *
938  * RETURNS:
939  * Percpu pointer to the allocated area on success, NULL on failure.
940  */
941 void *__alloc_reserved_percpu(size_t size, size_t align)
942 {
943 	return pcpu_alloc(size, align, true);
944 }
945 
946 /**
947  * pcpu_reclaim - reclaim fully free chunks, workqueue function
948  * @work: unused
949  *
950  * Reclaim all fully free chunks except for the first one.
951  *
952  * CONTEXT:
953  * workqueue context.
954  */
955 static void pcpu_reclaim(struct work_struct *work)
956 {
957 	LIST_HEAD(todo);
958 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
959 	struct pcpu_chunk *chunk, *next;
960 
961 	mutex_lock(&pcpu_alloc_mutex);
962 	spin_lock_irq(&pcpu_lock);
963 
964 	list_for_each_entry_safe(chunk, next, head, list) {
965 		WARN_ON(chunk->immutable);
966 
967 		/* spare the first one */
968 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
969 			continue;
970 
971 		rb_erase(&chunk->rb_node, &pcpu_addr_root);
972 		list_move(&chunk->list, &todo);
973 	}
974 
975 	spin_unlock_irq(&pcpu_lock);
976 	mutex_unlock(&pcpu_alloc_mutex);
977 
978 	list_for_each_entry_safe(chunk, next, &todo, list) {
979 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
980 		free_pcpu_chunk(chunk);
981 	}
982 }
983 
984 /**
985  * free_percpu - free percpu area
986  * @ptr: pointer to area to free
987  *
988  * Free percpu area @ptr.
989  *
990  * CONTEXT:
991  * Can be called from atomic context.
992  */
993 void free_percpu(void *ptr)
994 {
995 	void *addr = __pcpu_ptr_to_addr(ptr);
996 	struct pcpu_chunk *chunk;
997 	unsigned long flags;
998 	int off;
999 
1000 	if (!ptr)
1001 		return;
1002 
1003 	spin_lock_irqsave(&pcpu_lock, flags);
1004 
1005 	chunk = pcpu_chunk_addr_search(addr);
1006 	off = addr - chunk->vm->addr;
1007 
1008 	pcpu_free_area(chunk, off);
1009 
1010 	/* if there are more than one fully free chunks, wake up grim reaper */
1011 	if (chunk->free_size == pcpu_unit_size) {
1012 		struct pcpu_chunk *pos;
1013 
1014 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1015 			if (pos != chunk) {
1016 				schedule_work(&pcpu_reclaim_work);
1017 				break;
1018 			}
1019 	}
1020 
1021 	spin_unlock_irqrestore(&pcpu_lock, flags);
1022 }
1023 EXPORT_SYMBOL_GPL(free_percpu);
1024 
1025 /**
1026  * pcpu_setup_first_chunk - initialize the first percpu chunk
1027  * @get_page_fn: callback to fetch page pointer
1028  * @static_size: the size of static percpu area in bytes
1029  * @reserved_size: the size of reserved percpu area in bytes
1030  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1031  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1032  * @base_addr: mapped address, NULL for auto
1033  * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
1034  *
1035  * Initialize the first percpu chunk which contains the kernel static
1036  * perpcu area.  This function is to be called from arch percpu area
1037  * setup path.  The first two parameters are mandatory.  The rest are
1038  * optional.
1039  *
1040  * @get_page_fn() should return pointer to percpu page given cpu
1041  * number and page number.  It should at least return enough pages to
1042  * cover the static area.  The returned pages for static area should
1043  * have been initialized with valid data.  If @unit_size is specified,
1044  * it can also return pages after the static area.  NULL return
1045  * indicates end of pages for the cpu.  Note that @get_page_fn() must
1046  * return the same number of pages for all cpus.
1047  *
1048  * @reserved_size, if non-zero, specifies the amount of bytes to
1049  * reserve after the static area in the first chunk.  This reserves
1050  * the first chunk such that it's available only through reserved
1051  * percpu allocation.  This is primarily used to serve module percpu
1052  * static areas on architectures where the addressing model has
1053  * limited offset range for symbol relocations to guarantee module
1054  * percpu symbols fall inside the relocatable range.
1055  *
1056  * @dyn_size, if non-negative, determines the number of bytes
1057  * available for dynamic allocation in the first chunk.  Specifying
1058  * non-negative value makes percpu leave alone the area beyond
1059  * @static_size + @reserved_size + @dyn_size.
1060  *
1061  * @unit_size, if non-negative, specifies unit size and must be
1062  * aligned to PAGE_SIZE and equal to or larger than @static_size +
1063  * @reserved_size + if non-negative, @dyn_size.
1064  *
1065  * Non-null @base_addr means that the caller already allocated virtual
1066  * region for the first chunk and mapped it.  percpu must not mess
1067  * with the chunk.  Note that @base_addr with 0 @unit_size or non-NULL
1068  * @populate_pte_fn doesn't make any sense.
