xref: /openbmc/linux/mm/percpu.c (revision a09d2831)
1 /*
2  * linux/mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11  * chunk is consisted of boot-time determined number of units and the
12  * first chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.  ie. in
17  * vmalloc area
18  *
19  *  c0                           c1                         c2
20  *  -------------------          -------------------        ------------
21  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22  *  -------------------  ......  -------------------  ....  ------------
23  *
24  * Allocation is done in offset-size areas of single unit space.  Ie,
25  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28  * Percpu access can be done by configuring percpu base registers
29  * according to cpu to unit mapping and pcpu_unit_size.
30  *
31  * There are usually many small percpu allocations many of them being
32  * as small as 4 bytes.  The allocator organizes chunks into lists
33  * according to free size and tries to allocate from the fullest one.
34  * Each chunk keeps the maximum contiguous area size hint which is
35  * guaranteed to be eqaul to or larger than the maximum contiguous
36  * area in the chunk.  This helps the allocator not to iterate the
37  * chunk maps unnecessarily.
38  *
39  * Allocation state in each chunk is kept using an array of integers
40  * on chunk->map.  A positive value in the map represents a free
41  * region and negative allocated.  Allocation inside a chunk is done
42  * by scanning this map sequentially and serving the first matching
43  * entry.  This is mostly copied from the percpu_modalloc() allocator.
44  * Chunks can be determined from the address using the index field
45  * in the page struct. The index field contains a pointer to the chunk.
46  *
47  * To use this allocator, arch code should do the followings.
48  *
49  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50  *   regular address to percpu pointer and back if they need to be
51  *   different from the default
52  *
53  * - use pcpu_setup_first_chunk() during percpu area initialization to
54  *   setup the first chunk containing the kernel static percpu area
55  */
56 
57 #include <linux/bitmap.h>
58 #include <linux/bootmem.h>
59 #include <linux/err.h>
60 #include <linux/list.h>
61 #include <linux/log2.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/mutex.h>
65 #include <linux/percpu.h>
66 #include <linux/pfn.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/vmalloc.h>
70 #include <linux/workqueue.h>
71 
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76 
77 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr)					\
83 	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
84 		 + (unsigned long)__per_cpu_start)
85 #endif
86 #ifndef __pcpu_ptr_to_addr
87 #define __pcpu_ptr_to_addr(ptr)						\
88 	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
89 		 - (unsigned long)__per_cpu_start)
90 #endif
91 
92 struct pcpu_chunk {
93 	struct list_head	list;		/* linked to pcpu_slot lists */
94 	int			free_size;	/* free bytes in the chunk */
95 	int			contig_hint;	/* max contiguous size hint */
96 	void			*base_addr;	/* base address of this chunk */
97 	int			map_used;	/* # of map entries used */
98 	int			map_alloc;	/* # of map entries allocated */
99 	int			*map;		/* allocation map */
100 	struct vm_struct	**vms;		/* mapped vmalloc regions */
101 	bool			immutable;	/* no [de]population allowed */
102 	unsigned long		populated[];	/* populated bitmap */
103 };
104 
105 static int pcpu_unit_pages __read_mostly;
106 static int pcpu_unit_size __read_mostly;
107 static int pcpu_nr_units __read_mostly;
108 static int pcpu_atom_size __read_mostly;
109 static int pcpu_nr_slots __read_mostly;
110 static size_t pcpu_chunk_struct_size __read_mostly;
111 
112 /* cpus with the lowest and highest unit numbers */
113 static unsigned int pcpu_first_unit_cpu __read_mostly;
114 static unsigned int pcpu_last_unit_cpu __read_mostly;
115 
116 /* the address of the first chunk which starts with the kernel static area */
117 void *pcpu_base_addr __read_mostly;
118 EXPORT_SYMBOL_GPL(pcpu_base_addr);
119 
120 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
121 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
122 
123 /* group information, used for vm allocation */
124 static int pcpu_nr_groups __read_mostly;
125 static const unsigned long *pcpu_group_offsets __read_mostly;
126 static const size_t *pcpu_group_sizes __read_mostly;
127 
128 /*
129  * The first chunk which always exists.  Note that unlike other
130  * chunks, this one can be allocated and mapped in several different
131  * ways and thus often doesn't live in the vmalloc area.
132  */
133 static struct pcpu_chunk *pcpu_first_chunk;
134 
135 /*
136  * Optional reserved chunk.  This chunk reserves part of the first
137  * chunk and serves it for reserved allocations.  The amount of
138  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
139  * area doesn't exist, the following variables contain NULL and 0
140  * respectively.
141  */
142 static struct pcpu_chunk *pcpu_reserved_chunk;
143 static int pcpu_reserved_chunk_limit;
144 
145 /*
146  * Synchronization rules.
147  *
148  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
149  * protects allocation/reclaim paths, chunks, populated bitmap and
150  * vmalloc mapping.  The latter is a spinlock and protects the index
151  * data structures - chunk slots, chunks and area maps in chunks.
152  *
153  * During allocation, pcpu_alloc_mutex is kept locked all the time and
154  * pcpu_lock is grabbed and released as necessary.  All actual memory
155  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
156  * general, percpu memory can't be allocated with irq off but
157  * irqsave/restore are still used in alloc path so that it can be used
158  * from early init path - sched_init() specifically.
159  *
160  * Free path accesses and alters only the index data structures, so it
161  * can be safely called from atomic context.  When memory needs to be
162  * returned to the system, free path schedules reclaim_work which
163  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
164  * reclaimed, release both locks and frees the chunks.  Note that it's
165  * necessary to grab both locks to remove a chunk from circulation as
166  * allocation path might be referencing the chunk with only
167  * pcpu_alloc_mutex locked.
168  */
169 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
170 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
171 
172 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
173 
174 /* reclaim work to release fully free chunks, scheduled from free path */
175 static void pcpu_reclaim(struct work_struct *work);
176 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
177 
178 static int __pcpu_size_to_slot(int size)
179 {
180 	int highbit = fls(size);	/* size is in bytes */
181 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
182 }
183 
184 static int pcpu_size_to_slot(int size)
185 {
186 	if (size == pcpu_unit_size)
187 		return pcpu_nr_slots - 1;
188 	return __pcpu_size_to_slot(size);
189 }
190 
191 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
192 {
193 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
194 		return 0;
195 
196 	return pcpu_size_to_slot(chunk->free_size);
197 }
198 
199 static int pcpu_page_idx(unsigned int cpu, int page_idx)
200 {
201 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
202 }
203 
204 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
205 				     unsigned int cpu, int page_idx)
206 {
207 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
208 		(page_idx << PAGE_SHIFT);
209 }
210 
211 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
212 				    unsigned int cpu, int page_idx)
213 {
214 	/* must not be used on pre-mapped chunk */
215 	WARN_ON(chunk->immutable);
216 
217 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
218 }
219 
220 /* set the pointer to a chunk in a page struct */
221 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
222 {
223 	page->index = (unsigned long)pcpu;
224 }
225 
226 /* obtain pointer to a chunk from a page struct */
227 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
228 {
229 	return (struct pcpu_chunk *)page->index;
230 }
231 
232 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
233 {
234 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
235 	*re = find_next_bit(chunk->populated, end, *rs + 1);
236 }
237 
238 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
239 {
240 	*rs = find_next_bit(chunk->populated, end, *rs);
241 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
242 }
243 
244 /*
245  * (Un)populated page region iterators.  Iterate over (un)populated
246  * page regions betwen @start and @end in @chunk.  @rs and @re should
247  * be integer variables and will be set to start and end page index of
248  * the current region.
249  */
250 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
251 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
252 	     (rs) < (re);						    \
253 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
254 
255 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
256 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
257 	     (rs) < (re);						    \
258 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
259 
260 /**
261  * pcpu_mem_alloc - allocate memory
262  * @size: bytes to allocate
263  *
264  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
265  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
266  * memory is always zeroed.
267  *
268  * CONTEXT:
269  * Does GFP_KERNEL allocation.
270  *
271  * RETURNS:
272  * Pointer to the allocated area on success, NULL on failure.
