1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT 41 * flag should be passed. All memcg-aware allocations are sharing one set 42 * of chunks and all unaccounted allocations and allocations performed 43 * by processes belonging to the root memory cgroup are using the second set. 44 * 45 * The allocator tries to allocate from the fullest chunk first. Each chunk 46 * is managed by a bitmap with metadata blocks. The allocation map is updated 47 * on every allocation and free to reflect the current state while the boundary 48 * map is only updated on allocation. Each metadata block contains 49 * information to help mitigate the need to iterate over large portions 50 * of the bitmap. The reverse mapping from page to chunk is stored in 51 * the page's index. Lastly, units are lazily backed and grow in unison. 52 * 53 * There is a unique conversion that goes on here between bytes and bits. 54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 55 * tracks the number of pages it is responsible for in nr_pages. Helper 56 * functions are used to convert from between the bytes, bits, and blocks. 57 * All hints are managed in bits unless explicitly stated. 58 * 59 * To use this allocator, arch code should do the following: 60 * 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 62 * regular address to percpu pointer and back if they need to be 63 * different from the default 64 * 65 * - use pcpu_setup_first_chunk() during percpu area initialization to 66 * setup the first chunk containing the kernel static percpu area 67 */ 68 69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71 #include <linux/bitmap.h> 72 #include <linux/memblock.h> 73 #include <linux/err.h> 74 #include <linux/lcm.h> 75 #include <linux/list.h> 76 #include <linux/log2.h> 77 #include <linux/mm.h> 78 #include <linux/module.h> 79 #include <linux/mutex.h> 80 #include <linux/percpu.h> 81 #include <linux/pfn.h> 82 #include <linux/slab.h> 83 #include <linux/spinlock.h> 84 #include <linux/vmalloc.h> 85 #include <linux/workqueue.h> 86 #include <linux/kmemleak.h> 87 #include <linux/sched.h> 88 #include <linux/sched/mm.h> 89 #include <linux/memcontrol.h> 90 91 #include <asm/cacheflush.h> 92 #include <asm/sections.h> 93 #include <asm/tlbflush.h> 94 #include <asm/io.h> 95 96 #define CREATE_TRACE_POINTS 97 #include <trace/events/percpu.h> 98 99 #include "percpu-internal.h" 100 101 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 102 #define PCPU_SLOT_BASE_SHIFT 5 103 /* chunks in slots below this are subject to being sidelined on failed alloc */ 104 #define PCPU_SLOT_FAIL_THRESHOLD 3 105 106 #define PCPU_EMPTY_POP_PAGES_LOW 2 107 #define PCPU_EMPTY_POP_PAGES_HIGH 4 108 109 #ifdef CONFIG_SMP 110 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 111 #ifndef __addr_to_pcpu_ptr 112 #define __addr_to_pcpu_ptr(addr) \ 113 (void __percpu *)((unsigned long)(addr) - \ 114 (unsigned long)pcpu_base_addr + \ 115 (unsigned long)__per_cpu_start) 116 #endif 117 #ifndef __pcpu_ptr_to_addr 118 #define __pcpu_ptr_to_addr(ptr) \ 119 (void __force *)((unsigned long)(ptr) + \ 120 (unsigned long)pcpu_base_addr - \ 121 (unsigned long)__per_cpu_start) 122 #endif 123 #else /* CONFIG_SMP */ 124 /* on UP, it's always identity mapped */ 125 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 126 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 127 #endif /* CONFIG_SMP */ 128 129 static int pcpu_unit_pages __ro_after_init; 130 static int pcpu_unit_size __ro_after_init; 131 static int pcpu_nr_units __ro_after_init; 132 static int pcpu_atom_size __ro_after_init; 133 int pcpu_nr_slots __ro_after_init; 134 static size_t pcpu_chunk_struct_size __ro_after_init; 135 136 /* cpus with the lowest and highest unit addresses */ 137 static unsigned int pcpu_low_unit_cpu __ro_after_init; 138 static unsigned int pcpu_high_unit_cpu __ro_after_init; 139 140 /* the address of the first chunk which starts with the kernel static area */ 141 void *pcpu_base_addr __ro_after_init; 142 EXPORT_SYMBOL_GPL(pcpu_base_addr); 143 144 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 145 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 146 147 /* group information, used for vm allocation */ 148 static int pcpu_nr_groups __ro_after_init; 149 static const unsigned long *pcpu_group_offsets __ro_after_init; 150 static const size_t *pcpu_group_sizes __ro_after_init; 151 152 /* 153 * The first chunk which always exists. Note that unlike other 154 * chunks, this one can be allocated and mapped in several different 155 * ways and thus often doesn't live in the vmalloc area. 156 */ 