1069  *
1070  * @populate_pte_fn is used to populate the pagetable.  NULL means the
1071  * caller already populated the pagetable.
1072  *
1073  * If the first chunk ends up with both reserved and dynamic areas, it
1074  * is served by two chunks - one to serve the core static and reserved
1075  * areas and the other for the dynamic area.  They share the same vm
1076  * and page map but uses different area allocation map to stay away
1077  * from each other.  The latter chunk is circulated in the chunk slots
1078  * and available for dynamic allocation like any other chunks.
1079  *
1080  * RETURNS:
1081  * The determined pcpu_unit_size which can be used to initialize
1082  * percpu access.
1083  */
1084 size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
1085 				     size_t static_size, size_t reserved_size,
1086 				     ssize_t dyn_size, ssize_t unit_size,
1087 				     void *base_addr,
1088 				     pcpu_populate_pte_fn_t populate_pte_fn)
1089 {
1090 	static struct vm_struct first_vm;
1091 	static int smap[2], dmap[2];
1092 	size_t size_sum = static_size + reserved_size +
1093 			  (dyn_size >= 0 ? dyn_size : 0);
1094 	struct pcpu_chunk *schunk, *dchunk = NULL;
1095 	unsigned int cpu;
1096 	int nr_pages;
1097 	int err, i;
1098 
1099 	/* santiy checks */
1100 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1101 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1102 	BUG_ON(!static_size);
1103 	if (unit_size >= 0) {
1104 		BUG_ON(unit_size < size_sum);
1105 		BUG_ON(unit_size & ~PAGE_MASK);
1106 		BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1107 	} else
1108 		BUG_ON(base_addr);
1109 	BUG_ON(base_addr && populate_pte_fn);
1110 
1111 	if (unit_size >= 0)
1112 		pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1113 	else
1114 		pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
1115 					PFN_UP(size_sum));
1116 
1117 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1118 	pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
1119 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
1120 		+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
1121 
1122 	if (dyn_size < 0)
1123 		dyn_size = pcpu_unit_size - static_size - reserved_size;
1124 
1125 	/*
1126 	 * Allocate chunk slots.  The additional last slot is for
1127 	 * empty chunks.
1128 	 */
1129 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1130 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1131 	for (i = 0; i < pcpu_nr_slots; i++)
1132 		INIT_LIST_HEAD(&pcpu_slot[i]);
1133 
1134 	/*
1135 	 * Initialize static chunk.  If reserved_size is zero, the
1136 	 * static chunk covers static area + dynamic allocation area
1137 	 * in the first chunk.  If reserved_size is not zero, it
1138 	 * covers static area + reserved area (mostly used for module
1139 	 * static percpu allocation).
1140 	 */
1141 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1142 	INIT_LIST_HEAD(&schunk->list);
1143 	schunk->vm = &first_vm;
1144 	schunk->map = smap;
1145 	schunk->map_alloc = ARRAY_SIZE(smap);
1146 	schunk->page = schunk->page_ar;
1147 
1148 	if (reserved_size) {
1149 		schunk->free_size = reserved_size;
1150 		pcpu_reserved_chunk = schunk;	/* not for dynamic alloc */
1151 	} else {
1152 		schunk->free_size = dyn_size;
1153 		dyn_size = 0;			/* dynamic area covered */
1154 	}
1155 	schunk->contig_hint = schunk->free_size;
1156 
1157 	schunk->map[schunk->map_used++] = -static_size;
1158 	if (schunk->free_size)
1159 		schunk->map[schunk->map_used++] = schunk->free_size;
1160 
1161 	pcpu_reserved_chunk_limit = static_size + schunk->free_size;
1162 
1163 	/* init dynamic chunk if necessary */
1164 	if (dyn_size) {
1165 		dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1166 		INIT_LIST_HEAD(&dchunk->list);
1167 		dchunk->vm = &first_vm;
1168 		dchunk->map = dmap;
1169 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1170 		dchunk->page = schunk->page_ar;	/* share page map with schunk */
1171 
1172 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1173 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1174 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1175 	}
1176 
1177 	/* allocate vm address */
1178 	first_vm.flags = VM_ALLOC;
1179 	first_vm.size = pcpu_chunk_size;
1180 
1181 	if (!base_addr)
1182 		vm_area_register_early(&first_vm, PAGE_SIZE);
1183 	else {
1184 		/*
1185 		 * Pages already mapped.  No need to remap into
1186 		 * vmalloc area.  In this case the first chunks can't
1187 		 * be mapped or unmapped by percpu and are marked
1188 		 * immutable.