273  */
274 static void *pcpu_mem_alloc(size_t size)
275 {
276 	if (size <= PAGE_SIZE)
277 		return kzalloc(size, GFP_KERNEL);
278 	else {
279 		void *ptr = vmalloc(size);
280 		if (ptr)
281 			memset(ptr, 0, size);
282 		return ptr;
283 	}
284 }
285 
286 /**
287  * pcpu_mem_free - free memory
288  * @ptr: memory to free
289  * @size: size of the area
290  *
291  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
292  */
293 static void pcpu_mem_free(void *ptr, size_t size)
294 {
295 	if (size <= PAGE_SIZE)
296 		kfree(ptr);
297 	else
298 		vfree(ptr);
299 }
300 
301 /**
302  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
303  * @chunk: chunk of interest
304  * @oslot: the previous slot it was on
305  *
306  * This function is called after an allocation or free changed @chunk.
307  * New slot according to the changed state is determined and @chunk is
308  * moved to the slot.  Note that the reserved chunk is never put on
309  * chunk slots.
310  *
311  * CONTEXT:
312  * pcpu_lock.
313  */
314 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
315 {
316 	int nslot = pcpu_chunk_slot(chunk);
317 
318 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
319 		if (oslot < nslot)
320 			list_move(&chunk->list, &pcpu_slot[nslot]);
321 		else
322 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
323 	}
324 }
325 
326 /**
327  * pcpu_chunk_addr_search - determine chunk containing specified address
328  * @addr: address for which the chunk needs to be determined.
329  *
330  * RETURNS:
331  * The address of the found chunk.
332  */
333 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
334 {
335 	void *first_start = pcpu_first_chunk->base_addr;
336 
337 	/* is it in the first chunk? */
338 	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
339 		/* is it in the reserved area? */
340 		if (addr < first_start + pcpu_reserved_chunk_limit)
341 			return pcpu_reserved_chunk;
342 		return pcpu_first_chunk;
343 	}
344 
345 	/*
346 	 * The address is relative to unit0 which might be unused and
347 	 * thus unmapped.  Offset the address to the unit space of the
348 	 * current processor before looking it up in the vmalloc
349 	 * space.  Note that any possible cpu id can be used here, so
350 	 * there's no need to worry about preemption or cpu hotplug.
351 	 */
352 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
353 	return pcpu_get_page_chunk(vmalloc_to_page(addr));
354 }
355 
356 /**
357  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
358  * @chunk: chunk of interest
359  *
360  * Determine whether area map of @chunk needs to be extended to
361  * accomodate a new allocation.
362  *
363  * CONTEXT:
364  * pcpu_lock.
365  *
366  * RETURNS:
367  * New target map allocation length if extension is necessary, 0
368  * otherwise.
369  */
370 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
371 {
372 	int new_alloc;
373 
374 	if (chunk->map_alloc >= chunk->map_used + 2)
375 		return 0;
376 
377 	new_alloc = PCPU_DFL_MAP_ALLOC;
378 	while (new_alloc < chunk->map_used + 2)
379 		new_alloc *= 2;
380 
381 	return new_alloc;
382 }
383 
384 /**
385  * pcpu_extend_area_map - extend area map of a chunk
386  * @chunk: chunk of interest
387  * @new_alloc: new target allocation length of the area map
388  *
389  * Extend area map of @chunk to have @new_alloc entries.
390  *
391  * CONTEXT:
392  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
393  *
394  * RETURNS:
395  * 0 on success, -errno on failure.
396  */
397 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
398 {
399 	int *old = NULL, *new = NULL;
400 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
401 	unsigned long flags;
402 
403 	new = pcpu_mem_alloc(new_size);
404 	if (!new)
405 		return -ENOMEM;
406 
407 	/* acquire pcpu_lock and switch to new area map */
408 	spin_lock_irqsave(&pcpu_lock, flags);
409 
410 	if (new_alloc <= chunk->map_alloc)
411 		goto out_unlock;
412 
413 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
414 	memcpy(new, chunk->map, old_size);
415 
416 	/*
417 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
418 	 * one of the first chunks and still using static map.
419 	 */
420 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
421 		old = chunk->map;
422 
423 	chunk->map_alloc = new_alloc;
424 	chunk->map = new;
425 	new = NULL;
426 
427 out_unlock:
428 	spin_unlock_irqrestore(&pcpu_lock, flags);
429 
430 	/*
431 	 * pcpu_mem_free() might end up calling vfree() which uses
432 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
433 	 */
434 	pcpu_mem_free(old, old_size);
435 	pcpu_mem_free(new, new_size);
436 
437 	return 0;
438 }
439 
440 /**
441  * pcpu_split_block - split a map block
442  * @chunk: chunk of interest
443  * @i: index of map block to split
444  * @head: head size in bytes (can be 0)
445  * @tail: tail size in bytes (can be 0)
446  *
447  * Split the @i'th map block into two or three blocks.  If @head is
448  * non-zero, @head bytes block is inserted before block @i moving it
449  * to @i+1 and reducing its size by @head bytes.
450  *
451  * If @tail is non-zero, the target block, which can be @i or @i+1
452  * depending on @head, is reduced by @tail bytes and @tail byte block
453  * is inserted after the target block.
454  *
455  * @chunk->map must have enough free slots to accomodate the split.
456  *
457  * CONTEXT:
458  * pcpu_lock.
459  */
460 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
461 			     int head, int tail)
462 {
463 	int nr_extra = !!head + !!tail;
464 
465 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
466 
467 	/* insert new subblocks */
468 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
469 		sizeof(chunk->map[0]) * (chunk->map_used - i));
470 	chunk->map_used += nr_extra;
471 
472 	if (head) {
473 		chunk->map[i + 1] = chunk->map[i] - head;
474 		chunk->map[i++] = head;
475 	}
476 	if (tail) {
477 		chunk->map[i++] -= tail;
478 		chunk->map[i] = tail;
479 	}
480 }
481 
482 /**
483  * pcpu_alloc_area - allocate area from a pcpu_chunk
484  * @chunk: chunk of interest
485  * @size: wanted size in bytes
486  * @align: wanted align
487  *
488  * Try to allocate @size bytes area aligned at @align from @chunk.
489  * Note that this function only allocates the offset.  It doesn't
490  * populate or map the area.
491  *
492  * @chunk->map must have at least two free slots.
493  *
494  * CONTEXT:
495  * pcpu_lock.
496  *
497  * RETURNS:
498  * Allocated offset in @chunk on success, -1 if no matching area is
499  * found.
500  */
501 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
502 {
503 	int oslot = pcpu_chunk_slot(chunk);
504 	int max_contig = 0;
505 	int i, off;
506 
507 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
508 		bool is_last = i + 1 == chunk->map_used;
509 		int head, tail;
510 
511 		/* extra for alignment requirement */
512 		head = ALIGN(off, align) - off;
513 		BUG_ON(i == 0 && head != 0);
514 
515 		if (chunk->map[i] < 0)
516 			continue;
517 		if (chunk->map[i] < head + size) {
518 			max_contig = max(chunk->map[i], max_contig);
519 			continue;
520 		}
521 
522 		/*
523 		 * If head is small or the previous block is free,
524 		 * merge'em.  Note that 'small' is defined as smaller
525 		 * than sizeof(int), which is very small but isn't too
526 		 * uncommon for percpu allocations.
527 		 */
528 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
529 			if (chunk->map[i - 1] > 0)
530 				chunk->map[i - 1] += head;
531 			else {
532 				chunk->map[i - 1] -= head;
533 				chunk->free_size -= head;
534 			}
535 			chunk->map[i] -= head;
536 			off += head;
537 			head = 0;
538 		}
539 
540 		/* if tail is small, just keep it around */
541 		tail = chunk->map[i] - head - size;
542 		if (tail < sizeof(int))
543 			tail = 0;
544 
545 		/* split if warranted */
546 		if (head || tail) {
547 			pcpu_split_block(chunk, i, head, tail);
548 			if (head) {
549 				i++;
550 				off += head;
551 				max_contig = max(chunk->map[i - 1], max_contig);
552 			}
553 			if (tail)
554 				max_contig = max(chunk->map[i + 1], max_contig);
555 		}
556 
557 		/* update hint and mark allocated */
558 		if (is_last)
559 			chunk->contig_hint = max_contig; /* fully scanned */
560 		else
561 			chunk->contig_hint = max(chunk->contig_hint,
562 						 max_contig);
563 
564 		chunk->free_size -= chunk->map[i];
565 		chunk->map[i] = -chunk->map[i];
566 
567 		pcpu_chunk_relocate(chunk, oslot);
568 		return off;
569 	}
570 
571 	chunk->contig_hint = max_contig;	/* fully scanned */
572 	pcpu_chunk_relocate(chunk, oslot);
573 
574 	/* tell the upper layer that this chunk has no matching area */
575 	return -1;
576 }
577 
578 /**
579  * pcpu_free_area - free area to a pcpu_chunk
580  * @chunk: chunk of interest
581  * @freeme: offset of area to free
582  *
583  * Free area starting from @freeme to @chunk.  Note that this function
584  * only modifies the allocation map.  It doesn't depopulate or unmap
585  * the area.
