1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * tries to allocate from the fullest chunk first. Each chunk is managed 41 * by a bitmap with metadata blocks. The allocation map is updated on 42 * every allocation and free to reflect the current state while the boundary 43 * map is only updated on allocation. Each metadata block contains 44 * information to help mitigate the need to iterate over large portions 45 * of the bitmap. The reverse mapping from page to chunk is stored in 46 * the page's index. Lastly, units are lazily backed and grow in unison. 47 * 48 * There is a unique conversion that goes on here between bytes and bits. 49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 50 * tracks the number of pages it is responsible for in nr_pages. Helper 51 * functions are used to convert from between the bytes, bits, and blocks. 52 * All hints are managed in bits unless explicitly stated. 53 * 54 * To use this allocator, arch code should do the following: 55 * 56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 57 * regular address to percpu pointer and back if they need to be 58 * different from the default 59 * 60 * - use pcpu_setup_first_chunk() during percpu area initialization to 61 * setup the first chunk containing the kernel static percpu area 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/bitmap.h> 67 #include <linux/memblock.h> 68 #include <linux/err.h> 69 #include <linux/lcm.h> 70 #include <linux/list.h> 71 #include <linux/log2.h> 72 #include <linux/mm.h> 73 #include <linux/module.h> 74 #include <linux/mutex.h> 75 #include <linux/percpu.h> 76 #include <linux/pfn.h> 77 #include <linux/slab.h> 78 #include <linux/spinlock.h> 79 #include <linux/vmalloc.h> 80 #include <linux/workqueue.h> 81 #include <linux/kmemleak.h> 82 #include <linux/sched.h> 83 84 #include <asm/cacheflush.h> 85 #include <asm/sections.h> 86 #include <asm/tlbflush.h> 87 #include <asm/io.h> 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/percpu.h> 91 92 #include "percpu-internal.h" 93 94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 95 #define PCPU_SLOT_BASE_SHIFT 5 96 /* chunks in slots below this are subject to being sidelined on failed alloc */ 97 #define PCPU_SLOT_FAIL_THRESHOLD 3 98 99 #define PCPU_EMPTY_POP_PAGES_LOW 2 100 #define PCPU_EMPTY_POP_PAGES_HIGH 4 101 102 #ifdef CONFIG_SMP 103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 104 #ifndef __addr_to_pcpu_ptr 105 #define __addr_to_pcpu_ptr(addr) \ 106 (void __percpu *)((unsigned long)(addr) - \ 107 (unsigned long)pcpu_base_addr + \ 108 (unsigned long)__per_cpu_start) 109 #endif 110 #ifndef __pcpu_ptr_to_addr 111 #define __pcpu_ptr_to_addr(ptr) \ 112 (void __force *)((unsigned long)(ptr) + \ 113 (unsigned long)pcpu_base_addr - \ 114 (unsigned long)__per_cpu_start) 115 #endif 116 #else /* CONFIG_SMP */ 117 /* on UP, it's always identity mapped */ 118 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 119 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 120 #endif /* CONFIG_SMP */ 121 122 static int pcpu_unit_pages __ro_after_init; 123 static int pcpu_unit_size __ro_after_init; 124 static int pcpu_nr_units __ro_after_init; 125 static int pcpu_atom_size __ro_after_init; 126 int pcpu_nr_slots __ro_after_init; 127 static size_t pcpu_chunk_struct_size __ro_after_init; 128 129 /* cpus with the lowest and highest unit addresses */ 130 static unsigned int pcpu_low_unit_cpu __ro_after_init; 131 static unsigned int pcpu_high_unit_cpu __ro_after_init; 132 133 /* the address of the first chunk which starts with the kernel static area */ 134 void *pcpu_base_addr __ro_after_init; 135 EXPORT_SYMBOL_GPL(pcpu_base_addr); 136 137 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 138 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 139 140 /* group information, used for vm allocation */ 141 static int pcpu_nr_groups __ro_after_init; 142 static const unsigned long *pcpu_group_offsets __ro_after_init; 143 static const size_t *pcpu_group_sizes __ro_after_init; 144 145 /* 146 * The first chunk which always exists. Note that unlike other 147 * chunks, this one can be allocated and mapped in several different 148 * ways and thus often doesn't live in the vmalloc area. 149 */ 150 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 151 152 /* 153 * Optional reserved chunk. This chunk reserves part of the first 154 * chunk and serves it for reserved allocations. When the reserved 155 * region doesn't exist, the following variable is NULL. 156 */ 157 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 158 159 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 160 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 161 162 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 163 164 /* chunks which need their map areas extended, protected by pcpu_lock */ 165 static LIST_HEAD(pcpu_map_extend_chunks); 166 167 /* 168 * The number of empty populated pages, protected by pcpu_lock. The 169 * reserved chunk doesn't contribute to the count. 170 */ 171 int pcpu_nr_empty_pop_pages; 172 173 /* 174 * The number of populated pages in use by the allocator, protected by 175 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 176 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 177 * and increments/decrements this count by 1). 178 */ 179 static unsigned long pcpu_nr_populated; 180 181 /* 182 * Balance work is used to populate or destroy chunks asynchronously. We 183 * try to keep the number of populated free pages between 184 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 185 * empty chunk. 186 */ 187 static void pcpu_balance_workfn(struct work_struct *work); 188 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 189 static bool pcpu_async_enabled __read_mostly; 190 static bool pcpu_atomic_alloc_failed; 191 192 static void pcpu_schedule_balance_work(void) 193 { 194 if (pcpu_async_enabled) 195 schedule_work(&pcpu_balance_work); 196 } 197 198 /** 199 * pcpu_addr_in_chunk - check if the address is served from this chunk 200 * @chunk: chunk of interest 201 * @addr: percpu address 202 * 203 * RETURNS: 204 * True if the address is served from this chunk. 205 */ 206 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 207 { 208 void *start_addr, *end_addr; 209 210 if (!chunk) 211 return false; 212 213 start_addr = chunk->base_addr + chunk->start_offset; 214 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 215 chunk->end_offset; 216 217 return addr >= start_addr && addr < end_addr; 218 } 219 220 static int __pcpu_size_to_slot(int size) 221 { 222 int highbit = fls(size); /* size is in bytes */ 223 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 224 } 225 226 static int pcpu_size_to_slot(int size) 227 { 228 if (size == pcpu_unit_size) 229 return pcpu_nr_slots - 1; 230 return __pcpu_size_to_slot(size); 231 } 232 233 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 234 { 235 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 236 237 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 238 chunk_md->contig_hint == 0) 239 return 0; 240 241 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 242 } 243 244 /* set the pointer to a chunk in a page struct */ 245 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 246 { 247 page->index = (unsigned long)pcpu; 248 } 249 250 /* obtain pointer to a chunk from a page struct */ 251 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 252 { 253 return (struct pcpu_chunk *)page->index; 254 } 255 256 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 257 { 258 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 259 } 260 261 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 262 { 263 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 264 } 265 266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 267 unsigned int cpu, int page_idx) 268 { 269 return (unsigned long)chunk->base_addr + 270 pcpu_unit_page_offset(cpu, page_idx); 271 } 272 273 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) 274 { 275 *rs = find_next_zero_bit(bitmap, end, *rs); 276 *re = find_next_bit(bitmap, end, *rs + 1); 277 } 278 279 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) 280 { 281 *rs = find_next_bit(bitmap, end, *rs); 282 *re = find_next_zero_bit(bitmap, end, *rs + 1); 283 } 284 285 /* 286 * Bitmap region iterators. Iterates over the bitmap between 287 * [@start, @end) in @chunk. @rs and @re should be integer variables 288 * and will be set to start and end index of the current free region. 289 */ 290 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ 291 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ 292 (rs) < (re); \ 293 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) 294 295 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ 296 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ 297 (rs) < (re); \ 298 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) 299 300 /* 301 * The following are helper functions to help access bitmaps and convert 302 * between bitmap offsets to address offsets. 303 */ 304 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 305 { 306 return chunk->alloc_map + 307 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 308 } 309 310 static unsigned long pcpu_off_to_block_index(int off) 311 { 312 return off / PCPU_BITMAP_BLOCK_BITS; 313 } 314 315 static unsigned long pcpu_off_to_block_off(int off) 316 { 317 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 318 } 319 320 static unsigned long pcpu_block_off_to_off(int index, int off) 321 { 322 return index * PCPU_BITMAP_BLOCK_BITS + off; 323 } 324 325 /* 326 * pcpu_next_hint - determine which hint to use 327 * @block: block of interest 328 * @alloc_bits: size of allocation 329 * 330 * This determines if we should scan based on the scan_hint or first_free. 331 * In general, we want to scan from first_free to fulfill allocations by 332 * first fit. However, if we know a scan_hint at position scan_hint_start 333 * cannot fulfill an allocation, we can begin scanning from there knowing 334 * the contig_hint will be our fallback. 335 */ 336 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 337 { 338 /* 339 * The three conditions below determine if we can skip past the 340 * scan_hint. First, does the scan hint exist. Second, is the 341 * contig_hint after the scan_hint (possibly not true iff 342 * contig_hint == scan_hint). Third, is the allocation request 343 * larger than the scan_hint. 344 */ 345 if (block->scan_hint && 346 block->contig_hint_start > block->scan_hint_start && 347 alloc_bits > block->scan_hint) 348 return block->scan_hint_start + block->scan_hint; 349 350 return block->first_free; 351 } 352 353 /** 354 * pcpu_next_md_free_region - finds the next hint free area 355 * @chunk: chunk of interest 356 * @bit_off: chunk offset 357 * @bits: size of free area 358 * 359 * Helper function for pcpu_for_each_md_free_region. It checks 360 * block->contig_hint and performs aggregation across blocks to find the 361 * next hint. It modifies bit_off and bits in-place to be consumed in the 362 * loop. 363 */ 364 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 365 int *bits) 366 { 367 int i = pcpu_off_to_block_index(*bit_off); 368 int block_off = pcpu_off_to_block_off(*bit_off); 369 struct pcpu_block_md *block; 370 371 *bits = 0; 372 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 373 block++, i++) { 374 /* handles contig area across blocks */ 375 if (*bits) { 376 *bits += block->left_free; 377 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 378 continue; 379 return; 380 } 381 382 /* 383 * This checks three things. First is there a contig_hint to 384 * check. Second, have we checked this hint before by 385 * comparing the block_off. Third, is this the same as the 386 * right contig hint. In the last case, it spills over into 387 * the next block and should be handled by the contig area 388 * across blocks code. 389 */ 390 *bits = block->contig_hint; 391 if (*bits && block->contig_hint_start >= block_off && 392 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 393 *bit_off = pcpu_block_off_to_off(i, 394 block->contig_hint_start); 395 return; 396 } 397 /* reset to satisfy the second predicate above */ 398 block_off = 0; 399 400 *bits = block->right_free; 401 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 402 } 403 } 404 405 /** 406 * pcpu_next_fit_region - finds fit areas for a given allocation request 407 * @chunk: chunk of interest 408 * @alloc_bits: size of allocation 409 * @align: alignment of area (max PAGE_SIZE) 410 * @bit_off: chunk offset 411 * @bits: size of free area 412 * 413 * Finds the next free region that is viable for use with a given size and 414 * alignment. This only returns if there is a valid area to be used for this 415 * allocation. block->first_free is returned if the allocation request fits 416 * within the block to see if the request can be fulfilled prior to the contig 417 * hint. 418 */ 419 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 420 int align, int *bit_off, int *bits) 421 { 422 int i = pcpu_off_to_block_index(*bit_off); 423 int block_off = pcpu_off_to_block_off(*bit_off); 424 struct pcpu_block_md *block; 425 426 *bits = 0; 427 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 428 block++, i++) { 429 /* handles contig area across blocks */ 430 if (*bits) { 431 *bits += block->left_free; 432 if (*bits >= alloc_bits) 433 return; 434 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 435 continue; 436 } 437 438 /* check block->contig_hint */ 439 *bits = ALIGN(block->contig_hint_start, align) - 440 block->contig_hint_start; 441 /* 442 * This uses the block offset to determine if this has been 443 * checked in the prior iteration. 