1189 		 */
1190 		first_vm.addr = base_addr;
1191 		schunk->immutable = true;
1192 		if (dchunk)
1193 			dchunk->immutable = true;
1194 	}
1195 
1196 	/* assign pages */
1197 	nr_pages = -1;
1198 	for_each_possible_cpu(cpu) {
1199 		for (i = 0; i < pcpu_unit_pages; i++) {
1200 			struct page *page = get_page_fn(cpu, i);
1201 
1202 			if (!page)
1203 				break;
1204 			*pcpu_chunk_pagep(schunk, cpu, i) = page;
1205 		}
1206 
1207 		BUG_ON(i < PFN_UP(static_size));
1208 
1209 		if (nr_pages < 0)
1210 			nr_pages = i;
1211 		else
1212 			BUG_ON(nr_pages != i);
1213 	}
1214 
1215 	/* map them */
1216 	if (populate_pte_fn) {
1217 		for_each_possible_cpu(cpu)
1218 			for (i = 0; i < nr_pages; i++)
1219 				populate_pte_fn(pcpu_chunk_addr(schunk,
1220 								cpu, i));
1221 
1222 		err = pcpu_map(schunk, 0, nr_pages);
1223 		if (err)
1224 			panic("failed to setup static percpu area, err=%d\n",
1225 			      err);
1226 	}
1227 
1228 	/* link the first chunk in */
1229 	if (!dchunk) {
1230 		pcpu_chunk_relocate(schunk, -1);
1231 		pcpu_chunk_addr_insert(schunk);
1232 	} else {
1233 		pcpu_chunk_relocate(dchunk, -1);
1234 		pcpu_chunk_addr_insert(dchunk);
1235 	}
1236 
1237 	/* we're done */
1238 	pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1239 	return pcpu_unit_size;
1240 }
1241 
1242 /*
1243  * Embedding first chunk setup helper.
1244  */
1245 static void *pcpue_ptr __initdata;
1246 static size_t pcpue_size __initdata;
1247 static size_t pcpue_unit_size __initdata;
1248 
1249 static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
1250 {
1251 	size_t off = (size_t)pageno << PAGE_SHIFT;
1252 
1253 	if (off >= pcpue_size)
1254 		return NULL;
1255 
1256 	return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
1257 }
1258 
1259 /**
1260  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1261  * @static_size: the size of static percpu area in bytes
1262  * @reserved_size: the size of reserved percpu area in bytes
1263  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1264  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1265  *
1266  * This is a helper to ease setting up embedded first percpu chunk and
1267  * can be called where pcpu_setup_first_chunk() is expected.
1268  *
1269  * If this function is used to setup the first chunk, it is allocated
1270  * as a contiguous area using bootmem allocator and used as-is without
1271  * being mapped into vmalloc area.  This enables the first chunk to
1272  * piggy back on the linear physical mapping which often uses larger
1273  * page size.
1274  *
1275  * When @dyn_size is positive, dynamic area might be larger than
1276  * specified to fill page alignment.  Also, when @dyn_size is auto,
1277  * @dyn_size does not fill the whole first chunk but only what's
1278  * necessary for page alignment after static and reserved areas.
1279  *
1280  * If the needed size is smaller than the minimum or specified unit
1281  * size, the leftover is returned to the bootmem allocator.
1282  *
1283  * RETURNS:
1284  * The determined pcpu_unit_size which can be used to initialize
1285  * percpu access on success, -errno on failure.
1286  */
1287 ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1288 				      ssize_t dyn_size, ssize_t unit_size)
1289 {
1290 	unsigned int cpu;
1291 
1292 	/* determine parameters and allocate */
1293 	pcpue_size = PFN_ALIGN(static_size + reserved_size +
1294 			       (dyn_size >= 0 ? dyn_size : 0));
1295 	if (dyn_size != 0)
1296 		dyn_size = pcpue_size - static_size - reserved_size;
1297 
1298 	if (unit_size >= 0) {
1299 		BUG_ON(unit_size < pcpue_size);
1300 		pcpue_unit_size = unit_size;
1301 	} else
1302 		pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
1303 
1304 	pcpue_ptr = __alloc_bootmem_nopanic(
1305 					num_possible_cpus() * pcpue_unit_size,
1306 					PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1307 	if (!pcpue_ptr)
1308 		return -ENOMEM;
1309 
1310 	/* return the leftover and copy */
1311 	for_each_possible_cpu(cpu) {
1312 		void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
1313 
1314 		free_bootmem(__pa(ptr + pcpue_size),
1315 			     pcpue_unit_size - pcpue_size);
1316 		memcpy(ptr, __per_cpu_load, static_size);
1317 	}
1318 
1319 	/* we're ready, commit */
1320 	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
1321 		pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
1322 
1323 	return pcpu_setup_first_chunk(pcpue_get_page, static_size,
1324 				      reserved_size, dyn_size,
1325 				      pcpue_unit_size, pcpue_ptr, NULL);
1326 }
1327