586  *
587  * CONTEXT:
588  * pcpu_lock.
589  */
590 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
591 {
592 	int oslot = pcpu_chunk_slot(chunk);
593 	int i, off;
594 
595 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
596 		if (off == freeme)
597 			break;
598 	BUG_ON(off != freeme);
599 	BUG_ON(chunk->map[i] > 0);
600 
601 	chunk->map[i] = -chunk->map[i];
602 	chunk->free_size += chunk->map[i];
603 
604 	/* merge with previous? */
605 	if (i > 0 && chunk->map[i - 1] >= 0) {
606 		chunk->map[i - 1] += chunk->map[i];
607 		chunk->map_used--;
608 		memmove(&chunk->map[i], &chunk->map[i + 1],
609 			(chunk->map_used - i) * sizeof(chunk->map[0]));
610 		i--;
611 	}
612 	/* merge with next? */
613 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
614 		chunk->map[i] += chunk->map[i + 1];
615 		chunk->map_used--;
616 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
617 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
618 	}
619 
620 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
621 	pcpu_chunk_relocate(chunk, oslot);
622 }
623 
624 /**
625  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
626  * @chunk: chunk of interest
627  * @bitmapp: output parameter for bitmap
628  * @may_alloc: may allocate the array
629  *
630  * Returns pointer to array of pointers to struct page and bitmap,
631  * both of which can be indexed with pcpu_page_idx().  The returned
632  * array is cleared to zero and *@bitmapp is copied from
633  * @chunk->populated.  Note that there is only one array and bitmap
634  * and access exclusion is the caller's responsibility.
635  *
636  * CONTEXT:
637  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
638  * Otherwise, don't care.
639  *
640  * RETURNS:
641  * Pointer to temp pages array on success, NULL on failure.
642  */
643 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
644 					       unsigned long **bitmapp,
645 					       bool may_alloc)
646 {
647 	static struct page **pages;
648 	static unsigned long *bitmap;
649 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
650 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
651 			     sizeof(unsigned long);
652 
653 	if (!pages || !bitmap) {
654 		if (may_alloc && !pages)
655 			pages = pcpu_mem_alloc(pages_size);
656 		if (may_alloc && !bitmap)
657 			bitmap = pcpu_mem_alloc(bitmap_size);
658 		if (!pages || !bitmap)
659 			return NULL;
660 	}
661 
662 	memset(pages, 0, pages_size);
663 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
664 
665 	*bitmapp = bitmap;
666 	return pages;
667 }
668 
669 /**
670  * pcpu_free_pages - free pages which were allocated for @chunk
671  * @chunk: chunk pages were allocated for
672  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
673  * @populated: populated bitmap
674  * @page_start: page index of the first page to be freed
675  * @page_end: page index of the last page to be freed + 1
676  *
677  * Free pages [@page_start and @page_end) in @pages for all units.
678  * The pages were allocated for @chunk.
679  */
680 static void pcpu_free_pages(struct pcpu_chunk *chunk,
681 			    struct page **pages, unsigned long *populated,
682 			    int page_start, int page_end)
683 {
684 	unsigned int cpu;
685 	int i;
686 
687 	for_each_possible_cpu(cpu) {
688 		for (i = page_start; i < page_end; i++) {
689 			struct page *page = pages[pcpu_page_idx(cpu, i)];
690 
691 			if (page)
692 				__free_page(page);
693 		}
694 	}
695 }
696 
697 /**
698  * pcpu_alloc_pages - allocates pages for @chunk
699  * @chunk: target chunk
700  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
701  * @populated: populated bitmap
702  * @page_start: page index of the first page to be allocated
703  * @page_end: page index of the last page to be allocated + 1
704  *
705  * Allocate pages [@page_start,@page_end) into @pages for all units.
706  * The allocation is for @chunk.  Percpu core doesn't care about the
707  * content of @pages and will pass it verbatim to pcpu_map_pages().
708  */
709 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
710 			    struct page **pages, unsigned long *populated,
711 			    int page_start, int page_end)
712 {
713 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
714 	unsigned int cpu;
715 	int i;
716 
717 	for_each_possible_cpu(cpu) {
718 		for (i = page_start; i < page_end; i++) {
719 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
720 
721 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
722 			if (!*pagep) {
723 				pcpu_free_pages(chunk, pages, populated,
724 						page_start, page_end);
725 				return -ENOMEM;
726 			}
727 		}
728 	}
729 	return 0;
730 }
731 
732 /**
733  * pcpu_pre_unmap_flush - flush cache prior to unmapping
734  * @chunk: chunk the regions to be flushed belongs to
735  * @page_start: page index of the first page to be flushed
736  * @page_end: page index of the last page to be flushed + 1
737  *
738  * Pages in [@page_start,@page_end) of @chunk are about to be
739  * unmapped.  Flush cache.  As each flushing trial can be very
740  * expensive, issue flush on the whole region at once rather than
741  * doing it for each cpu.  This could be an overkill but is more
742  * scalable.
743  */
744 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
745 				 int page_start, int page_end)
746 {
747 	flush_cache_vunmap(
748 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
749 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
750 }
751 
752 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
753 {
754 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
755 }
756 
757 /**
758  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
759  * @chunk: chunk of interest
760  * @pages: pages array which can be used to pass information to free
761  * @populated: populated bitmap
762  * @page_start: page index of the first page to unmap
763  * @page_end: page index of the last page to unmap + 1
764  *
765  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
766  * Corresponding elements in @pages were cleared by the caller and can
767  * be used to carry information to pcpu_free_pages() which will be
768  * called after all unmaps are finished.  The caller should call
769  * proper pre/post flush functions.
770  */
771 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
772 			     struct page **pages, unsigned long *populated,
773 			     int page_start, int page_end)
774 {
775 	unsigned int cpu;
776 	int i;
777 
778 	for_each_possible_cpu(cpu) {
779 		for (i = page_start; i < page_end; i++) {
780 			struct page *page;
781 
782 			page = pcpu_chunk_page(chunk, cpu, i);
783 			WARN_ON(!page);
784 			pages[pcpu_page_idx(cpu, i)] = page;
785 		}
786 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
787 				   page_end - page_start);
788 	}
789 
790 	for (i = page_start; i < page_end; i++)
791 		__clear_bit(i, populated);
792 }
793 
794 /**
795  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
796  * @chunk: pcpu_chunk the regions to be flushed belong to
797  * @page_start: page index of the first page to be flushed
798  * @page_end: page index of the last page to be flushed + 1
799  *
800  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
801  * TLB for the regions.  This can be skipped if the area is to be
802  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
803  *
804  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
805  * for the whole region.
806  */
807 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
808 				      int page_start, int page_end)
809 {
810 	flush_tlb_kernel_range(
811 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
812 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
813 }
814 
815 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
816 			    int nr_pages)
817 {
818 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
819 					PAGE_KERNEL, pages);
820 }
821 
822 /**
823  * pcpu_map_pages - map pages into a pcpu_chunk
824  * @chunk: chunk of interest
825  * @pages: pages array containing pages to be mapped
826  * @populated: populated bitmap
827  * @page_start: page index of the first page to map
828  * @page_end: page index of the last page to map + 1
829  *
830  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
831  * caller is responsible for calling pcpu_post_map_flush() after all
832  * mappings are complete.
833  *
834  * This function is responsible for setting corresponding bits in
835  * @chunk->populated bitmap and whatever is necessary for reverse
836  * lookup (addr -> chunk).