444 */ 445 if (block->contig_hint && 446 block->contig_hint_start >= block_off && 447 block->contig_hint >= *bits + alloc_bits) { 448 int start = pcpu_next_hint(block, alloc_bits); 449 450 *bits += alloc_bits + block->contig_hint_start - 451 start; 452 *bit_off = pcpu_block_off_to_off(i, start); 453 return; 454 } 455 /* reset to satisfy the second predicate above */ 456 block_off = 0; 457 458 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 459 align); 460 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 461 *bit_off = pcpu_block_off_to_off(i, *bit_off); 462 if (*bits >= alloc_bits) 463 return; 464 } 465 466 /* no valid offsets were found - fail condition */ 467 *bit_off = pcpu_chunk_map_bits(chunk); 468 } 469 470 /* 471 * Metadata free area iterators. These perform aggregation of free areas 472 * based on the metadata blocks and return the offset @bit_off and size in 473 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 474 * a fit is found for the allocation request. 475 */ 476 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 477 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 478 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 479 (bit_off) += (bits) + 1, \ 480 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 481 482 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 483 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 484 &(bits)); \ 485 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 486 (bit_off) += (bits), \ 487 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 488 &(bits))) 489 490 /** 491 * pcpu_mem_zalloc - allocate memory 492 * @size: bytes to allocate 493 * @gfp: allocation flags 494 * 495 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 496 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 497 * This is to facilitate passing through whitelisted flags. The 498 * returned memory is always zeroed. 499 * 500 * RETURNS: 501 * Pointer to the allocated area on success, NULL on failure. 502 */ 503 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 504 { 505 if (WARN_ON_ONCE(!slab_is_available())) 506 return NULL; 507 508 if (size <= PAGE_SIZE) 509 return kzalloc(size, gfp); 510 else 511 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); 512 } 513 514 /** 515 * pcpu_mem_free - free memory 516 * @ptr: memory to free 517 * 518 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 519 */ 520 static void pcpu_mem_free(void *ptr) 521 { 522 kvfree(ptr); 523 } 524 525 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 526 bool move_front) 527 { 528 if (chunk != pcpu_reserved_chunk) { 529 if (move_front) 530 list_move(&chunk->list, &pcpu_slot[slot]); 531 else 532 list_move_tail(&chunk->list, &pcpu_slot[slot]); 533 } 534 } 535 536 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 537 { 538 __pcpu_chunk_move(chunk, slot, true); 539 } 540 541 /** 542 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 543 * @chunk: chunk of interest 544 * @oslot: the previous slot it was on 545 * 546 * This function is called after an allocation or free changed @chunk. 547 * New slot according to the changed state is determined and @chunk is 548 * moved to the slot. Note that the reserved chunk is never put on 549 * chunk slots. 550 * 551 * CONTEXT: 552 * pcpu_lock. 553 */ 554 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 555 { 556 int nslot = pcpu_chunk_slot(chunk); 557 558 if (oslot != nslot) 559 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 560 } 561 562 /* 563 * pcpu_update_empty_pages - update empty page counters 564 * @chunk: chunk of interest 565 * @nr: nr of empty pages 566 * 567 * This is used to keep track of the empty pages now based on the premise 568 * a md_block covers a page. The hint update functions recognize if a block 569 * is made full or broken to calculate deltas for keeping track of free pages. 570 */ 571 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 572 { 573 chunk->nr_empty_pop_pages += nr; 574 if (chunk != pcpu_reserved_chunk) 575 pcpu_nr_empty_pop_pages += nr; 576 } 577 578 /* 579 * pcpu_region_overlap - determines if two regions overlap 580 * @a: start of first region, inclusive 581 * @b: end of first region, exclusive 582 * @x: start of second region, inclusive 583 * @y: end of second region, exclusive 584 * 585 * This is used to determine if the hint region [a, b) overlaps with the 586 * allocated region [x, y). 587 */ 588 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 589 { 590 return (a < y) && (x < b); 591 } 592 593 /** 594 * pcpu_block_update - updates a block given a free area 595 * @block: block of interest 596 * @start: start offset in block 597 * @end: end offset in block 598 * 599 * Updates a block given a known free area. The region [start, end) is 600 * expected to be the entirety of the free area within a block. Chooses 601 * the best starting offset if the contig hints are equal. 602 */ 603 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 604 { 605 int contig = end - start; 606 607 block->first_free = min(block->first_free, start); 608 if (start == 0) 609 block->left_free = contig; 610 611 if (end == block->nr_bits) 612 block->right_free = contig; 613 614 if (contig > block->contig_hint) { 615 /* promote the old contig_hint to be the new scan_hint */ 616 if (start > block->contig_hint_start) { 617 if (block->contig_hint > block->scan_hint) { 618 block->scan_hint_start = 619 block->contig_hint_start; 620 block->scan_hint = block->contig_hint; 621 } else if (start < block->scan_hint_start) { 622 /* 623 * The old contig_hint == scan_hint. But, the 624 * new contig is larger so hold the invariant 625 * scan_hint_start < contig_hint_start. 626 */ 627 block->scan_hint = 0; 628 } 629 } else { 630 block->scan_hint = 0; 631 } 632 block->contig_hint_start = start; 633 block->contig_hint = contig; 634 } else if (contig == block->contig_hint) { 635 if (block->contig_hint_start && 636 (!start || 637 __ffs(start) > __ffs(block->contig_hint_start))) { 638 /* start has a better alignment so use it */ 639 block->contig_hint_start = start; 640 if (start < block->scan_hint_start && 641 block->contig_hint > block->scan_hint) 642 block->scan_hint = 0; 643 } else if (start > block->scan_hint_start || 644 block->contig_hint > block->scan_hint) { 645 /* 646 * Knowing contig == contig_hint, update the scan_hint 647 * if it is farther than or larger than the current 648 * scan_hint. 649 */ 650 block->scan_hint_start = start; 651 block->scan_hint = contig; 652 } 653 } else { 654 /* 655 * The region is smaller than the contig_hint. So only update 656 * the scan_hint if it is larger than or equal and farther than 657 * the current scan_hint. 658 */ 659 if ((start < block->contig_hint_start && 660 (contig > block->scan_hint || 661 (contig == block->scan_hint && 662 start > block->scan_hint_start)))) { 663 block->scan_hint_start = start; 664 block->scan_hint = contig; 665 } 666 } 667 } 668 669 /* 670 * pcpu_block_update_scan - update a block given a free area from a scan 671 * @chunk: chunk of interest 672 * @bit_off: chunk offset 673 * @bits: size of free area 674 * 675 * Finding the final allocation spot first goes through pcpu_find_block_fit() 676 * to find a block that can hold the allocation and then pcpu_alloc_area() 677 * where a scan is used. When allocations require specific alignments, 678 * we can inadvertently create holes which will not be seen in the alloc 679 * or free paths. 680 * 681 * This takes a given free area hole and updates a block as it may change the 682 * scan_hint. We need to scan backwards to ensure we don't miss free bits 683 * from alignment. 684 */ 685 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 686 int bits) 687 { 688 int s_off = pcpu_off_to_block_off(bit_off); 689 int e_off = s_off + bits; 690 int s_index, l_bit; 691 struct pcpu_block_md *block; 692 693 if (e_off > PCPU_BITMAP_BLOCK_BITS) 694 return; 695 696 s_index = pcpu_off_to_block_index(bit_off); 697 block = chunk->md_blocks + s_index; 698 699 /* scan backwards in case of alignment skipping free bits */ 700 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 701 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 702 703 pcpu_block_update(block, s_off, e_off); 704 } 705 706 /** 707 * pcpu_chunk_refresh_hint - updates metadata about a chunk 708 * @chunk: chunk of interest 709 * @full_scan: if we should scan from the beginning 710 * 711 * Iterates over the metadata blocks to find the largest contig area. 712 * A full scan can be avoided on the allocation path as this is triggered 713 * if we broke the contig_hint. In doing so, the scan_hint will be before 714 * the contig_hint or after if the scan_hint == contig_hint. This cannot 715 * be prevented on freeing as we want to find the largest area possibly 716 * spanning blocks. 717 */ 718 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 719 { 720 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 721 int bit_off, bits; 722 723 /* promote scan_hint to contig_hint */ 724 if (!full_scan && chunk_md->scan_hint) { 725 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 726 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 727 chunk_md->contig_hint = chunk_md->scan_hint; 728 chunk_md->scan_hint = 0; 729 } else { 730 bit_off = chunk_md->first_free; 731 chunk_md->contig_hint = 0; 732 } 733 734 bits = 0; 735 pcpu_for_each_md_free_region(chunk, bit_off, bits) { 736 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 737 } 738 } 739 740 /** 741 * pcpu_block_refresh_hint 742 * @chunk: chunk of interest 743 * @index: index of the metadata block 744 * 745 * Scans over the block beginning at first_free and updates the block 746 * metadata accordingly. 747 */ 748 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 749 { 750 struct pcpu_block_md *block = chunk->md_blocks + index; 751 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 752 int rs, re, start; /* region start, region end */ 753 754 /* promote scan_hint to contig_hint */ 755 if (block->scan_hint) { 756 start = block->scan_hint_start + block->scan_hint; 757 block->contig_hint_start = block->scan_hint_start; 758 block->contig_hint = block->scan_hint; 759 block->scan_hint = 0; 760 } else { 761 start = block->first_free; 762 block->contig_hint = 0; 763 } 764 765 block->right_free = 0; 766 767 /* iterate over free areas and update the contig hints */ 768 pcpu_for_each_unpop_region(alloc_map, rs, re, start, 769 PCPU_BITMAP_BLOCK_BITS) { 770 pcpu_block_update(block, rs, re); 771 } 772 } 773 774 /** 775 * pcpu_block_update_hint_alloc - update hint on allocation path 776 * @chunk: chunk of interest 777 * @bit_off: chunk offset 778 * @bits: size of request 779 * 780 * Updates metadata for the allocation path. The metadata only has to be 781 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 782 * scans are required if the block's contig hint is broken. 783 */ 784 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 785 int bits) 786 { 787 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 788 int nr_empty_pages = 0; 789 struct pcpu_block_md *s_block, *e_block, *block; 790 int s_index, e_index; /* block indexes of the freed allocation */ 791 int s_off, e_off; /* block offsets of the freed allocation */ 792 793 /* 794 * Calculate per block offsets. 