157 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 158 159 /* 160 * Optional reserved chunk. This chunk reserves part of the first 161 * chunk and serves it for reserved allocations. When the reserved 162 * region doesn't exist, the following variable is NULL. 163 */ 164 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 165 166 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 167 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 168 169 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ 170 171 /* chunks which need their map areas extended, protected by pcpu_lock */ 172 static LIST_HEAD(pcpu_map_extend_chunks); 173 174 /* 175 * The number of empty populated pages, protected by pcpu_lock. The 176 * reserved chunk doesn't contribute to the count. 177 */ 178 int pcpu_nr_empty_pop_pages; 179 180 /* 181 * The number of populated pages in use by the allocator, protected by 182 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 183 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 184 * and increments/decrements this count by 1). 185 */ 186 static unsigned long pcpu_nr_populated; 187 188 /* 189 * Balance work is used to populate or destroy chunks asynchronously. We 190 * try to keep the number of populated free pages between 191 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 192 * empty chunk. 193 */ 194 static void pcpu_balance_workfn(struct work_struct *work); 195 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 196 static bool pcpu_async_enabled __read_mostly; 197 static bool pcpu_atomic_alloc_failed; 198 199 static void pcpu_schedule_balance_work(void) 200 { 201 if (pcpu_async_enabled) 202 schedule_work(&pcpu_balance_work); 203 } 204 205 /** 206 * pcpu_addr_in_chunk - check if the address is served from this chunk 207 * @chunk: chunk of interest 208 * @addr: percpu address 209 * 210 * RETURNS: 211 * True if the address is served from this chunk. 212 */ 213 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 214 { 215 void *start_addr, *end_addr; 216 217 if (!chunk) 218 return false; 219 220 start_addr = chunk->base_addr + chunk->start_offset; 221 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 222 chunk->end_offset; 223 224 return addr >= start_addr && addr < end_addr; 225 } 226 227 static int __pcpu_size_to_slot(int size) 228 { 229 int highbit = fls(size); /* size is in bytes */ 230 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 231 } 232 233 static int pcpu_size_to_slot(int size) 234 { 235 if (size == pcpu_unit_size) 236 return pcpu_nr_slots - 1; 237 return __pcpu_size_to_slot(size); 238 } 239 240 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 241 { 242 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 243 244 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 245 chunk_md->contig_hint == 0) 246 return 0; 247 248 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 249 } 250 251 /* set the pointer to a chunk in a page struct */ 252 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 253 { 254 page->index = (unsigned long)pcpu; 255 } 256 257 /* obtain pointer to a chunk from a page struct */ 258 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 259 { 260 return (struct pcpu_chunk *)page->index; 261 } 262 263 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 264 { 265 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 266 } 267 268 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 269 { 270 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 271 } 272 273 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 274 unsigned int cpu, int page_idx) 275 { 276 return (unsigned long)chunk->base_addr + 277 pcpu_unit_page_offset(cpu, page_idx); 278 } 279 280 /* 281 * The following are helper functions to help access bitmaps and convert 282 * between bitmap offsets to address offsets. 283 */ 284 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 285 { 286 return chunk->alloc_map + 287 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 288 } 289 290 static unsigned long pcpu_off_to_block_index(int off) 291 { 292 return off / PCPU_BITMAP_BLOCK_BITS; 293 } 294 295 static unsigned long pcpu_off_to_block_off(int off) 296 { 297 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 298 } 299 300 static unsigned long pcpu_block_off_to_off(int index, int off) 301 { 302 return index * PCPU_BITMAP_BLOCK_BITS + off; 303 } 304 305 /* 306 * pcpu_next_hint - determine which hint to use 307 * @block: block of interest 308 * @alloc_bits: size of allocation 309 * 310 * This determines if we should scan based on the scan_hint or first_free. 311 * In general, we want to scan from first_free to fulfill allocations by 312 * first fit. However, if we know a scan_hint at position scan_hint_start 313 * cannot fulfill an allocation, we can begin scanning from there knowing 314 * the contig_hint will be our fallback. 