837  */
838 static int pcpu_map_pages(struct pcpu_chunk *chunk,
839 			  struct page **pages, unsigned long *populated,
840 			  int page_start, int page_end)
841 {
842 	unsigned int cpu, tcpu;
843 	int i, err;
844 
845 	for_each_possible_cpu(cpu) {
846 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
847 				       &pages[pcpu_page_idx(cpu, page_start)],
848 				       page_end - page_start);
849 		if (err < 0)
850 			goto err;
851 	}
852 
853 	/* mapping successful, link chunk and mark populated */
854 	for (i = page_start; i < page_end; i++) {
855 		for_each_possible_cpu(cpu)
856 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
857 					    chunk);
858 		__set_bit(i, populated);
859 	}
860 
861 	return 0;
862 
863 err:
864 	for_each_possible_cpu(tcpu) {
865 		if (tcpu == cpu)
866 			break;
867 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
868 				   page_end - page_start);
869 	}
870 	return err;
871 }
872 
873 /**
874  * pcpu_post_map_flush - flush cache after mapping
875  * @chunk: pcpu_chunk the regions to be flushed belong to
876  * @page_start: page index of the first page to be flushed
877  * @page_end: page index of the last page to be flushed + 1
878  *
879  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
880  * cache.
881  *
882  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
883  * for the whole region.
884  */
885 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
886 				int page_start, int page_end)
887 {
888 	flush_cache_vmap(
889 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
890 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
891 }
892 
893 /**
894  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
895  * @chunk: chunk to depopulate
896  * @off: offset to the area to depopulate
897  * @size: size of the area to depopulate in bytes
898  * @flush: whether to flush cache and tlb or not
899  *
900  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
901  * from @chunk.  If @flush is true, vcache is flushed before unmapping
902  * and tlb after.
903  *
904  * CONTEXT:
905  * pcpu_alloc_mutex.
906  */
907 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
908 {
909 	int page_start = PFN_DOWN(off);
910 	int page_end = PFN_UP(off + size);
911 	struct page **pages;
912 	unsigned long *populated;
913 	int rs, re;
914 
915 	/* quick path, check whether it's empty already */
916 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
917 		if (rs == page_start && re == page_end)
918 			return;
919 		break;
920 	}
921 
922 	/* immutable chunks can't be depopulated */
923 	WARN_ON(chunk->immutable);
924 
925 	/*
926 	 * If control reaches here, there must have been at least one
927 	 * successful population attempt so the temp pages array must
928 	 * be available now.
929 	 */
930 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
931 	BUG_ON(!pages);
932 
933 	/* unmap and free */
934 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
935 
936 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
937 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
938 
939 	/* no need to flush tlb, vmalloc will handle it lazily */
940 
941 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
942 		pcpu_free_pages(chunk, pages, populated, rs, re);
943 
944 	/* commit new bitmap */
945 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
946 }
947 
948 /**
949  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
950  * @chunk: chunk of interest
951  * @off: offset to the area to populate
952  * @size: size of the area to populate in bytes
953  *
954  * For each cpu, populate and map pages [@page_start,@page_end) into
955  * @chunk.  The area is cleared on return.
956  *
957  * CONTEXT:
958  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
959  */
960 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
961 {
962 	int page_start = PFN_DOWN(off);
963 	int page_end = PFN_UP(off + size);
964 	int free_end = page_start, unmap_end = page_start;
965 	struct page **pages;
966 	unsigned long *populated;
967 	unsigned int cpu;
968 	int rs, re, rc;
969 
970 	/* quick path, check whether all pages are already there */
971 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
972 		if (rs == page_start && re == page_end)
973 			goto clear;
974 		break;
975 	}
976 
977 	/* need to allocate and map pages, this chunk can't be immutable */
978 	WARN_ON(chunk->immutable);
979 
980 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
981 	if (!pages)
982 		return -ENOMEM;
983 
984 	/* alloc and map */
985 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
986 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
987 		if (rc)
988 			goto err_free;
989 		free_end = re;
990 	}
991 
992 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
993 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
994 		if (rc)
995 			goto err_unmap;
996 		unmap_end = re;
997 	}
998 	pcpu_post_map_flush(chunk, page_start, page_end);
999 
1000 	/* commit new bitmap */
1001 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1002 clear:
1003 	for_each_possible_cpu(cpu)
1004 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1005 	return 0;
1006 
1007 err_unmap:
1008 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1009 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1010 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
1011 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1012 err_free:
1013 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1014 		pcpu_free_pages(chunk, pages, populated, rs, re);
1015 	return rc;
1016 }
1017 
1018 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
1019 {
1020 	if (!chunk)
1021 		return;
1022 	if (chunk->vms)
1023 		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1024 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
1025 	kfree(chunk);
1026 }
1027 
1028 static struct pcpu_chunk *alloc_pcpu_chunk(void)
1029 {
1030 	struct pcpu_chunk *chunk;
1031 
1032 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1033 	if (!chunk)
1034 		return NULL;
1035 
1036 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1037 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1038 	chunk->map[chunk->map_used++] = pcpu_unit_size;
1039 
1040 	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1041 				       pcpu_nr_groups, pcpu_atom_size,
1042 				       GFP_KERNEL);
1043 	if (!chunk->vms) {
1044 		free_pcpu_chunk(chunk);
1045 		return NULL;
1046 	}
1047 
1048 	INIT_LIST_HEAD(&chunk->list);
1049 	chunk->free_size = pcpu_unit_size;
1050 	chunk->contig_hint = pcpu_unit_size;
1051 	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1052 
1053 	return chunk;
1054 }
1055 
1056 /**
1057  * pcpu_alloc - the percpu allocator
1058  * @size: size of area to allocate in bytes
1059  * @align: alignment of area (max PAGE_SIZE)
1060  * @reserved: allocate from the reserved chunk if available
1061  *
1062  * Allocate percpu area of @size bytes aligned at @align.
1063  *
1064  * CONTEXT:
1065  * Does GFP_KERNEL allocation.
1066  *
1067  * RETURNS:
1068  * Percpu pointer to the allocated area on success, NULL on failure.
1069  */
1070 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1071 {
1072 	static int warn_limit = 10;
1073 	struct pcpu_chunk *chunk;
1074 	const char *err;
1075 	int slot, off, new_alloc;
1076 	unsigned long flags;
1077 
1078 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1079 		WARN(true, "illegal size (%zu) or align (%zu) for "
1080 		     "percpu allocation\n", size, align);
1081 		return NULL;
1082 	}
1083 
1084 	mutex_lock(&pcpu_alloc_mutex);
1085 	spin_lock_irqsave(&pcpu_lock, flags);
1086 
1087 	/* serve reserved allocations from the reserved chunk if available */
1088 	if (reserved && pcpu_reserved_chunk) {
1089 		chunk = pcpu_reserved_chunk;
1090 
1091 		if (size > chunk->contig_hint) {
1092 			err = "alloc from reserved chunk failed";
1093 			goto fail_unlock;
1094 		}
1095 
1096 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
1097 			spin_unlock_irqrestore(&pcpu_lock, flags);
1098 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1099 				err = "failed to extend area map of reserved chunk";
1100 				goto fail_unlock_mutex;
1101 			}
1102 			spin_lock_irqsave(&pcpu_lock, flags);
1103 		}
1104 
1105 		off = pcpu_alloc_area(chunk, size, align);
1106 		if (off >= 0)
1107 			goto area_found;
1108 
1109 		err = "alloc from reserved chunk failed";
1110 		goto fail_unlock;
1111 	}
1112 
1113 restart:
1114 	/* search through normal chunks */
1115 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1116 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1117 			if (size > chunk->contig_hint)
1118 				continue;
1119 
1120 			new_alloc = pcpu_need_to_extend(chunk);
1121 			if (new_alloc) {
1122 				spin_unlock_irqrestore(&pcpu_lock, flags);
1123 				if (pcpu_extend_area_map(chunk,
1124 							 new_alloc) < 0) {
1125 					err = "failed to extend area map";
1126 					goto fail_unlock_mutex;
1127 				}
1128 				spin_lock_irqsave(&pcpu_lock, flags);
1129 				/*
1130 				 * pcpu_lock has been dropped, need to
1131 				 * restart cpu_slot list walking.