795 * The calculation uses an inclusive range, but the resulting offsets 796 * are [start, end). e_index always points to the last block in the 797 * range. 798 */ 799 s_index = pcpu_off_to_block_index(bit_off); 800 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 801 s_off = pcpu_off_to_block_off(bit_off); 802 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 803 804 s_block = chunk->md_blocks + s_index; 805 e_block = chunk->md_blocks + e_index; 806 807 /* 808 * Update s_block. 809 * block->first_free must be updated if the allocation takes its place. 810 * If the allocation breaks the contig_hint, a scan is required to 811 * restore this hint. 812 */ 813 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 814 nr_empty_pages++; 815 816 if (s_off == s_block->first_free) 817 s_block->first_free = find_next_zero_bit( 818 pcpu_index_alloc_map(chunk, s_index), 819 PCPU_BITMAP_BLOCK_BITS, 820 s_off + bits); 821 822 if (pcpu_region_overlap(s_block->scan_hint_start, 823 s_block->scan_hint_start + s_block->scan_hint, 824 s_off, 825 s_off + bits)) 826 s_block->scan_hint = 0; 827 828 if (pcpu_region_overlap(s_block->contig_hint_start, 829 s_block->contig_hint_start + 830 s_block->contig_hint, 831 s_off, 832 s_off + bits)) { 833 /* block contig hint is broken - scan to fix it */ 834 if (!s_off) 835 s_block->left_free = 0; 836 pcpu_block_refresh_hint(chunk, s_index); 837 } else { 838 /* update left and right contig manually */ 839 s_block->left_free = min(s_block->left_free, s_off); 840 if (s_index == e_index) 841 s_block->right_free = min_t(int, s_block->right_free, 842 PCPU_BITMAP_BLOCK_BITS - e_off); 843 else 844 s_block->right_free = 0; 845 } 846 847 /* 848 * Update e_block. 849 */ 850 if (s_index != e_index) { 851 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 852 nr_empty_pages++; 853 854 /* 855 * When the allocation is across blocks, the end is along 856 * the left part of the e_block. 857 */ 858 e_block->first_free = find_next_zero_bit( 859 pcpu_index_alloc_map(chunk, e_index), 860 PCPU_BITMAP_BLOCK_BITS, e_off); 861 862 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 863 /* reset the block */ 864 e_block++; 865 } else { 866 if (e_off > e_block->scan_hint_start) 867 e_block->scan_hint = 0; 868 869 e_block->left_free = 0; 870 if (e_off > e_block->contig_hint_start) { 871 /* contig hint is broken - scan to fix it */ 872 pcpu_block_refresh_hint(chunk, e_index); 873 } else { 874 e_block->right_free = 875 min_t(int, e_block->right_free, 876 PCPU_BITMAP_BLOCK_BITS - e_off); 877 } 878 } 879 880 /* update in-between md_blocks */ 881 nr_empty_pages += (e_index - s_index - 1); 882 for (block = s_block + 1; block < e_block; block++) { 883 block->scan_hint = 0; 884 block->contig_hint = 0; 885 block->left_free = 0; 886 block->right_free = 0; 887 } 888 } 889 890 if (nr_empty_pages) 891 pcpu_update_empty_pages(chunk, -nr_empty_pages); 892 893 if (pcpu_region_overlap(chunk_md->scan_hint_start, 894 chunk_md->scan_hint_start + 895 chunk_md->scan_hint, 896 bit_off, 897 bit_off + bits)) 898 chunk_md->scan_hint = 0; 899 900 /* 901 * The only time a full chunk scan is required is if the chunk 902 * contig hint is broken. Otherwise, it means a smaller space 903 * was used and therefore the chunk contig hint is still correct. 904 */ 905 if (pcpu_region_overlap(chunk_md->contig_hint_start, 906 chunk_md->contig_hint_start + 907 chunk_md->contig_hint, 908 bit_off, 909 bit_off + bits)) 910 pcpu_chunk_refresh_hint(chunk, false); 911 } 912 913 /** 914 * pcpu_block_update_hint_free - updates the block hints on the free path 915 * @chunk: chunk of interest 916 * @bit_off: chunk offset 917 * @bits: size of request 918 * 919 * Updates metadata for the allocation path. This avoids a blind block 920 * refresh by making use of the block contig hints. If this fails, it scans 921 * forward and backward to determine the extent of the free area. This is 922 * capped at the boundary of blocks. 923 * 924 * A chunk update is triggered if a page becomes free, a block becomes free, 925 * or the free spans across blocks. This tradeoff is to minimize iterating 926 * over the block metadata to update chunk_md->contig_hint. 927 * chunk_md->contig_hint may be off by up to a page, but it will never be more 928 * than the available space. If the contig hint is contained in one block, it 929 * will be accurate. 930 */ 931 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 932 int bits) 933 { 934 int nr_empty_pages = 0; 935 struct pcpu_block_md *s_block, *e_block, *block; 936 int s_index, e_index; /* block indexes of the freed allocation */ 937 int s_off, e_off; /* block offsets of the freed allocation */ 938 int start, end; /* start and end of the whole free area */ 939 940 /* 941 * Calculate per block offsets. 942 * The calculation uses an inclusive range, but the resulting offsets 943 * are [start, end). e_index always points to the last block in the 944 * range. 945 */ 946 s_index = pcpu_off_to_block_index(bit_off); 947 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 948 s_off = pcpu_off_to_block_off(bit_off); 949 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 950 951 s_block = chunk->md_blocks + s_index; 952 e_block = chunk->md_blocks + e_index; 953 954 /* 955 * Check if the freed area aligns with the block->contig_hint. 956 * If it does, then the scan to find the beginning/end of the 957 * larger free area can be avoided. 958 * 959 * start and end refer to beginning and end of the free area 960 * within each their respective blocks. This is not necessarily 961 * the entire free area as it may span blocks past the beginning 962 * or end of the block. 963 */ 964 start = s_off; 965 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 966 start = s_block->contig_hint_start; 967 } else { 968 /* 969 * Scan backwards to find the extent of the free area. 970 * find_last_bit returns the starting bit, so if the start bit 971 * is returned, that means there was no last bit and the 972 * remainder of the chunk is free. 973 */ 974 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 975 start); 976 start = (start == l_bit) ? 0 : l_bit + 1; 977 } 978 979 end = e_off; 980 if (e_off == e_block->contig_hint_start) 981 end = e_block->contig_hint_start + e_block->contig_hint; 982 else 983 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 984 PCPU_BITMAP_BLOCK_BITS, end); 985 986 /* update s_block */ 987 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 988 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 989 nr_empty_pages++; 990 pcpu_block_update(s_block, start, e_off); 991 992 /* freeing in the same block */ 993 if (s_index != e_index) { 994 /* update e_block */ 995 if (end == PCPU_BITMAP_BLOCK_BITS) 996 nr_empty_pages++; 997 pcpu_block_update(e_block, 0, end); 998 999 /* reset md_blocks in the middle */ 1000 nr_empty_pages += (e_index - s_index - 1); 1001 for (block = s_block + 1; block < e_block; block++) { 1002 block->first_free = 0; 1003 block->scan_hint = 0; 1004 block->contig_hint_start = 0; 1005 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1006 block->left_free = PCPU_BITMAP_BLOCK_BITS; 1007 block->right_free = PCPU_BITMAP_BLOCK_BITS; 1008 } 1009 } 1010 1011 if (nr_empty_pages) 1012 pcpu_update_empty_pages(chunk, nr_empty_pages); 1013 1014 /* 1015 * Refresh chunk metadata when the free makes a block free or spans 1016 * across blocks. The contig_hint may be off by up to a page, but if 1017 * the contig_hint is contained in a block, it will be accurate with 1018 * the else condition below. 1019 */ 1020 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 1021 pcpu_chunk_refresh_hint(chunk, true); 1022 else 1023 pcpu_block_update(&chunk->chunk_md, 1024 pcpu_block_off_to_off(s_index, start), 1025 end); 1026 } 1027 1028 /** 1029 * pcpu_is_populated - determines if the region is populated 1030 * @chunk: chunk of interest 1031 * @bit_off: chunk offset 1032 * @bits: size of area 1033 * @next_off: return value for the next offset to start searching 1034 * 1035 * For atomic allocations, check if the backing pages are populated. 1036 * 1037 * RETURNS: 1038 * Bool if the backing pages are populated. 1039 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1040 */ 1041 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1042 int *next_off) 1043 { 1044 int page_start, page_end, rs, re; 1045 1046 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1047 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1048 1049 rs = page_start; 1050 pcpu_next_unpop(chunk->populated, &rs, &re, page_end); 1051 if (rs >= page_end) 1052 return true; 1053 1054 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1055 return false; 1056 } 1057 1058 /** 1059 * pcpu_find_block_fit - finds the block index to start searching 1060 * @chunk: chunk of interest 1061 * @alloc_bits: size of request in allocation units 1062 * @align: alignment of area (max PAGE_SIZE bytes) 1063 * @pop_only: use populated regions only 1064 * 1065 * Given a chunk and an allocation spec, find the offset to begin searching 1066 * for a free region. This iterates over the bitmap metadata blocks to 1067 * find an offset that will be guaranteed to fit the requirements. It is 1068 * not quite first fit as if the allocation does not fit in the contig hint 1069 * of a block or chunk, it is skipped. This errs on the side of caution 1070 * to prevent excess iteration. Poor alignment can cause the allocator to 1071 * skip over blocks and chunks that have valid free areas. 1072 * 1073 * RETURNS: 1074 * The offset in the bitmap to begin searching. 1075 * -1 if no offset is found. 1076 */ 1077 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1078 size_t align, bool pop_only) 1079 { 1080 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1081 int bit_off, bits, next_off; 1082 1083 /* 1084 * Check to see if the allocation can fit in the chunk's contig hint. 1085 * This is an optimization to prevent scanning by assuming if it 1086 * cannot fit in the global hint, there is memory pressure and creating 1087 * a new chunk would happen soon. 1088 */ 1089 bit_off = ALIGN(chunk_md->contig_hint_start, align) - 1090 chunk_md->contig_hint_start; 1091 if (bit_off + alloc_bits > chunk_md->contig_hint) 1092 return -1; 1093 1094 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1095 bits = 0; 1096 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1097 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1098 &next_off)) 1099 break; 1100 1101 bit_off = next_off; 1102 bits = 0; 1103 } 1104 1105 if (bit_off == pcpu_chunk_map_bits(chunk)) 1106 return -1; 1107 1108 return bit_off; 1109 } 1110 1111 /* 1112 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1113 * @map: the address to base the search on 1114 * @size: the bitmap size in bits 1115 * @start: the bitnumber to start searching at 1116 * @nr: the number of zeroed bits we're looking for 1117 * @align_mask: alignment mask for zero area 1118 * @largest_off: offset of the largest area skipped 1119 * @largest_bits: size of the largest area skipped 1120 * 1121 * The @align_mask should be one less than a power of 2. 1122 * 1123 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1124 * the largest area that was skipped. This is imperfect, but in general is 1125 * good enough. The largest remembered region is the largest failed region 1126 * seen. This does not include anything we possibly skipped due to alignment. 1127 * pcpu_block_update_scan() does scan backwards to try and recover what was 1128 * lost to alignment. While this can cause scanning to miss earlier possible 1129 * free areas, smaller allocations will eventually fill those holes. 