1132 				 */
1133 				goto restart;
1134 			}
1135 
1136 			off = pcpu_alloc_area(chunk, size, align);
1137 			if (off >= 0)
1138 				goto area_found;
1139 		}
1140 	}
1141 
1142 	/* hmmm... no space left, create a new chunk */
1143 	spin_unlock_irqrestore(&pcpu_lock, flags);
1144 
1145 	chunk = alloc_pcpu_chunk();
1146 	if (!chunk) {
1147 		err = "failed to allocate new chunk";
1148 		goto fail_unlock_mutex;
1149 	}
1150 
1151 	spin_lock_irqsave(&pcpu_lock, flags);
1152 	pcpu_chunk_relocate(chunk, -1);
1153 	goto restart;
1154 
1155 area_found:
1156 	spin_unlock_irqrestore(&pcpu_lock, flags);
1157 
1158 	/* populate, map and clear the area */
1159 	if (pcpu_populate_chunk(chunk, off, size)) {
1160 		spin_lock_irqsave(&pcpu_lock, flags);
1161 		pcpu_free_area(chunk, off);
1162 		err = "failed to populate";
1163 		goto fail_unlock;
1164 	}
1165 
1166 	mutex_unlock(&pcpu_alloc_mutex);
1167 
1168 	/* return address relative to base address */
1169 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1170 
1171 fail_unlock:
1172 	spin_unlock_irqrestore(&pcpu_lock, flags);
1173 fail_unlock_mutex:
1174 	mutex_unlock(&pcpu_alloc_mutex);
1175 	if (warn_limit) {
1176 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1177 			   "%s\n", size, align, err);
1178 		dump_stack();
1179 		if (!--warn_limit)
1180 			pr_info("PERCPU: limit reached, disable warning\n");
1181 	}
1182 	return NULL;
1183 }
1184 
1185 /**
1186  * __alloc_percpu - allocate dynamic percpu area
1187  * @size: size of area to allocate in bytes
1188  * @align: alignment of area (max PAGE_SIZE)
1189  *
1190  * Allocate percpu area of @size bytes aligned at @align.  Might
1191  * sleep.  Might trigger writeouts.
1192  *
1193  * CONTEXT:
1194  * Does GFP_KERNEL allocation.
1195  *
1196  * RETURNS:
1197  * Percpu pointer to the allocated area on success, NULL on failure.
1198  */
1199 void *__alloc_percpu(size_t size, size_t align)
1200 {
1201 	return pcpu_alloc(size, align, false);
1202 }
1203 EXPORT_SYMBOL_GPL(__alloc_percpu);
1204 
1205 /**
1206  * __alloc_reserved_percpu - allocate reserved percpu area
1207  * @size: size of area to allocate in bytes
1208  * @align: alignment of area (max PAGE_SIZE)
1209  *
1210  * Allocate percpu area of @size bytes aligned at @align from reserved
1211  * percpu area if arch has set it up; otherwise, allocation is served
1212  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1213  *
1214  * CONTEXT:
1215  * Does GFP_KERNEL allocation.
1216  *
1217  * RETURNS:
1218  * Percpu pointer to the allocated area on success, NULL on failure.
1219  */
1220 void *__alloc_reserved_percpu(size_t size, size_t align)
1221 {
1222 	return pcpu_alloc(size, align, true);
1223 }
1224 
1225 /**
1226  * pcpu_reclaim - reclaim fully free chunks, workqueue function
1227  * @work: unused
1228  *
1229  * Reclaim all fully free chunks except for the first one.
1230  *
1231  * CONTEXT:
1232  * workqueue context.
1233  */
1234 static void pcpu_reclaim(struct work_struct *work)
1235 {
1236 	LIST_HEAD(todo);
1237 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1238 	struct pcpu_chunk *chunk, *next;
1239 
1240 	mutex_lock(&pcpu_alloc_mutex);
1241 	spin_lock_irq(&pcpu_lock);
1242 
1243 	list_for_each_entry_safe(chunk, next, head, list) {
1244 		WARN_ON(chunk->immutable);
1245 
1246 		/* spare the first one */
1247 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1248 			continue;
1249 
1250 		list_move(&chunk->list, &todo);
1251 	}
1252 
1253 	spin_unlock_irq(&pcpu_lock);
1254 
1255 	list_for_each_entry_safe(chunk, next, &todo, list) {
1256 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1257 		free_pcpu_chunk(chunk);
1258 	}
1259 
1260 	mutex_unlock(&pcpu_alloc_mutex);
1261 }
1262 
1263 /**
1264  * free_percpu - free percpu area
1265  * @ptr: pointer to area to free
1266  *
1267  * Free percpu area @ptr.
1268  *
1269  * CONTEXT:
1270  * Can be called from atomic context.
1271  */
1272 void free_percpu(void *ptr)
1273 {
1274 	void *addr;
1275 	struct pcpu_chunk *chunk;
1276 	unsigned long flags;
1277 	int off;
1278 
1279 	if (!ptr)
1280 		return;
1281 
1282 	addr = __pcpu_ptr_to_addr(ptr);
1283 
1284 	spin_lock_irqsave(&pcpu_lock, flags);
1285 
1286 	chunk = pcpu_chunk_addr_search(addr);
1287 	off = addr - chunk->base_addr;
1288 
1289 	pcpu_free_area(chunk, off);
1290 
1291 	/* if there are more than one fully free chunks, wake up grim reaper */
1292 	if (chunk->free_size == pcpu_unit_size) {
1293 		struct pcpu_chunk *pos;
1294 
1295 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1296 			if (pos != chunk) {
1297 				schedule_work(&pcpu_reclaim_work);
1298 				break;
1299 			}
1300 	}
1301 
1302 	spin_unlock_irqrestore(&pcpu_lock, flags);
1303 }
1304 EXPORT_SYMBOL_GPL(free_percpu);
1305 
1306 /**
1307  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1308  * @addr: the address to be converted to physical address
1309  *
1310  * Given @addr which is dereferenceable address obtained via one of
1311  * percpu access macros, this function translates it into its physical
1312  * address.  The caller is responsible for ensuring @addr stays valid
1313  * until this function finishes.
1314  *
1315  * RETURNS:
1316  * The physical address for @addr.
1317  */
1318 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1319 {
1320 	if ((unsigned long)addr < VMALLOC_START ||
1321 			(unsigned long)addr >= VMALLOC_END)
1322 		return __pa(addr);
1323 	else
1324 		return page_to_phys(vmalloc_to_page(addr));
1325 }
1326 
1327 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1328 					size_t reserved_size,
1329 					ssize_t *dyn_sizep)
1330 {
1331 	size_t size_sum;
1332 
1333 	size_sum = PFN_ALIGN(static_size + reserved_size +
1334 			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1335 	if (*dyn_sizep != 0)
1336 		*dyn_sizep = size_sum - static_size - reserved_size;
1337 
1338 	return size_sum;
1339 }
1340 
1341 /**
1342  * pcpu_alloc_alloc_info - allocate percpu allocation info
1343  * @nr_groups: the number of groups
1344  * @nr_units: the number of units
1345  *
1346  * Allocate ai which is large enough for @nr_groups groups containing
1347  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1348  * cpu_map array which is long enough for @nr_units and filled with
1349  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1350  * pointer of other groups.
1351  *
1352  * RETURNS:
1353  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1354  * failure.
1355  */
1356 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1357 						      int nr_units)
1358 {
1359 	struct pcpu_alloc_info *ai;
1360 	size_t base_size, ai_size;
1361 	void *ptr;
1362 	int unit;
1363 
1364 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1365 			  __alignof__(ai->groups[0].cpu_map[0]));
1366 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1367 
1368 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1369 	if (!ptr)
1370 		return NULL;
1371 	ai = ptr;
1372 	ptr += base_size;
1373 
1374 	ai->groups[0].cpu_map = ptr;
1375 
1376 	for (unit = 0; unit < nr_units; unit++)
1377 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1378 
1379 	ai->nr_groups = nr_groups;
1380 	ai->__ai_size = PFN_ALIGN(ai_size);
1381 
1382 	return ai;
1383 }
1384 
1385 /**
1386  * pcpu_free_alloc_info - free percpu allocation info
1387  * @ai: pcpu_alloc_info to free
1388  *
1389  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1390  */
1391 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1392 {
1393 	free_bootmem(__pa(ai), ai->__ai_size);
1394 }
1395 
1396 /**
1397  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1398  * @reserved_size: the size of reserved percpu area in bytes
1399  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1400  * @atom_size: allocation atom size
1401  * @cpu_distance_fn: callback to determine distance between cpus, optional
1402  *
1403  * This function determines grouping of units, their mappings to cpus
1404  * and other parameters considering needed percpu size, allocation
1405  * atom size and distances between CPUs.
1406  *
1407  * Groups are always mutliples of atom size and CPUs which are of
1408  * LOCAL_DISTANCE both ways are grouped together and share space for
1409  * units in the same group.  The returned configuration is guaranteed
1410  * to have CPUs on different nodes on different groups and >=75% usage
1411  * of allocated virtual address space.
1412  *
1413  * RETURNS:
1414  * On success, pointer to the new allocation_info is returned.  On
1415  * failure, ERR_PTR value is returned.
1416  */
1417 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1418 				size_t reserved_size, ssize_t dyn_size,
1419 				size_t atom_size,
1420 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1421 {
1422 	static int group_map[NR_CPUS] __initdata;
1423 	static int group_cnt[NR_CPUS] __initdata;
1424 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1425 	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1426 	size_t size_sum, min_unit_size, alloc_size;
1427 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1428 	int last_allocs, group, unit;
1429 	unsigned int cpu, tcpu;
1430 	struct pcpu_alloc_info *ai;
1431 	unsigned int *cpu_map;
1432 
1433 	/* this function may be called multiple times */
1434 	memset(group_map, 0, sizeof(group_map));
1435 	memset(group_cnt, 0, sizeof(group_map));
1436 
1437 	/*
1438 	 * Determine min_unit_size, alloc_size and max_upa such that
1439 	 * alloc_size is multiple of atom_size and is the smallest
1440 	 * which can accomodate 4k aligned segments which are equal to
1441 	 * or larger than min_unit_size.
1442 	 */
1443 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1444 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1445 
1446 	alloc_size = roundup(min_unit_size, atom_size);
1447 	upa = alloc_size / min_unit_size;
1448 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1449 		upa--;
1450 	max_upa = upa;
1451 
1452 	/* group cpus according to their proximity */
1453 	for_each_possible_cpu(cpu) {
1454 		group = 0;
1455 	next_group:
1456 		for_each_possible_cpu(tcpu) {
1457 			if (cpu == tcpu)
1458 				break;
1459 			if (group_map[tcpu] == group && cpu_distance_fn &&
1460 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1461 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1462 				group++;
1463 				nr_groups = max(nr_groups, group + 1);
1464 				goto next_group;
1465 			}
1466 		}
1467 		group_map[cpu] = group;
1468 		group_cnt[group]++;
1469 		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1470 	}
1471 
1472 	/*
1473 	 * Expand unit size until address space usage goes over 75%
1474 	 * and then as much as possible without using more address
1475 	 * space.
1476 	 */
1477 	last_allocs = INT_MAX;
1478 	for (upa = max_upa; upa; upa--) {
1479 		int allocs = 0, wasted = 0;
1480 
1481 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1482 			continue;
1483 
1484 		for (group = 0; group < nr_groups; group++) {
1485 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1486 			allocs += this_allocs;
1487 			wasted += this_allocs * upa - group_cnt[group];
1488 		}
1489 
1490 		/*
1491 		 * Don't accept if wastage is over 25%.  The
1492 		 * greater-than comparison ensures upa==1 always
1493 		 * passes the following check.
1494 		 */
1495 		if (wasted > num_possible_cpus() / 3)
1496 			continue;
1497 
1498 		/* and then don't consume more memory */
1499 		if (allocs > last_allocs)
1500 			break;
1501 		last_allocs = allocs;
1502 		best_upa = upa;
1503 	}
1504 	upa = best_upa;
1505 
1506 	/* allocate and fill alloc_info */
1507 	for (group = 0; group < nr_groups; group++)
1508 		nr_units += roundup(group_cnt[group], upa);
1509 
1510 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1511 	if (!ai)
1512 		return ERR_PTR(-ENOMEM);
1513 	cpu_map = ai->groups[0].cpu_map;
1514 
1515 	for (group = 0; group < nr_groups; group++) {
1516 		ai->groups[group].cpu_map = cpu_map;
1517 		cpu_map += roundup(group_cnt[group], upa);
1518 	}
1519 
1520 	ai->static_size = static_size;
1521 	ai->reserved_size = reserved_size;
1522 	ai->dyn_size = dyn_size;
1523 	ai->unit_size = alloc_size / upa;
1524 	ai->atom_size = atom_size;
1525 	ai->alloc_size = alloc_size;
1526 
1527 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1528 		struct pcpu_group_info *gi = &ai->groups[group];
1529 
1530 		/*
1531 		 * Initialize base_offset as if all groups are located
1532 		 * back-to-back.  The caller should update this to
1533 		 * reflect actual allocation.
1534 		 */
1535 		gi->base_offset = unit * ai->unit_size;
1536 
1537 		for_each_possible_cpu(cpu)
1538 			if (group_map[cpu] == group)
1539 				gi->cpu_map[gi->nr_units++] = cpu;
1540 		gi->nr_units = roundup(gi->nr_units, upa);
1541 		unit += gi->nr_units;
1542 	}
1543 	BUG_ON(unit != nr_units);
1544 
1545 	return ai;
1546 }
1547 
1548 /**
1549  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1550  * @lvl: loglevel
1551  * @ai: allocation info to dump
1552  *
1553  * Print out information about @ai using loglevel @lvl.
1554  */
1555 static void pcpu_dump_alloc_info(const char *lvl,
1556 				 const struct pcpu_alloc_info *ai)
1557 {
1558 	int group_width = 1, cpu_width = 1, width;
1559 	char empty_str[] = "--------";
1560 	int alloc = 0, alloc_end = 0;
1561 	int group, v;
1562 	int upa, apl;	/* units per alloc, allocs per line */
1563 
1564 	v = ai->nr_groups;
1565 	while (v /= 10)
1566 		group_width++;
1567 
1568 	v = num_possible_cpus();
1569 	while (v /= 10)
1570 		cpu_width++;
1571 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1572 
1573 	upa = ai->alloc_size / ai->unit_size;
1574 	width = upa * (cpu_width + 1) + group_width + 3;
1575 	apl = rounddown_pow_of_two(max(60 / width, 1));
1576 
1577 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1578 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1579 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1580 
1581 	for (group = 0; group < ai->nr_groups; group++) {
1582 		const struct pcpu_group_info *gi = &ai->groups[group];
1583 		int unit = 0, unit_end = 0;
1584 
1585 		BUG_ON(gi->nr_units % upa);
1586 		for (alloc_end += gi->nr_units / upa;
1587 		     alloc < alloc_end; alloc++) {
1588 			if (!(alloc % apl)) {
1589 				printk("\n");
1590 				printk("%spcpu-alloc: ", lvl);
1591 			}
1592 			printk("[%0*d] ", group_width, group);
1593 
1594 			for (unit_end += upa; unit < unit_end; unit++)
1595 				if (gi->cpu_map[unit] != NR_CPUS)
1596 					printk("%0*d ", cpu_width,
1597 					       gi->cpu_map[unit]);
1598 				else
1599 					printk("%s ", empty_str);
1600 		}
1601 	}
1602 	printk("\n");
1603 }
1604 
1605 /**
1606  * pcpu_setup_first_chunk - initialize the first percpu chunk
1607  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1608  * @base_addr: mapped address
1609  *
1610  * Initialize the first percpu chunk which contains the kernel static
1611  * perpcu area.  This function is to be called from arch percpu area
1612  * setup path.
1613  *
1614  * @ai contains all information necessary to initialize the first
1615  * chunk and prime the dynamic percpu allocator.
1616  *
1617  * @ai->static_size is the size of static percpu area.
1618  *
1619  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1620  * reserve after the static area in the first chunk.  This reserves
1621  * the first chunk such that it's available only through reserved
1622  * percpu allocation.  This is primarily used to serve module percpu
1623  * static areas on architectures where the addressing model has
1624  * limited offset range for symbol relocations to guarantee module
1625  * percpu symbols fall inside the relocatable range.
1626  *
1627  * @ai->dyn_size determines the number of bytes available for dynamic
1628  * allocation in the first chunk.  The area between @ai->static_size +
1629  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1630  *
1631  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1632  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1633  * @ai->dyn_size.