1130 */ 1131 static unsigned long pcpu_find_zero_area(unsigned long *map, 1132 unsigned long size, 1133 unsigned long start, 1134 unsigned long nr, 1135 unsigned long align_mask, 1136 unsigned long *largest_off, 1137 unsigned long *largest_bits) 1138 { 1139 unsigned long index, end, i, area_off, area_bits; 1140 again: 1141 index = find_next_zero_bit(map, size, start); 1142 1143 /* Align allocation */ 1144 index = __ALIGN_MASK(index, align_mask); 1145 area_off = index; 1146 1147 end = index + nr; 1148 if (end > size) 1149 return end; 1150 i = find_next_bit(map, end, index); 1151 if (i < end) { 1152 area_bits = i - area_off; 1153 /* remember largest unused area with best alignment */ 1154 if (area_bits > *largest_bits || 1155 (area_bits == *largest_bits && *largest_off && 1156 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1157 *largest_off = area_off; 1158 *largest_bits = area_bits; 1159 } 1160 1161 start = i + 1; 1162 goto again; 1163 } 1164 return index; 1165 } 1166 1167 /** 1168 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1169 * @chunk: chunk of interest 1170 * @alloc_bits: size of request in allocation units 1171 * @align: alignment of area (max PAGE_SIZE) 1172 * @start: bit_off to start searching 1173 * 1174 * This function takes in a @start offset to begin searching to fit an 1175 * allocation of @alloc_bits with alignment @align. It needs to scan 1176 * the allocation map because if it fits within the block's contig hint, 1177 * @start will be block->first_free. This is an attempt to fill the 1178 * allocation prior to breaking the contig hint. The allocation and 1179 * boundary maps are updated accordingly if it confirms a valid 1180 * free area. 1181 * 1182 * RETURNS: 1183 * Allocated addr offset in @chunk on success. 1184 * -1 if no matching area is found. 1185 */ 1186 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1187 size_t align, int start) 1188 { 1189 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1190 size_t align_mask = (align) ? (align - 1) : 0; 1191 unsigned long area_off = 0, area_bits = 0; 1192 int bit_off, end, oslot; 1193 1194 lockdep_assert_held(&pcpu_lock); 1195 1196 oslot = pcpu_chunk_slot(chunk); 1197 1198 /* 1199 * Search to find a fit. 1200 */ 1201 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1202 pcpu_chunk_map_bits(chunk)); 1203 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1204 align_mask, &area_off, &area_bits); 1205 if (bit_off >= end) 1206 return -1; 1207 1208 if (area_bits) 1209 pcpu_block_update_scan(chunk, area_off, area_bits); 1210 1211 /* update alloc map */ 1212 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1213 1214 /* update boundary map */ 1215 set_bit(bit_off, chunk->bound_map); 1216 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1217 set_bit(bit_off + alloc_bits, chunk->bound_map); 1218 1219 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1220 1221 /* update first free bit */ 1222 if (bit_off == chunk_md->first_free) 1223 chunk_md->first_free = find_next_zero_bit( 1224 chunk->alloc_map, 1225 pcpu_chunk_map_bits(chunk), 1226 bit_off + alloc_bits); 1227 1228 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1229 1230 pcpu_chunk_relocate(chunk, oslot); 1231 1232 return bit_off * PCPU_MIN_ALLOC_SIZE; 1233 } 1234 1235 /** 1236 * pcpu_free_area - frees the corresponding offset 1237 * @chunk: chunk of interest 1238 * @off: addr offset into chunk 1239 * 1240 * This function determines the size of an allocation to free using 1241 * the boundary bitmap and clears the allocation map. 1242 */ 1243 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1244 { 1245 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1246 int bit_off, bits, end, oslot; 1247 1248 lockdep_assert_held(&pcpu_lock); 1249 pcpu_stats_area_dealloc(chunk); 1250 1251 oslot = pcpu_chunk_slot(chunk); 1252 1253 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1254 1255 /* find end index */ 1256 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1257 bit_off + 1); 1258 bits = end - bit_off; 1259 bitmap_clear(chunk->alloc_map, bit_off, bits); 1260 1261 /* update metadata */ 1262 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1263 1264 /* update first free bit */ 1265 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1266 1267 pcpu_block_update_hint_free(chunk, bit_off, bits); 1268 1269 pcpu_chunk_relocate(chunk, oslot); 1270 } 1271 1272 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1273 { 1274 block->scan_hint = 0; 1275 block->contig_hint = nr_bits; 1276 block->left_free = nr_bits; 1277 block->right_free = nr_bits; 1278 block->first_free = 0; 1279 block->nr_bits = nr_bits; 1280 } 1281 1282 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1283 { 1284 struct pcpu_block_md *md_block; 1285 1286 /* init the chunk's block */ 1287 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1288 1289 for (md_block = chunk->md_blocks; 1290 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1291 md_block++) 1292 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1293 } 1294 1295 /** 1296 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1297 * @tmp_addr: the start of the region served 1298 * @map_size: size of the region served 1299 * 1300 * This is responsible for creating the chunks that serve the first chunk. The 1301 * base_addr is page aligned down of @tmp_addr while the region end is page 1302 * aligned up. Offsets are kept track of to determine the region served. All 1303 * this is done to appease the bitmap allocator in avoiding partial blocks. 1304 * 1305 * RETURNS: 1306 * Chunk serving the region at @tmp_addr of @map_size. 1307 */ 1308 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1309 int map_size) 1310 { 1311 struct pcpu_chunk *chunk; 1312 unsigned long aligned_addr, lcm_align; 1313 int start_offset, offset_bits, region_size, region_bits; 1314 size_t alloc_size; 1315 1316 /* region calculations */ 1317 aligned_addr = tmp_addr & PAGE_MASK; 1318 1319 start_offset = tmp_addr - aligned_addr; 1320 1321 /* 1322 * Align the end of the region with the LCM of PAGE_SIZE and 1323 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1324 * the other. 1325 */ 1326 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1327 region_size = ALIGN(start_offset + map_size, lcm_align); 1328 1329 /* allocate chunk */ 1330 alloc_size = sizeof(struct pcpu_chunk) + 1331 BITS_TO_LONGS(region_size >> PAGE_SHIFT); 1332 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1333 if (!chunk) 1334 panic("%s: Failed to allocate %zu bytes\n", __func__, 1335 alloc_size); 1336 1337 INIT_LIST_HEAD(&chunk->list); 1338 1339 chunk->base_addr = (void *)aligned_addr; 1340 chunk->start_offset = start_offset; 1341 chunk->end_offset = region_size - chunk->start_offset - map_size; 1342 1343 chunk->nr_pages = region_size >> PAGE_SHIFT; 1344 region_bits = pcpu_chunk_map_bits(chunk); 1345 1346 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1347 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1348 if (!chunk->alloc_map) 1349 panic("%s: Failed to allocate %zu bytes\n", __func__, 1350 alloc_size); 1351 1352 alloc_size = 1353 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1354 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1355 if (!chunk->bound_map) 1356 panic("%s: Failed to allocate %zu bytes\n", __func__, 1357 alloc_size); 1358 1359 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1360 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1361 if (!chunk->md_blocks) 1362 panic("%s: Failed to allocate %zu bytes\n", __func__, 1363 alloc_size); 1364 1365 pcpu_init_md_blocks(chunk); 1366 1367 /* manage populated page bitmap */ 1368 chunk->immutable = true; 1369 bitmap_fill(chunk->populated, chunk->nr_pages); 1370 chunk->nr_populated = chunk->nr_pages; 1371 chunk->nr_empty_pop_pages = chunk->nr_pages; 1372 1373 chunk->free_bytes = map_size; 1374 1375 if (chunk->start_offset) { 1376 /* hide the beginning of the bitmap */ 1377 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1378 bitmap_set(chunk->alloc_map, 0, offset_bits); 1379 set_bit(0, chunk->bound_map); 1380 set_bit(offset_bits, chunk->bound_map); 1381 1382 chunk->chunk_md.first_free = offset_bits; 1383 1384 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1385 } 1386 1387 if (chunk->end_offset) { 1388 /* hide the end of the bitmap */ 1389 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1390 bitmap_set(chunk->alloc_map, 1391 pcpu_chunk_map_bits(chunk) - offset_bits, 1392 offset_bits); 1393 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1394 chunk->bound_map); 1395 set_bit(region_bits, chunk->bound_map); 1396 1397 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1398 - offset_bits, offset_bits); 1399 } 1400 1401 return chunk; 1402 } 1403 1404 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1405 { 1406 struct pcpu_chunk *chunk; 1407 int region_bits; 1408 1409 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1410 if (!chunk) 1411 return NULL; 1412 1413 INIT_LIST_HEAD(&chunk->list); 1414 chunk->nr_pages = pcpu_unit_pages; 1415 region_bits = pcpu_chunk_map_bits(chunk); 1416 1417 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1418 sizeof(chunk->alloc_map[0]), gfp); 1419 if (!chunk->alloc_map) 1420 goto alloc_map_fail; 1421 1422 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1423 sizeof(chunk->bound_map[0]), gfp); 1424 if (!chunk->bound_map) 1425 goto bound_map_fail; 1426 1427 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1428 sizeof(chunk->md_blocks[0]), gfp); 1429 if (!chunk->md_blocks) 1430 goto md_blocks_fail; 1431 1432 pcpu_init_md_blocks(chunk); 1433 1434 /* init metadata */ 1435 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1436 1437 return chunk; 1438 1439 md_blocks_fail: 1440 pcpu_mem_free(chunk->bound_map); 1441 bound_map_fail: 1442 pcpu_mem_free(chunk->alloc_map); 1443 alloc_map_fail: 1444 pcpu_mem_free(chunk); 1445 1446 return NULL; 1447 } 1448 1449 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1450 { 1451 if (!chunk) 1452 return; 1453 pcpu_mem_free(chunk->md_blocks); 1454 pcpu_mem_free(chunk->bound_map); 1455 pcpu_mem_free(chunk->alloc_map); 1456 pcpu_mem_free(chunk); 1457 } 1458 1459 /** 1460 * pcpu_chunk_populated - post-population bookkeeping 1461 * @chunk: pcpu_chunk which got populated 1462 * @page_start: the start page 1463 * @page_end: the end page 1464 * 1465 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1466 * the bookkeeping information accordingly. Must be called after each 1467 * successful population. 1468 * 1469 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1470 * is to serve an allocation in that area. 1471 */ 1472 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1473 int page_end) 1474 { 1475 int nr = page_end - page_start; 1476 1477 lockdep_assert_held(&pcpu_lock); 1478 1479 bitmap_set(chunk->populated, page_start, nr); 1480 chunk->nr_populated += nr; 1481 pcpu_nr_populated += nr; 1482 1483 pcpu_update_empty_pages(chunk, nr); 1484 } 1485 1486 /** 1487 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1488 * @chunk: pcpu_chunk which got depopulated 1489 * @page_start: the start page 1490 * @page_end: the end page 1491 * 1492 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1493 * Update the bookkeeping information accordingly. Must be called after 1494 * each successful depopulation. 1495 */ 1496 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1497 int page_start, int page_end) 1498 { 1499 int nr = page_end - page_start; 1500 1501 lockdep_assert_held(&pcpu_lock); 1502 1503 bitmap_clear(chunk->populated, page_start, nr); 1504 chunk->nr_populated -= nr; 1505 pcpu_nr_populated -= nr; 1506 1507 pcpu_update_empty_pages(chunk, -nr); 1508 } 1509 1510 /* 1511 * Chunk management implementation. 1512 * 1513 * To allow different implementations, chunk alloc/free and 1514 * [de]population are implemented in a separate file which is pulled 1515 * into this file and compiled together. The following functions 1516 * should be implemented. 1517 * 1518 * pcpu_populate_chunk - populate the specified range of a chunk 1519 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1520 * pcpu_create_chunk - create a new chunk 1521 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1522 * pcpu_addr_to_page - translate address to physical address 1523 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1524 */ 1525 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1526 int page_start, int page_end, gfp_t gfp); 1527 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1528 int page_start, int page_end); 1529 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1530 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1531 static struct page *pcpu_addr_to_page(void *addr); 1532 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1533 1534 #ifdef CONFIG_NEED_PER_CPU_KM 1535 #include "percpu-km.c" 1536 #else 1537 #include "percpu-vm.c" 1538 #endif 1539 1540 /** 1541 * pcpu_chunk_addr_search - determine chunk containing specified address 1542 * @addr: address for which the chunk needs to be determined. 1543 * 1544 * This is an internal function that handles all but static allocations. 1545 * Static percpu address values should never be passed into the allocator. 