1634  *
1635  * @ai->atom_size is the allocation atom size and used as alignment
1636  * for vm areas.
1637  *
1638  * @ai->alloc_size is the allocation size and always multiple of
1639  * @ai->atom_size.  This is larger than @ai->atom_size if
1640  * @ai->unit_size is larger than @ai->atom_size.
1641  *
1642  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1643  * percpu areas.  Units which should be colocated are put into the
1644  * same group.  Dynamic VM areas will be allocated according to these
1645  * groupings.  If @ai->nr_groups is zero, a single group containing
1646  * all units is assumed.
1647  *
1648  * The caller should have mapped the first chunk at @base_addr and
1649  * copied static data to each unit.
1650  *
1651  * If the first chunk ends up with both reserved and dynamic areas, it
1652  * is served by two chunks - one to serve the core static and reserved
1653  * areas and the other for the dynamic area.  They share the same vm
1654  * and page map but uses different area allocation map to stay away
1655  * from each other.  The latter chunk is circulated in the chunk slots
1656  * and available for dynamic allocation like any other chunks.
1657  *
1658  * RETURNS:
1659  * 0 on success, -errno on failure.
1660  */
1661 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1662 				  void *base_addr)
1663 {
1664 	static char cpus_buf[4096] __initdata;
1665 	static int smap[2], dmap[2];
1666 	size_t dyn_size = ai->dyn_size;
1667 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1668 	struct pcpu_chunk *schunk, *dchunk = NULL;
1669 	unsigned long *group_offsets;
1670 	size_t *group_sizes;
1671 	unsigned long *unit_off;
1672 	unsigned int cpu;
1673 	int *unit_map;
1674 	int group, unit, i;
1675 
1676 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1677 
1678 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1679 	if (unlikely(cond)) {						\
1680 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1681 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1682 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1683 		BUG();							\
1684 	}								\
1685 } while (0)
1686 
1687 	/* sanity checks */
1688 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1689 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1690 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1691 	PCPU_SETUP_BUG_ON(!ai->static_size);
1692 	PCPU_SETUP_BUG_ON(!base_addr);
1693 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1694 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1695 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1696 
1697 	/* process group information and build config tables accordingly */
1698 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1699 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1700 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1701 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1702 
1703 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1704 		unit_map[cpu] = UINT_MAX;
1705 	pcpu_first_unit_cpu = NR_CPUS;
1706 
1707 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1708 		const struct pcpu_group_info *gi = &ai->groups[group];
1709 
1710 		group_offsets[group] = gi->base_offset;
1711 		group_sizes[group] = gi->nr_units * ai->unit_size;
1712 
1713 		for (i = 0; i < gi->nr_units; i++) {
1714 			cpu = gi->cpu_map[i];
1715 			if (cpu == NR_CPUS)
1716 				continue;
1717 
1718 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1719 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1720 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1721 
1722 			unit_map[cpu] = unit + i;
1723 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1724 
1725 			if (pcpu_first_unit_cpu == NR_CPUS)
1726 				pcpu_first_unit_cpu = cpu;
1727 		}
1728 	}
1729 	pcpu_last_unit_cpu = cpu;
1730 	pcpu_nr_units = unit;
1731 
1732 	for_each_possible_cpu(cpu)
1733 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1734 
1735 	/* we're done parsing the input, undefine BUG macro and dump config */
1736 #undef PCPU_SETUP_BUG_ON
1737 	pcpu_dump_alloc_info(KERN_INFO, ai);
1738 
1739 	pcpu_nr_groups = ai->nr_groups;
1740 	pcpu_group_offsets = group_offsets;
1741 	pcpu_group_sizes = group_sizes;
1742 	pcpu_unit_map = unit_map;
1743 	pcpu_unit_offsets = unit_off;
1744 
1745 	/* determine basic parameters */
1746 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1747 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1748 	pcpu_atom_size = ai->atom_size;
1749 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1750 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1751 
1752 	/*
1753 	 * Allocate chunk slots.  The additional last slot is for
1754 	 * empty chunks.
1755 	 */
1756 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1757 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1758 	for (i = 0; i < pcpu_nr_slots; i++)
1759 		INIT_LIST_HEAD(&pcpu_slot[i]);
1760 
1761 	/*
1762 	 * Initialize static chunk.  If reserved_size is zero, the
1763 	 * static chunk covers static area + dynamic allocation area
1764 	 * in the first chunk.  If reserved_size is not zero, it
1765 	 * covers static area + reserved area (mostly used for module
1766 	 * static percpu allocation).
1767 	 */
1768 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1769 	INIT_LIST_HEAD(&schunk->list);
1770 	schunk->base_addr = base_addr;
1771 	schunk->map = smap;
1772 	schunk->map_alloc = ARRAY_SIZE(smap);
1773 	schunk->immutable = true;
1774 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1775 
1776 	if (ai->reserved_size) {
1777 		schunk->free_size = ai->reserved_size;
1778 		pcpu_reserved_chunk = schunk;
1779 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1780 	} else {
1781 		schunk->free_size = dyn_size;
1782 		dyn_size = 0;			/* dynamic area covered */
1783 	}
1784 	schunk->contig_hint = schunk->free_size;
1785 
1786 	schunk->map[schunk->map_used++] = -ai->static_size;
1787 	if (schunk->free_size)
1788 		schunk->map[schunk->map_used++] = schunk->free_size;
1789 
1790 	/* init dynamic chunk if necessary */
1791 	if (dyn_size) {
1792 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1793 		INIT_LIST_HEAD(&dchunk->list);
1794 		dchunk->base_addr = base_addr;
1795 		dchunk->map = dmap;
1796 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1797 		dchunk->immutable = true;
1798 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1799 
1800 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1801 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1802 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1803 	}
1804 
1805 	/* link the first chunk in */
1806 	pcpu_first_chunk = dchunk ?: schunk;
1807 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1808 
1809 	/* we're done */
1810 	pcpu_base_addr = base_addr;
1811 	return 0;
1812 }
1813 
1814 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1815 	[PCPU_FC_AUTO]	= "auto",
1816 	[PCPU_FC_EMBED]	= "embed",
1817 	[PCPU_FC_PAGE]	= "page",
1818 };
1819 
1820 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1821 
1822 static int __init percpu_alloc_setup(char *str)
1823 {
1824 	if (0)
1825 		/* nada */;
1826 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1827 	else if (!strcmp(str, "embed"))
1828 		pcpu_chosen_fc = PCPU_FC_EMBED;
1829 #endif
1830 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1831 	else if (!strcmp(str, "page"))
1832 		pcpu_chosen_fc = PCPU_FC_PAGE;
1833 #endif
1834 	else
1835 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1836 
1837 	return 0;
1838 }
1839 early_param("percpu_alloc", percpu_alloc_setup);
1840 
1841 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1842 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1843 /**
1844  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1845  * @reserved_size: the size of reserved percpu area in bytes
1846  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1847  * @atom_size: allocation atom size
1848  * @cpu_distance_fn: callback to determine distance between cpus, optional
1849  * @alloc_fn: function to allocate percpu page
1850  * @free_fn: funtion to free percpu page
1851  *
1852  * This is a helper to ease setting up embedded first percpu chunk and
1853  * can be called where pcpu_setup_first_chunk() is expected.
1854  *
1855  * If this function is used to setup the first chunk, it is allocated
1856  * by calling @alloc_fn and used as-is without being mapped into
1857  * vmalloc area.  Allocations are always whole multiples of @atom_size
1858  * aligned to @atom_size.
1859  *
1860  * This enables the first chunk to piggy back on the linear physical
1861  * mapping which often uses larger page size.  Please note that this
1862  * can result in very sparse cpu->unit mapping on NUMA machines thus
1863  * requiring large vmalloc address space.  Don't use this allocator if
1864  * vmalloc space is not orders of magnitude larger than distances
1865  * between node memory addresses (ie. 32bit NUMA machines).
1866  *
1867  * When @dyn_size is positive, dynamic area might be larger than
1868  * specified to fill page alignment.  When @dyn_size is auto,
1869  * @dyn_size is just big enough to fill page alignment after static
1870  * and reserved areas.
1871  *
1872  * If the needed size is smaller than the minimum or specified unit
1873  * size, the leftover is returned using @free_fn.
1874  *
1875  * RETURNS:
1876  * 0 on success, -errno on failure.
1877  */
1878 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1879 				  size_t atom_size,
1880 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1881 				  pcpu_fc_alloc_fn_t alloc_fn,
1882 				  pcpu_fc_free_fn_t free_fn)
1883 {
1884 	void *base = (void *)ULONG_MAX;
1885 	void **areas = NULL;
1886 	struct pcpu_alloc_info *ai;
1887 	size_t size_sum, areas_size, max_distance;
1888 	int group, i, rc;
1889 
1890 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1891 				   cpu_distance_fn);
1892 	if (IS_ERR(ai))
1893 		return PTR_ERR(ai);
1894 
1895 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1896 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1897 
1898 	areas = alloc_bootmem_nopanic(areas_size);
1899 	if (!areas) {
1900 		rc = -ENOMEM;
1901 		goto out_free;
1902 	}
1903 
1904 	/* allocate, copy and determine base address */
1905 	for (group = 0; group < ai->nr_groups; group++) {
1906 		struct pcpu_group_info *gi = &ai->groups[group];
1907 		unsigned int cpu = NR_CPUS;
1908 		void *ptr;
1909 
1910 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1911 			cpu = gi->cpu_map[i];
1912 		BUG_ON(cpu == NR_CPUS);
1913 
1914 		/* allocate space for the whole group */
1915 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1916 		if (!ptr) {
1917 			rc = -ENOMEM;
1918 			goto out_free_areas;
1919 		}
1920 		areas[group] = ptr;
1921 
1922 		base = min(ptr, base);
1923 
1924 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1925 			if (gi->cpu_map[i] == NR_CPUS) {
1926 				/* unused unit, free whole */
1927 				free_fn(ptr, ai->unit_size);
1928 				continue;
1929 			}
1930 			/* copy and return the unused part */
1931 			memcpy(ptr, __per_cpu_load, ai->static_size);
1932 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1933 		}
1934 	}
1935 
1936 	/* base address is now known, determine group base offsets */
1937 	max_distance = 0;
1938 	for (group = 0; group < ai->nr_groups; group++) {
1939 		ai->groups[group].base_offset = areas[group] - base;
1940 		max_distance = max_t(size_t, max_distance,
1941 				     ai->groups[group].base_offset);
1942 	}
1943 	max_distance += ai->unit_size;
1944 
1945 	/* warn if maximum distance is further than 75% of vmalloc space */
1946 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1947 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1948 			   "space 0x%lx\n",
1949 			   max_distance, VMALLOC_END - VMALLOC_START);
1950 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1951 		/* and fail if we have fallback */
1952 		rc = -EINVAL;
1953 		goto out_free;
1954 #endif
1955 	}
1956 
1957 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1958 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1959 		ai->dyn_size, ai->unit_size);
1960 
1961 	rc = pcpu_setup_first_chunk(ai, base);
1962 	goto out_free;
1963 
1964 out_free_areas:
1965 	for (group = 0; group < ai->nr_groups; group++)
1966 		free_fn(areas[group],
1967 			ai->groups[group].nr_units * ai->unit_size);
1968 out_free:
1969 	pcpu_free_alloc_info(ai);
1970 	if (areas)
1971 		free_bootmem(__pa(areas), areas_size);
1972 	return rc;
1973 }
1974 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1975 	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1976 
1977 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1978 /**
1979  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1980  * @reserved_size: the size of reserved percpu area in bytes
1981  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1982  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1983  * @populate_pte_fn: function to populate pte
1984  *
1985  * This is a helper to ease setting up page-remapped first percpu
1986  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1987  *
1988  * This is the basic allocator.  Static percpu area is allocated
1989  * page-by-page into vmalloc area.
1990  *
1991  * RETURNS:
1992  * 0 on success, -errno on failure.
1993  */
1994 int __init pcpu_page_first_chunk(size_t reserved_size,
1995 				 pcpu_fc_alloc_fn_t alloc_fn,
1996 				 pcpu_fc_free_fn_t free_fn,
1997 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1998 {
1999 	static struct vm_struct vm;
2000 	struct pcpu_alloc_info *ai;
2001 	char psize_str[16];
2002 	int unit_pages;
2003 	size_t pages_size;
2004 	struct page **pages;
2005 	int unit, i, j, rc;
2006 
2007 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2008 
2009 	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2010 	if (IS_ERR(ai))
2011 		return PTR_ERR(ai);
2012 	BUG_ON(ai->nr_groups != 1);
2013 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2014 
2015 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2016 
2017 	/* unaligned allocations can't be freed, round up to page size */
2018 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2019 			       sizeof(pages[0]));
2020 	pages = alloc_bootmem(pages_size);
2021 
2022 	/* allocate pages */
2023 	j = 0;
2024 	for (unit = 0; unit < num_possible_cpus(); unit++)
2025 		for (i = 0; i < unit_pages; i++) {
2026 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2027 			void *ptr;
2028 
2029 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2030 			if (!ptr) {
2031 				pr_warning("PERCPU: failed to allocate %s page "
2032 					   "for cpu%u\n", psize_str, cpu);
2033 				goto enomem;
2034 			}
2035 			pages[j++] = virt_to_page(ptr);
2036 		}
2037 
2038 	/* allocate vm area, map the pages and copy static data */
2039 	vm.flags = VM_ALLOC;
2040 	vm.size = num_possible_cpus() * ai->unit_size;
2041 	vm_area_register_early(&vm, PAGE_SIZE);
2042 
2043 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2044 		unsigned long unit_addr =
2045 			(unsigned long)vm.addr + unit * ai->unit_size;
2046 
2047 		for (i = 0; i < unit_pages; i++)
2048 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2049 
2050 		/* pte already populated, the following shouldn't fail */
2051 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2052 				      unit_pages);
2053 		if (rc < 0)
2054 			panic("failed to map percpu area, err=%d\n", rc);
2055 
2056 		/*
2057 		 * FIXME: Archs with virtual cache should flush local
2058 		 * cache for the linear mapping here - something
2059 		 * equivalent to flush_cache_vmap() on the local cpu.
2060 		 * flush_cache_vmap() can't be used as most supporting
2061 		 * data structures are not set up yet.
2062 		 */
2063 
2064 		/* copy static data */
2065 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2066 	}
2067 
2068 	/* we're ready, commit */
2069 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2070 		unit_pages, psize_str, vm.addr, ai->static_size,
2071 		ai->reserved_size, ai->dyn_size);
2072 
2073 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2074 	goto out_free_ar;
2075 
2076 enomem:
2077 	while (--j >= 0)
2078 		free_fn(page_address(pages[j]), PAGE_SIZE);
2079 	rc = -ENOMEM;
2080 out_free_ar:
2081 	free_bootmem(__pa(pages), pages_size);
2082 	pcpu_free_alloc_info(ai);
2083 	return rc;
2084 }
2085 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2086 
2087 /*
2088  * Generic percpu area setup.
2089  *
2090  * The embedding helper is used because its behavior closely resembles
2091  * the original non-dynamic generic percpu area setup.  This is
2092  * important because many archs have addressing restrictions and might
2093  * fail if the percpu area is located far away from the previous
2094  * location.  As an added bonus, in non-NUMA cases, embedding is
2095  * generally a good idea TLB-wise because percpu area can piggy back
2096  * on the physical linear memory mapping which uses large page
2097  * mappings on applicable archs.
2098  */
2099 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2100 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2101 EXPORT_SYMBOL(__per_cpu_offset);
2102 
2103 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2104 				       size_t align)
2105 {
2106 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2107 }
2108 
2109 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2110 {
2111 	free_bootmem(__pa(ptr), size);
2112 }
2113 
2114 void __init setup_per_cpu_areas(void)
2115 {
2116 	unsigned long delta;
2117 	unsigned int cpu;
2118 	int rc;
2119 
2120 	/*
2121 	 * Always reserve area for module percpu variables.  That's
2122 	 * what the legacy allocator did.
2123 	 */
2124 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2125 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2126 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2127 	if (rc < 0)
2128 		panic("Failed to initialized percpu areas.");
2129 
2130 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2131 	for_each_possible_cpu(cpu)
2132 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2133 }
2134 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2135