1546 * 1547 * RETURNS: 1548 * The address of the found chunk. 1549 */ 1550 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1551 { 1552 /* is it in the dynamic region (first chunk)? */ 1553 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1554 return pcpu_first_chunk; 1555 1556 /* is it in the reserved region? */ 1557 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1558 return pcpu_reserved_chunk; 1559 1560 /* 1561 * The address is relative to unit0 which might be unused and 1562 * thus unmapped. Offset the address to the unit space of the 1563 * current processor before looking it up in the vmalloc 1564 * space. Note that any possible cpu id can be used here, so 1565 * there's no need to worry about preemption or cpu hotplug. 1566 */ 1567 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1568 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1569 } 1570 1571 /** 1572 * pcpu_alloc - the percpu allocator 1573 * @size: size of area to allocate in bytes 1574 * @align: alignment of area (max PAGE_SIZE) 1575 * @reserved: allocate from the reserved chunk if available 1576 * @gfp: allocation flags 1577 * 1578 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1579 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1580 * then no warning will be triggered on invalid or failed allocation 1581 * requests. 1582 * 1583 * RETURNS: 1584 * Percpu pointer to the allocated area on success, NULL on failure. 1585 */ 1586 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1587 gfp_t gfp) 1588 { 1589 /* whitelisted flags that can be passed to the backing allocators */ 1590 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1591 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1592 bool do_warn = !(gfp & __GFP_NOWARN); 1593 static int warn_limit = 10; 1594 struct pcpu_chunk *chunk, *next; 1595 const char *err; 1596 int slot, off, cpu, ret; 1597 unsigned long flags; 1598 void __percpu *ptr; 1599 size_t bits, bit_align; 1600 1601 /* 1602 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1603 * therefore alignment must be a minimum of that many bytes. 1604 * An allocation may have internal fragmentation from rounding up 1605 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1606 */ 1607 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1608 align = PCPU_MIN_ALLOC_SIZE; 1609 1610 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1611 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1612 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1613 1614 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1615 !is_power_of_2(align))) { 1616 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1617 size, align); 1618 return NULL; 1619 } 1620 1621 if (!is_atomic) { 1622 /* 1623 * pcpu_balance_workfn() allocates memory under this mutex, 1624 * and it may wait for memory reclaim. Allow current task 1625 * to become OOM victim, in case of memory pressure. 1626 */ 1627 if (gfp & __GFP_NOFAIL) 1628 mutex_lock(&pcpu_alloc_mutex); 1629 else if (mutex_lock_killable(&pcpu_alloc_mutex)) 1630 return NULL; 1631 } 1632 1633 spin_lock_irqsave(&pcpu_lock, flags); 1634 1635 /* serve reserved allocations from the reserved chunk if available */ 1636 if (reserved && pcpu_reserved_chunk) { 1637 chunk = pcpu_reserved_chunk; 1638 1639 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1640 if (off < 0) { 1641 err = "alloc from reserved chunk failed"; 1642 goto fail_unlock; 1643 } 1644 1645 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1646 if (off >= 0) 1647 goto area_found; 1648 1649 err = "alloc from reserved chunk failed"; 1650 goto fail_unlock; 1651 } 1652 1653 restart: 1654 /* search through normal chunks */ 1655 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1656 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) { 1657 off = pcpu_find_block_fit(chunk, bits, bit_align, 1658 is_atomic); 1659 if (off < 0) { 1660 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1661 pcpu_chunk_move(chunk, 0); 1662 continue; 1663 } 1664 1665 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1666 if (off >= 0) 1667 goto area_found; 1668 1669 } 1670 } 1671 1672 spin_unlock_irqrestore(&pcpu_lock, flags); 1673 1674 /* 1675 * No space left. Create a new chunk. We don't want multiple 1676 * tasks to create chunks simultaneously. Serialize and create iff 1677 * there's still no empty chunk after grabbing the mutex. 1678 */ 1679 if (is_atomic) { 1680 err = "atomic alloc failed, no space left"; 1681 goto fail; 1682 } 1683 1684 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1685 chunk = pcpu_create_chunk(pcpu_gfp); 1686 if (!chunk) { 1687 err = "failed to allocate new chunk"; 1688 goto fail; 1689 } 1690 1691 spin_lock_irqsave(&pcpu_lock, flags); 1692 pcpu_chunk_relocate(chunk, -1); 1693 } else { 1694 spin_lock_irqsave(&pcpu_lock, flags); 1695 } 1696 1697 goto restart; 1698 1699 area_found: 1700 pcpu_stats_area_alloc(chunk, size); 1701 spin_unlock_irqrestore(&pcpu_lock, flags); 1702 1703 /* populate if not all pages are already there */ 1704 if (!is_atomic) { 1705 int page_start, page_end, rs, re; 1706 1707 page_start = PFN_DOWN(off); 1708 page_end = PFN_UP(off + size); 1709 1710 pcpu_for_each_unpop_region(chunk->populated, rs, re, 1711 page_start, page_end) { 1712 WARN_ON(chunk->immutable); 1713 1714 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1715 1716 spin_lock_irqsave(&pcpu_lock, flags); 1717 if (ret) { 1718 pcpu_free_area(chunk, off); 1719 err = "failed to populate"; 1720 goto fail_unlock; 1721 } 1722 pcpu_chunk_populated(chunk, rs, re); 1723 spin_unlock_irqrestore(&pcpu_lock, flags); 1724 } 1725 1726 mutex_unlock(&pcpu_alloc_mutex); 1727 } 1728 1729 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1730 pcpu_schedule_balance_work(); 1731 1732 /* clear the areas and return address relative to base address */ 1733 for_each_possible_cpu(cpu) 1734 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1735 1736 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1737 kmemleak_alloc_percpu(ptr, size, gfp); 1738 1739 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1740 chunk->base_addr, off, ptr); 1741 1742 return ptr; 1743 1744 fail_unlock: 1745 spin_unlock_irqrestore(&pcpu_lock, flags); 1746 fail: 1747 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1748 1749 if (!is_atomic && do_warn && warn_limit) { 1750 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1751 size, align, is_atomic, err); 1752 dump_stack(); 1753 if (!--warn_limit) 1754 pr_info("limit reached, disable warning\n"); 1755 } 1756 if (is_atomic) { 1757 /* see the flag handling in pcpu_blance_workfn() */ 1758 pcpu_atomic_alloc_failed = true; 1759 pcpu_schedule_balance_work(); 1760 } else { 1761 mutex_unlock(&pcpu_alloc_mutex); 1762 } 1763 return NULL; 1764 } 1765 1766 /** 1767 * __alloc_percpu_gfp - allocate dynamic percpu area 1768 * @size: size of area to allocate in bytes 1769 * @align: alignment of area (max PAGE_SIZE) 1770 * @gfp: allocation flags 1771 * 1772 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1773 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1774 * be called from any context but is a lot more likely to fail. If @gfp 1775 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1776 * allocation requests. 1777 * 1778 * RETURNS: 1779 * Percpu pointer to the allocated area on success, NULL on failure. 1780 */ 1781 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1782 { 1783 return pcpu_alloc(size, align, false, gfp); 1784 } 1785 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1786 1787 /** 1788 * __alloc_percpu - allocate dynamic percpu area 1789 * @size: size of area to allocate in bytes 1790 * @align: alignment of area (max PAGE_SIZE) 1791 * 1792 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1793 */ 1794 void __percpu *__alloc_percpu(size_t size, size_t align) 1795 { 1796 return pcpu_alloc(size, align, false, GFP_KERNEL); 1797 } 1798 EXPORT_SYMBOL_GPL(__alloc_percpu); 1799 1800 /** 1801 * __alloc_reserved_percpu - allocate reserved percpu area 1802 * @size: size of area to allocate in bytes 1803 * @align: alignment of area (max PAGE_SIZE) 1804 * 1805 * Allocate zero-filled percpu area of @size bytes aligned at @align 1806 * from reserved percpu area if arch has set it up; otherwise, 1807 * allocation is served from the same dynamic area. Might sleep. 1808 * Might trigger writeouts. 1809 * 1810 * CONTEXT: 1811 * Does GFP_KERNEL allocation. 1812 * 1813 * RETURNS: 1814 * Percpu pointer to the allocated area on success, NULL on failure. 1815 */ 1816 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1817 { 1818 return pcpu_alloc(size, align, true, GFP_KERNEL); 1819 } 1820 1821 /** 1822 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1823 * @work: unused 1824 * 1825 * Reclaim all fully free chunks except for the first one. This is also 1826 * responsible for maintaining the pool of empty populated pages. However, 1827 * it is possible that this is called when physical memory is scarce causing 1828 * OOM killer to be triggered. We should avoid doing so until an actual 1829 * allocation causes the failure as it is possible that requests can be 1830 * serviced from already backed regions. 1831 */ 1832 static void pcpu_balance_workfn(struct work_struct *work) 1833 { 1834 /* gfp flags passed to underlying allocators */ 1835 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1836 LIST_HEAD(to_free); 1837 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1838 struct pcpu_chunk *chunk, *next; 1839 int slot, nr_to_pop, ret; 1840 1841 /* 1842 * There's no reason to keep around multiple unused chunks and VM 1843 * areas can be scarce. Destroy all free chunks except for one. 1844 */ 1845 mutex_lock(&pcpu_alloc_mutex); 1846 spin_lock_irq(&pcpu_lock); 1847 1848 list_for_each_entry_safe(chunk, next, free_head, list) { 1849 WARN_ON(chunk->immutable); 1850 1851 /* spare the first one */ 1852 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1853 continue; 1854 1855 list_move(&chunk->list, &to_free); 1856 } 1857 1858 spin_unlock_irq(&pcpu_lock); 1859 1860 list_for_each_entry_safe(chunk, next, &to_free, list) { 1861 int rs, re; 1862 1863 pcpu_for_each_pop_region(chunk->populated, rs, re, 0, 1864 chunk->nr_pages) { 1865 pcpu_depopulate_chunk(chunk, rs, re); 1866 spin_lock_irq(&pcpu_lock); 1867 pcpu_chunk_depopulated(chunk, rs, re); 1868 spin_unlock_irq(&pcpu_lock); 1869 } 1870 pcpu_destroy_chunk(chunk); 1871 cond_resched(); 1872 } 1873 1874 /* 1875 * Ensure there are certain number of free populated pages for 1876 * atomic allocs. Fill up from the most packed so that atomic 1877 * allocs don't increase fragmentation. If atomic allocation 1878 * failed previously, always populate the maximum amount. This 1879 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1880 * failing indefinitely; however, large atomic allocs are not 1881 * something we support properly and can be highly unreliable and 1882 * inefficient. 1883 */ 1884 retry_pop: 1885 if (pcpu_atomic_alloc_failed) { 1886 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1887 /* best effort anyway, don't worry about synchronization */ 1888 pcpu_atomic_alloc_failed = false; 1889 } else { 1890 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1891 pcpu_nr_empty_pop_pages, 1892 0, PCPU_EMPTY_POP_PAGES_HIGH); 1893 } 1894 1895 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1896 int nr_unpop = 0, rs, re; 1897 1898 if (!nr_to_pop) 1899 break; 1900 1901 spin_lock_irq(&pcpu_lock); 1902 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1903 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1904 if (nr_unpop) 1905 break; 1906 } 1907 spin_unlock_irq(&pcpu_lock); 1908 1909 if (!nr_unpop) 1910 continue; 1911 1912 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1913 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, 1914 chunk->nr_pages) { 1915 int nr = min(re - rs, nr_to_pop); 1916 1917 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 1918 if (!ret) { 1919 nr_to_pop -= nr; 1920 spin_lock_irq(&pcpu_lock); 1921 pcpu_chunk_populated(chunk, rs, rs + nr); 1922 spin_unlock_irq(&pcpu_lock); 1923 } else { 1924 nr_to_pop = 0; 1925 } 1926 1927 if (!nr_to_pop) 1928 break; 1929 } 1930 } 1931 1932 if (nr_to_pop) { 1933 /* ran out of chunks to populate, create a new one and retry */ 1934 chunk = pcpu_create_chunk(gfp); 1935 if (chunk) { 1936 spin_lock_irq(&pcpu_lock); 1937 pcpu_chunk_relocate(chunk, -1); 1938 spin_unlock_irq(&pcpu_lock); 1939 goto retry_pop; 1940 } 1941 } 1942 1943 mutex_unlock(&pcpu_alloc_mutex); 1944 } 1945 1946 /** 1947 * free_percpu - free percpu area 1948 * @ptr: pointer to area to free 1949 * 1950 * Free percpu area @ptr. 1951 * 1952 * CONTEXT: 1953 * Can be called from atomic context. 1954 */ 1955 void free_percpu(void __percpu *ptr) 1956 { 1957 void *addr; 1958 struct pcpu_chunk *chunk; 1959 unsigned long flags; 1960 int off; 1961 bool need_balance = false; 1962 1963 if (!ptr) 1964 return; 1965 1966 kmemleak_free_percpu(ptr); 1967 1968 addr = __pcpu_ptr_to_addr(ptr); 1969 1970 spin_lock_irqsave(&pcpu_lock, flags); 1971 1972 chunk = pcpu_chunk_addr_search(addr); 1973 off = addr - chunk->base_addr; 1974 1975 pcpu_free_area(chunk, off); 1976 1977 /* if there are more than one fully free chunks, wake up grim reaper */ 1978 if (chunk->free_bytes == pcpu_unit_size) { 1979 struct pcpu_chunk *pos; 1980 1981 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1982 if (pos != chunk) { 1983 need_balance = true; 1984 break; 1985 } 1986 } 1987 1988 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1989 1990 spin_unlock_irqrestore(&pcpu_lock, flags); 1991 1992 if (need_balance) 1993 pcpu_schedule_balance_work(); 1994 } 1995 EXPORT_SYMBOL_GPL(free_percpu); 1996 1997 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1998 { 1999 #ifdef CONFIG_SMP 2000 const size_t static_size = __per_cpu_end - __per_cpu_start; 2001 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2002 unsigned int cpu; 2003 2004 for_each_possible_cpu(cpu) { 2005 void *start = per_cpu_ptr(base, cpu); 2006 void *va = (void *)addr; 2007 2008 if (va >= start && va < start + static_size) { 2009 if (can_addr) { 2010 *can_addr = (unsigned long) (va - start); 2011 *can_addr += (unsigned long) 2012 per_cpu_ptr(base, get_boot_cpu_id()); 2013 } 2014 return true; 2015 } 2016 } 2017 #endif 2018 /* on UP, can't distinguish from other static vars, always false */ 2019 return false; 2020 } 2021 2022 /** 2023 * is_kernel_percpu_address - test whether address is from static percpu area 2024 * @addr: address to test 2025 * 2026 * Test whether @addr belongs to in-kernel static percpu area. Module 2027 * static percpu areas are not considered. For those, use 2028 * is_module_percpu_address(). 2029 * 2030 * RETURNS: 2031 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2032 */ 2033 bool is_kernel_percpu_address(unsigned long addr) 2034 { 2035 return __is_kernel_percpu_address(addr, NULL); 2036 } 2037 2038 /** 2039 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2040 * @addr: the address to be converted to physical address 2041 * 2042 * Given @addr which is dereferenceable address obtained via one of 2043 * percpu access macros, this function translates it into its physical 2044 * address. The caller is responsible for ensuring @addr stays valid 2045 * until this function finishes. 2046 * 2047 * percpu allocator has special setup for the first chunk, which currently 2048 * supports either embedding in linear address space or vmalloc mapping, 2049 * and, from the second one, the backing allocator (currently either vm or 2050 * km) provides translation. 2051 * 2052 * The addr can be translated simply without checking if it falls into the 2053 * first chunk. But the current code reflects better how percpu allocator 2054 * actually works, and the verification can discover both bugs in percpu 2055 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2056 * code. 2057 * 2058 * RETURNS: 2059 * The physical address for @addr. 2060 */ 2061 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2062 { 2063 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2064 bool in_first_chunk = false; 2065 unsigned long first_low, first_high; 2066 unsigned int cpu; 2067 2068 /* 2069 * The following test on unit_low/high isn't strictly 2070 * necessary but will speed up lookups of addresses which 2071 * aren't in the first chunk. 2072 * 2073 * The address check is against full chunk sizes. pcpu_base_addr 2074 * points to the beginning of the first chunk including the 2075 * static region. Assumes good intent as the first chunk may 2076 * not be full (ie. < pcpu_unit_pages in size). 2077 */ 2078 first_low = (unsigned long)pcpu_base_addr + 2079 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2080 first_high = (unsigned long)pcpu_base_addr + 2081 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2082 if ((unsigned long)addr >= first_low && 2083 (unsigned long)addr < first_high) { 2084 for_each_possible_cpu(cpu) { 2085 void *start = per_cpu_ptr(base, cpu); 2086 2087 if (addr >= start && addr < start + pcpu_unit_size) { 2088 in_first_chunk = true; 2089 break; 2090 } 2091 } 2092 } 2093 2094 if (in_first_chunk) { 2095 if (!is_vmalloc_addr(addr)) 2096 return __pa(addr); 2097 else 2098 return page_to_phys(vmalloc_to_page(addr)) + 2099 offset_in_page(addr); 2100 } else 2101 return page_to_phys(pcpu_addr_to_page(addr)) + 2102 offset_in_page(addr); 2103 } 2104 2105 /** 2106 * pcpu_alloc_alloc_info - allocate percpu allocation info 2107 * @nr_groups: the number of groups 2108 * @nr_units: the number of units 2109 * 2110 * Allocate ai which is large enough for @nr_groups groups containing 2111 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2112 * cpu_map array which is long enough for @nr_units and filled with 2113 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2114 * pointer of other groups. 2115 * 2116 * RETURNS: 2117 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2118 * failure. 2119 */ 2120 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2121 int nr_units) 2122 { 2123 struct pcpu_alloc_info *ai; 2124 size_t base_size, ai_size; 2125 void *ptr; 2126 int unit; 2127 2128 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 2129 __alignof__(ai->groups[0].cpu_map[0])); 2130 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2131 2132 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2133 if (!ptr) 2134 return NULL; 2135 ai = ptr; 2136 ptr += base_size; 2137 2138 ai->groups[0].cpu_map = ptr; 2139 2140 for (unit = 0; unit < nr_units; unit++) 2141 ai->groups[0].cpu_map[unit] = NR_CPUS; 2142 2143 ai->nr_groups = nr_groups; 2144 ai->__ai_size = PFN_ALIGN(ai_size); 2145 2146 return ai; 2147 } 2148 2149 /** 2150 * pcpu_free_alloc_info - free percpu allocation info 2151 * @ai: pcpu_alloc_info to free 2152 * 2153 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2154 */ 2155 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2156 { 2157 memblock_free_early(__pa(ai), ai->__ai_size); 2158 } 2159 2160 /** 2161 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2162 * @lvl: loglevel 2163 * @ai: allocation info to dump 2164 * 2165 * Print out information about @ai using loglevel @lvl. 2166 */ 2167 static void pcpu_dump_alloc_info(const char *lvl, 2168 const struct pcpu_alloc_info *ai) 2169 { 2170 int group_width = 1, cpu_width = 1, width; 2171 char empty_str[] = "--------"; 2172 int alloc = 0, alloc_end = 0; 2173 int group, v; 2174 int upa, apl; /* units per alloc, allocs per line */ 2175 2176 v = ai->nr_groups; 2177 while (v /= 10) 2178 group_width++; 2179 2180 v = num_possible_cpus(); 2181 while (v /= 10) 2182 cpu_width++; 2183 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2184 2185 upa = ai->alloc_size / ai->unit_size; 2186 width = upa * (cpu_width + 1) + group_width + 3; 2187 apl = rounddown_pow_of_two(max(60 / width, 1)); 2188 2189 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2190 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2191 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2192 2193 for (group = 0; group < ai->nr_groups; group++) { 2194 const struct pcpu_group_info *gi = &ai->groups[group]; 2195 int unit = 0, unit_end = 0; 2196 2197 BUG_ON(gi->nr_units % upa); 2198 for (alloc_end += gi->nr_units / upa; 2199 alloc < alloc_end; alloc++) { 2200 if (!(alloc % apl)) { 2201 pr_cont("\n"); 2202 printk("%spcpu-alloc: ", lvl); 2203 } 2204 pr_cont("[%0*d] ", group_width, group); 2205 2206 for (unit_end += upa; unit < unit_end; unit++) 2207 if (gi->cpu_map[unit] != NR_CPUS) 2208 pr_cont("%0*d ", 2209 cpu_width, gi->cpu_map[unit]); 2210 else 2211 pr_cont("%s ", empty_str); 2212 } 2213 } 2214 pr_cont("\n"); 2215 } 2216 2217 /** 2218 * pcpu_setup_first_chunk - initialize the first percpu chunk 2219 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2220 * @base_addr: mapped address 2221 * 2222 * Initialize the first percpu chunk which contains the kernel static 2223 * perpcu area. This function is to be called from arch percpu area 2224 * setup path. 2225 * 2226 * @ai contains all information necessary to initialize the first 2227 * chunk and prime the dynamic percpu allocator. 2228 * 2229 * @ai->static_size is the size of static percpu area. 2230 * 2231 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2232 * reserve after the static area in the first chunk. This reserves 2233 * the first chunk such that it's available only through reserved 2234 * percpu allocation. This is primarily used to serve module percpu 2235 * static areas on architectures where the addressing model has 2236 * limited offset range for symbol relocations to guarantee module 2237 * percpu symbols fall inside the relocatable range. 2238 * 2239 * @ai->dyn_size determines the number of bytes available for dynamic 2240 * allocation in the first chunk. The area between @ai->static_size + 2241 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2242 * 2243 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2244 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2245 * @ai->dyn_size. 2246 * 2247 * @ai->atom_size is the allocation atom size and used as alignment 2248 * for vm areas. 2249 * 2250 * @ai->alloc_size is the allocation size and always multiple of 2251 * @ai->atom_size. This is larger than @ai->atom_size if 2252 * @ai->unit_size is larger than @ai->atom_size. 2253 * 2254 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2255 * percpu areas. Units which should be colocated are put into the 2256 * same group. Dynamic VM areas will be allocated according to these 2257 * groupings. If @ai->nr_groups is zero, a single group containing 2258 * all units is assumed. 2259 * 2260 * The caller should have mapped the first chunk at @base_addr and 2261 * copied static data to each unit. 2262 * 2263 * The first chunk will always contain a static and a dynamic region. 2264 * However, the static region is not managed by any chunk. If the first 2265 * chunk also contains a reserved region, it is served by two chunks - 2266 * one for the reserved region and one for the dynamic region. They 2267 * share the same vm, but use offset regions in the area allocation map. 2268 * The chunk serving the dynamic region is circulated in the chunk slots 2269 * and available for dynamic allocation like any other chunk. 2270 * 2271 * RETURNS: 2272 * 0 on success, -errno on failure. 2273 */ 2274 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2275 void *base_addr) 2276 { 2277 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2278 size_t static_size, dyn_size; 2279 struct pcpu_chunk *chunk; 2280 unsigned long *group_offsets; 2281 size_t *group_sizes; 2282 unsigned long *unit_off; 2283 unsigned int cpu; 2284 int *unit_map; 2285 int group, unit, i; 2286 int map_size; 2287 unsigned long tmp_addr; 2288 size_t alloc_size; 2289 2290 #define PCPU_SETUP_BUG_ON(cond) do { \ 2291 if (unlikely(cond)) { \ 2292 pr_emerg("failed to initialize, %s\n", #cond); \ 2293 pr_emerg("cpu_possible_mask=%*pb\n", \ 2294 cpumask_pr_args(cpu_possible_mask)); \ 2295 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2296 BUG(); \ 2297 } \ 2298 } while (0) 2299 2300 /* sanity checks */ 2301 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2302 #ifdef CONFIG_SMP 2303 PCPU_SETUP_BUG_ON(!ai->static_size); 2304 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2305 #endif 2306 PCPU_SETUP_BUG_ON(!base_addr); 2307 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2308 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2309 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2310 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2311 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2312 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2313 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2314 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2315 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2316 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2317 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2318 2319 /* process group information and build config tables accordingly */ 2320 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2321 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2322 if (!group_offsets) 2323 panic("%s: Failed to allocate %zu bytes\n", __func__, 2324 alloc_size); 2325 2326 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2327 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2328 if (!group_sizes) 2329 panic("%s: Failed to allocate %zu bytes\n", __func__, 2330 alloc_size); 2331 2332 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2333 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2334 if (!unit_map) 2335 panic("%s: Failed to allocate %zu bytes\n", __func__, 2336 alloc_size); 2337 2338 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2339 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2340 if (!unit_off) 2341 panic("%s: Failed to allocate %zu bytes\n", __func__, 2342 alloc_size); 2343 2344 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2345 unit_map[cpu] = UINT_MAX; 2346 2347 pcpu_low_unit_cpu = NR_CPUS; 2348 pcpu_high_unit_cpu = NR_CPUS; 2349 2350 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2351 const struct pcpu_group_info *gi = &ai->groups[group]; 2352 2353 group_offsets[group] = gi->base_offset; 2354 group_sizes[group] = gi->nr_units * ai->unit_size; 2355 2356 for (i = 0; i < gi->nr_units; i++) { 2357 cpu = gi->cpu_map[i]; 2358 if (cpu == NR_CPUS) 2359 continue; 2360 2361 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2362 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2363 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2364 2365 unit_map[cpu] = unit + i; 2366 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2367 2368 /* determine low/high unit_cpu */ 2369 if (pcpu_low_unit_cpu == NR_CPUS || 2370 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2371 pcpu_low_unit_cpu = cpu; 2372 if (pcpu_high_unit_cpu == NR_CPUS || 2373 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2374 pcpu_high_unit_cpu = cpu; 2375 } 2376 } 2377 pcpu_nr_units = unit; 2378 2379 for_each_possible_cpu(cpu) 2380 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2381 2382 /* we're done parsing the input, undefine BUG macro and dump config */ 2383 #undef PCPU_SETUP_BUG_ON 2384 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2385 2386 pcpu_nr_groups = ai->nr_groups; 2387 pcpu_group_offsets = group_offsets; 2388 pcpu_group_sizes = group_sizes; 2389 pcpu_unit_map = unit_map; 2390 pcpu_unit_offsets = unit_off; 2391 2392 /* determine basic parameters */ 2393 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2394 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2395 pcpu_atom_size = ai->atom_size; 2396 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2397 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2398 2399 pcpu_stats_save_ai(ai); 2400 2401 /* 2402 * Allocate chunk slots. The additional last slot is for 2403 * empty chunks. 2404 */ 2405 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2406 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]), 2407 SMP_CACHE_BYTES); 2408 if (!pcpu_slot) 2409 panic("%s: Failed to allocate %zu bytes\n", __func__, 2410 pcpu_nr_slots * sizeof(pcpu_slot[0])); 2411 for (i = 0; i < pcpu_nr_slots; i++) 2412 INIT_LIST_HEAD(&pcpu_slot[i]); 2413 2414 /* 2415 * The end of the static region needs to be aligned with the 2416 * minimum allocation size as this offsets the reserved and 2417 * dynamic region. The first chunk ends page aligned by 2418 * expanding the dynamic region, therefore the dynamic region 2419 * can be shrunk to compensate while still staying above the 2420 * configured sizes. 2421 */ 2422 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2423 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2424 2425 /* 2426 * Initialize first chunk. 2427 * If the reserved_size is non-zero, this initializes the reserved 2428 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2429 * and the dynamic region is initialized here. The first chunk, 2430 * pcpu_first_chunk, will always point to the chunk that serves 2431 * the dynamic region. 2432 */ 2433 tmp_addr = (unsigned long)base_addr + static_size; 2434 map_size = ai->reserved_size ?: dyn_size; 2435 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2436 2437 /* init dynamic chunk if necessary */ 2438 if (ai->reserved_size) { 2439 pcpu_reserved_chunk = chunk; 2440 2441 tmp_addr = (unsigned long)base_addr + static_size + 2442 ai->reserved_size; 2443 map_size = dyn_size; 2444 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2445 } 2446 2447 /* link the first chunk in */ 2448 pcpu_first_chunk = chunk; 2449 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2450 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2451 2452 /* include all regions of the first chunk */ 2453 pcpu_nr_populated += PFN_DOWN(size_sum); 2454 2455 pcpu_stats_chunk_alloc(); 2456 trace_percpu_create_chunk(base_addr); 2457 2458 /* we're done */ 2459 pcpu_base_addr = base_addr; 2460 return 0; 2461 } 2462 2463 #ifdef CONFIG_SMP 2464 2465 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2466 [PCPU_FC_AUTO] = "auto", 2467 [PCPU_FC_EMBED] = "embed", 2468 [PCPU_FC_PAGE] = "page", 2469 }; 2470 2471 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2472 2473 static int __init percpu_alloc_setup(char *str) 2474 { 2475 if (!str) 2476 return -EINVAL; 2477 2478 if (0) 2479 /* nada */; 2480 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2481 else if (!strcmp(str, "embed")) 2482 pcpu_chosen_fc = PCPU_FC_EMBED; 2483 #endif 2484 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2485 else if (!strcmp(str, "page")) 2486 pcpu_chosen_fc = PCPU_FC_PAGE; 2487 #endif 2488 else 2489 pr_warn("unknown allocator %s specified\n", str); 2490 2491 return 0; 2492 } 2493 early_param("percpu_alloc", percpu_alloc_setup); 2494 2495 /* 2496 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2497 * Build it if needed by the arch config or the generic setup is going 2498 * to be used. 2499 */ 2500 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2501 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2502 #define BUILD_EMBED_FIRST_CHUNK 2503 #endif 2504 2505 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2506 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2507 #define BUILD_PAGE_FIRST_CHUNK 2508 #endif 2509 2510 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2511 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2512 /** 2513 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2514 * @reserved_size: the size of reserved percpu area in bytes 2515 * @dyn_size: minimum free size for dynamic allocation in bytes 2516 * @atom_size: allocation atom size 2517 * @cpu_distance_fn: callback to determine distance between cpus, optional 2518 * 2519 * This function determines grouping of units, their mappings to cpus 2520 * and other parameters considering needed percpu size, allocation 2521 * atom size and distances between CPUs. 2522 * 2523 * Groups are always multiples of atom size and CPUs which are of 2524 * LOCAL_DISTANCE both ways are grouped together and share space for 2525 * units in the same group. The returned configuration is guaranteed 2526 * to have CPUs on different nodes on different groups and >=75% usage 2527 * of allocated virtual address space. 2528 * 2529 * RETURNS: 2530 * On success, pointer to the new allocation_info is returned. On 2531 * failure, ERR_PTR value is returned. 2532 */ 2533 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2534 size_t reserved_size, size_t dyn_size, 2535 size_t atom_size, 2536 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2537 { 2538 static int group_map[NR_CPUS] __initdata; 2539 static int group_cnt[NR_CPUS] __initdata; 2540 const size_t static_size = __per_cpu_end - __per_cpu_start; 2541 int nr_groups = 1, nr_units = 0; 2542 size_t size_sum, min_unit_size, alloc_size; 2543 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2544 int last_allocs, group, unit; 2545 unsigned int cpu, tcpu; 2546 struct pcpu_alloc_info *ai; 2547 unsigned int *cpu_map; 2548 2549 /* this function may be called multiple times */ 2550 memset(group_map, 0, sizeof(group_map)); 2551 memset(group_cnt, 0, sizeof(group_cnt)); 2552 2553 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2554 size_sum = PFN_ALIGN(static_size + reserved_size + 2555 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2556 dyn_size = size_sum - static_size - reserved_size; 2557 2558 /* 2559 * Determine min_unit_size, alloc_size and max_upa such that 2560 * alloc_size is multiple of atom_size and is the smallest 2561 * which can accommodate 4k aligned segments which are equal to 2562 * or larger than min_unit_size. 2563 */ 2564 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2565 2566 /* determine the maximum # of units that can fit in an allocation */ 2567 alloc_size = roundup(min_unit_size, atom_size); 2568 upa = alloc_size / min_unit_size; 2569 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2570 upa--; 2571 max_upa = upa; 2572 2573 /* group cpus according to their proximity */ 2574 for_each_possible_cpu(cpu) { 2575 group = 0; 2576 next_group: 2577 for_each_possible_cpu(tcpu) { 2578 if (cpu == tcpu) 2579 break; 2580 if (group_map[tcpu] == group && cpu_distance_fn && 2581 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2582 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2583 group++; 2584 nr_groups = max(nr_groups, group + 1); 2585 goto next_group; 2586 } 2587 } 2588 group_map[cpu] = group; 2589 group_cnt[group]++; 2590 } 2591 2592 /* 2593 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2594 * Expand the unit_size until we use >= 75% of the units allocated. 2595 * Related to atom_size, which could be much larger than the unit_size. 2596 */ 2597 last_allocs = INT_MAX; 2598 for (upa = max_upa; upa; upa--) { 2599 int allocs = 0, wasted = 0; 2600 2601 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2602 continue; 2603 2604 for (group = 0; group < nr_groups; group++) { 2605 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2606 allocs += this_allocs; 2607 wasted += this_allocs * upa - group_cnt[group]; 2608 } 2609 2610 /* 2611 * Don't accept if wastage is over 1/3. The 2612 * greater-than comparison ensures upa==1 always 2613 * passes the following check. 2614 */ 2615 if (wasted > num_possible_cpus() / 3) 2616 continue; 2617 2618 /* and then don't consume more memory */ 2619 if (allocs > last_allocs) 2620 break; 2621 last_allocs = allocs; 2622 best_upa = upa; 2623 } 2624 upa = best_upa; 2625 2626 /* allocate and fill alloc_info */ 2627 for (group = 0; group < nr_groups; group++) 2628 nr_units += roundup(group_cnt[group], upa); 2629 2630 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2631 if (!ai) 2632 return ERR_PTR(-ENOMEM); 2633 cpu_map = ai->groups[0].cpu_map; 2634 2635 for (group = 0; group < nr_groups; group++) { 2636 ai->groups[group].cpu_map = cpu_map; 2637 cpu_map += roundup(group_cnt[group], upa); 2638 } 2639 2640 ai->static_size = static_size; 2641 ai->reserved_size = reserved_size; 2642 ai->dyn_size = dyn_size; 2643 ai->unit_size = alloc_size / upa; 2644 ai->atom_size = atom_size; 2645 ai->alloc_size = alloc_size; 2646 2647 for (group = 0, unit = 0; group < nr_groups; group++) { 2648 struct pcpu_group_info *gi = &ai->groups[group]; 2649 2650 /* 2651 * Initialize base_offset as if all groups are located 2652 * back-to-back. The caller should update this to 2653 * reflect actual allocation. 2654 */ 2655 gi->base_offset = unit * ai->unit_size; 2656 2657 for_each_possible_cpu(cpu) 2658 if (group_map[cpu] == group) 2659 gi->cpu_map[gi->nr_units++] = cpu; 2660 gi->nr_units = roundup(gi->nr_units, upa); 2661 unit += gi->nr_units; 2662 } 2663 BUG_ON(unit != nr_units); 2664 2665 return ai; 2666 } 2667 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2668 2669 #if defined(BUILD_EMBED_FIRST_CHUNK) 2670 /** 2671 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2672 * @reserved_size: the size of reserved percpu area in bytes 2673 * @dyn_size: minimum free size for dynamic allocation in bytes 2674 * @atom_size: allocation atom size 2675 * @cpu_distance_fn: callback to determine distance between cpus, optional 2676 * @alloc_fn: function to allocate percpu page 2677 * @free_fn: function to free percpu page 2678 * 2679 * This is a helper to ease setting up embedded first percpu chunk and 2680 * can be called where pcpu_setup_first_chunk() is expected. 2681 * 2682 * If this function is used to setup the first chunk, it is allocated 2683 * by calling @alloc_fn and used as-is without being mapped into 2684 * vmalloc area. Allocations are always whole multiples of @atom_size 2685 * aligned to @atom_size. 2686 * 2687 * This enables the first chunk to piggy back on the linear physical 2688 * mapping which often uses larger page size. Please note that this 2689 * can result in very sparse cpu->unit mapping on NUMA machines thus 2690 * requiring large vmalloc address space. Don't use this allocator if 2691 * vmalloc space is not orders of magnitude larger than distances 2692 * between node memory addresses (ie. 32bit NUMA machines). 2693 * 2694 * @dyn_size specifies the minimum dynamic area size. 2695 * 2696 * If the needed size is smaller than the minimum or specified unit 2697 * size, the leftover is returned using @free_fn. 2698 * 2699 * RETURNS: 2700 * 0 on success, -errno on failure. 2701 */ 2702 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2703 size_t atom_size, 2704 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2705 pcpu_fc_alloc_fn_t alloc_fn, 2706 pcpu_fc_free_fn_t free_fn) 2707 { 2708 void *base = (void *)ULONG_MAX; 2709 void **areas = NULL; 2710 struct pcpu_alloc_info *ai; 2711 size_t size_sum, areas_size; 2712 unsigned long max_distance; 2713 int group, i, highest_group, rc; 2714 2715 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2716 cpu_distance_fn); 2717 if (IS_ERR(ai)) 2718 return PTR_ERR(ai); 2719 2720 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2721 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2722 2723 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 2724 if (!areas) { 2725 rc = -ENOMEM; 2726 goto out_free; 2727 } 2728 2729 /* allocate, copy and determine base address & max_distance */ 2730 highest_group = 0; 2731 for (group = 0; group < ai->nr_groups; group++) { 2732 struct pcpu_group_info *gi = &ai->groups[group]; 2733 unsigned int cpu = NR_CPUS; 2734 void *ptr; 2735 2736 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2737 cpu = gi->cpu_map[i]; 2738 BUG_ON(cpu == NR_CPUS); 2739 2740 /* allocate space for the whole group */ 2741 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2742 if (!ptr) { 2743 rc = -ENOMEM; 2744 goto out_free_areas; 2745 } 2746 /* kmemleak tracks the percpu allocations separately */ 2747 kmemleak_free(ptr); 2748 areas[group] = ptr; 2749 2750 base = min(ptr, base); 2751 if (ptr > areas[highest_group]) 2752 highest_group = group; 2753 } 2754 max_distance = areas[highest_group] - base; 2755 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2756 2757 /* warn if maximum distance is further than 75% of vmalloc space */ 2758 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2759 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2760 max_distance, VMALLOC_TOTAL); 2761 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2762 /* and fail if we have fallback */ 2763 rc = -EINVAL; 2764 goto out_free_areas; 2765 #endif 2766 } 2767 2768 /* 2769 * Copy data and free unused parts. This should happen after all 2770 * allocations are complete; otherwise, we may end up with 2771 * overlapping groups. 2772 */ 2773 for (group = 0; group < ai->nr_groups; group++) { 2774 struct pcpu_group_info *gi = &ai->groups[group]; 2775 void *ptr = areas[group]; 2776 2777 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2778 if (gi->cpu_map[i] == NR_CPUS) { 2779 /* unused unit, free whole */ 2780 free_fn(ptr, ai->unit_size); 2781 continue; 2782 } 2783 /* copy and return the unused part */ 2784 memcpy(ptr, __per_cpu_load, ai->static_size); 2785 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2786 } 2787 } 2788 2789 /* base address is now known, determine group base offsets */ 2790 for (group = 0; group < ai->nr_groups; group++) { 2791 ai->groups[group].base_offset = areas[group] - base; 2792 } 2793 2794 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 2795 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 2796 ai->dyn_size, ai->unit_size); 2797 2798 rc = pcpu_setup_first_chunk(ai, base); 2799 goto out_free; 2800 2801 out_free_areas: 2802 for (group = 0; group < ai->nr_groups; group++) 2803 if (areas[group]) 2804 free_fn(areas[group], 2805 ai->groups[group].nr_units * ai->unit_size); 2806 out_free: 2807 pcpu_free_alloc_info(ai); 2808 if (areas) 2809 memblock_free_early(__pa(areas), areas_size); 2810 return rc; 2811 } 2812 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2813 2814 #ifdef BUILD_PAGE_FIRST_CHUNK 2815 /** 2816 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2817 * @reserved_size: the size of reserved percpu area in bytes 2818 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2819 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2820 * @populate_pte_fn: function to populate pte 2821 * 2822 * This is a helper to ease setting up page-remapped first percpu 2823 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2824 * 2825 * This is the basic allocator. Static percpu area is allocated 2826 * page-by-page into vmalloc area. 2827 * 2828 * RETURNS: 2829 * 0 on success, -errno on failure. 2830 */ 2831 int __init pcpu_page_first_chunk(size_t reserved_size, 2832 pcpu_fc_alloc_fn_t alloc_fn, 2833 pcpu_fc_free_fn_t free_fn, 2834 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2835 { 2836 static struct vm_struct vm; 2837 struct pcpu_alloc_info *ai; 2838 char psize_str[16]; 2839 int unit_pages; 2840 size_t pages_size; 2841 struct page **pages; 2842 int unit, i, j, rc; 2843 int upa; 2844 int nr_g0_units; 2845 2846 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2847 2848 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2849 if (IS_ERR(ai)) 2850 return PTR_ERR(ai); 2851 BUG_ON(ai->nr_groups != 1); 2852 upa = ai->alloc_size/ai->unit_size; 2853 nr_g0_units = roundup(num_possible_cpus(), upa); 2854 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2855 pcpu_free_alloc_info(ai); 2856 return -EINVAL; 2857 } 2858 2859 unit_pages = ai->unit_size >> PAGE_SHIFT; 2860 2861 /* unaligned allocations can't be freed, round up to page size */ 2862 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2863 sizeof(pages[0])); 2864 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 2865 if (!pages) 2866 panic("%s: Failed to allocate %zu bytes\n", __func__, 2867 pages_size); 2868 2869 /* allocate pages */ 2870 j = 0; 2871 for (unit = 0; unit < num_possible_cpus(); unit++) { 2872 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2873 for (i = 0; i < unit_pages; i++) { 2874 void *ptr; 2875 2876 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2877 if (!ptr) { 2878 pr_warn("failed to allocate %s page for cpu%u\n", 2879 psize_str, cpu); 2880 goto enomem; 2881 } 2882 /* kmemleak tracks the percpu allocations separately */ 2883 kmemleak_free(ptr); 2884 pages[j++] = virt_to_page(ptr); 2885 } 2886 } 2887 2888 /* allocate vm area, map the pages and copy static data */ 2889 vm.flags = VM_ALLOC; 2890 vm.size = num_possible_cpus() * ai->unit_size; 2891 vm_area_register_early(&vm, PAGE_SIZE); 2892 2893 for (unit = 0; unit < num_possible_cpus(); unit++) { 2894 unsigned long unit_addr = 2895 (unsigned long)vm.addr + unit * ai->unit_size; 2896 2897 for (i = 0; i < unit_pages; i++) 2898 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2899 2900 /* pte already populated, the following shouldn't fail */ 2901 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2902 unit_pages); 2903 if (rc < 0) 2904 panic("failed to map percpu area, err=%d\n", rc); 2905 2906 /* 2907 * FIXME: Archs with virtual cache should flush local 2908 * cache for the linear mapping here - something 2909 * equivalent to flush_cache_vmap() on the local cpu. 2910 * flush_cache_vmap() can't be used as most supporting 2911 * data structures are not set up yet. 2912 */ 2913 2914 /* copy static data */ 2915 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2916 } 2917 2918 /* we're ready, commit */ 2919 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 2920 unit_pages, psize_str, ai->static_size, 2921 ai->reserved_size, ai->dyn_size); 2922 2923 rc = pcpu_setup_first_chunk(ai, vm.addr); 2924 goto out_free_ar; 2925 2926 enomem: 2927 while (--j >= 0) 2928 free_fn(page_address(pages[j]), PAGE_SIZE); 2929 rc = -ENOMEM; 2930 out_free_ar: 2931 memblock_free_early(__pa(pages), pages_size); 2932 pcpu_free_alloc_info(ai); 2933 return rc; 2934 } 2935 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2936 2937 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2938 /* 2939 * Generic SMP percpu area setup. 2940 * 2941 * The embedding helper is used because its behavior closely resembles 2942 * the original non-dynamic generic percpu area setup. This is 2943 * important because many archs have addressing restrictions and might 2944 * fail if the percpu area is located far away from the previous 2945 * location. As an added bonus, in non-NUMA cases, embedding is 2946 * generally a good idea TLB-wise because percpu area can piggy back 2947 * on the physical linear memory mapping which uses large page 2948 * mappings on applicable archs. 2949 */ 2950 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2951 EXPORT_SYMBOL(__per_cpu_offset); 2952 2953 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2954 size_t align) 2955 { 2956 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 2957 } 2958 2959 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2960 { 2961 memblock_free_early(__pa(ptr), size); 2962 } 2963 2964 void __init setup_per_cpu_areas(void) 2965 { 2966 unsigned long delta; 2967 unsigned int cpu; 2968 int rc; 2969 2970 /* 2971 * Always reserve area for module percpu variables. That's 2972 * what the legacy allocator did. 2973 */ 2974 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2975 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2976 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2977 if (rc < 0) 2978 panic("Failed to initialize percpu areas."); 2979 2980 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2981 for_each_possible_cpu(cpu) 2982 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2983 } 2984 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2985 2986 #else /* CONFIG_SMP */ 2987 2988 /* 2989 * UP percpu area setup. 2990 * 2991 * UP always uses km-based percpu allocator with identity mapping. 2992 * Static percpu variables are indistinguishable from the usual static 2993 * variables and don't require any special preparation. 2994 */ 2995 void __init setup_per_cpu_areas(void) 2996 { 2997 const size_t unit_size = 2998 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2999 PERCPU_DYNAMIC_RESERVE)); 3000 struct pcpu_alloc_info *ai; 3001 void *fc; 3002 3003 ai = pcpu_alloc_alloc_info(1, 1); 3004 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 3005 if (!ai || !fc) 3006 panic("Failed to allocate memory for percpu areas."); 3007 /* kmemleak tracks the percpu allocations separately */ 3008 kmemleak_free(fc); 3009 3010 ai->dyn_size = unit_size; 3011 ai->unit_size = unit_size; 3012 ai->atom_size = unit_size; 3013 ai->alloc_size = unit_size; 3014 ai->groups[0].nr_units = 1; 3015 ai->groups[0].cpu_map[0] = 0; 3016 3017 if (pcpu_setup_first_chunk(ai, fc) < 0) 3018 panic("Failed to initialize percpu areas."); 3019 pcpu_free_alloc_info(ai); 3020 } 3021 3022 #endif /* CONFIG_SMP */ 3023 3024 /* 3025 * pcpu_nr_pages - calculate total number of populated backing pages 3026 * 3027 * This reflects the number of pages populated to back chunks. Metadata is 3028 * excluded in the number exposed in meminfo as the number of backing pages 3029 * scales with the number of cpus and can quickly outweigh the memory used for 3030 * metadata. It also keeps this calculation nice and simple. 3031 * 3032 * RETURNS: 3033 * Total number of populated backing pages in use by the allocator. 3034 */ 3035 unsigned long pcpu_nr_pages(void) 3036 { 3037 return pcpu_nr_populated * pcpu_nr_units; 3038 } 3039 3040 /* 3041 * Percpu allocator is initialized early during boot when neither slab or 3042 * workqueue is available. Plug async management until everything is up 3043 * and running. 3044 */ 3045 static int __init percpu_enable_async(void) 3046 { 3047 pcpu_async_enabled = true; 3048 return 0; 3049 } 3050 subsys_initcall(percpu_enable_async); 3051