315 */ 316 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 317 { 318 /* 319 * The three conditions below determine if we can skip past the 320 * scan_hint. First, does the scan hint exist. Second, is the 321 * contig_hint after the scan_hint (possibly not true iff 322 * contig_hint == scan_hint). Third, is the allocation request 323 * larger than the scan_hint. 324 */ 325 if (block->scan_hint && 326 block->contig_hint_start > block->scan_hint_start && 327 alloc_bits > block->scan_hint) 328 return block->scan_hint_start + block->scan_hint; 329 330 return block->first_free; 331 } 332 333 /** 334 * pcpu_next_md_free_region - finds the next hint free area 335 * @chunk: chunk of interest 336 * @bit_off: chunk offset 337 * @bits: size of free area 338 * 339 * Helper function for pcpu_for_each_md_free_region. It checks 340 * block->contig_hint and performs aggregation across blocks to find the 341 * next hint. It modifies bit_off and bits in-place to be consumed in the 342 * loop. 343 */ 344 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 345 int *bits) 346 { 347 int i = pcpu_off_to_block_index(*bit_off); 348 int block_off = pcpu_off_to_block_off(*bit_off); 349 struct pcpu_block_md *block; 350 351 *bits = 0; 352 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 353 block++, i++) { 354 /* handles contig area across blocks */ 355 if (*bits) { 356 *bits += block->left_free; 357 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 358 continue; 359 return; 360 } 361 362 /* 363 * This checks three things. First is there a contig_hint to 364 * check. Second, have we checked this hint before by 365 * comparing the block_off. Third, is this the same as the 366 * right contig hint. In the last case, it spills over into 367 * the next block and should be handled by the contig area 368 * across blocks code. 369 */ 370 *bits = block->contig_hint; 371 if (*bits && block->contig_hint_start >= block_off && 372 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 373 *bit_off = pcpu_block_off_to_off(i, 374 block->contig_hint_start); 375 return; 376 } 377 /* reset to satisfy the second predicate above */ 378 block_off = 0; 379 380 *bits = block->right_free; 381 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 382 } 383 } 384 385 /** 386 * pcpu_next_fit_region - finds fit areas for a given allocation request 387 * @chunk: chunk of interest 388 * @alloc_bits: size of allocation 389 * @align: alignment of area (max PAGE_SIZE) 390 * @bit_off: chunk offset 391 * @bits: size of free area 392 * 393 * Finds the next free region that is viable for use with a given size and 394 * alignment. This only returns if there is a valid area to be used for this 395 * allocation. block->first_free is returned if the allocation request fits 396 * within the block to see if the request can be fulfilled prior to the contig 397 * hint. 398 */ 399 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 400 int align, int *bit_off, int *bits) 401 { 402 int i = pcpu_off_to_block_index(*bit_off); 403 int block_off = pcpu_off_to_block_off(*bit_off); 404 struct pcpu_block_md *block; 405 406 *bits = 0; 407 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 408 block++, i++) { 409 /* handles contig area across blocks */ 410 if (*bits) { 411 *bits += block->left_free; 412 if (*bits >= alloc_bits) 413 return; 414 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 415 continue; 416 } 417 418 /* check block->contig_hint */ 419 *bits = ALIGN(block->contig_hint_start, align) - 420 block->contig_hint_start; 421 /* 422 * This uses the block offset to determine if this has been 423 * checked in the prior iteration. 424 */ 425 if (block->contig_hint && 426 block->contig_hint_start >= block_off && 427 block->contig_hint >= *bits + alloc_bits) { 428 int start = pcpu_next_hint(block, alloc_bits); 429 430 *bits += alloc_bits + block->contig_hint_start - 431 start; 432 *bit_off = pcpu_block_off_to_off(i, start); 433 return; 434 } 435 /* reset to satisfy the second predicate above */ 436 block_off = 0; 437 438 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 439 align); 440 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 441 *bit_off = pcpu_block_off_to_off(i, *bit_off); 442 if (*bits >= alloc_bits) 443 return; 444 } 445 446 /* no valid offsets were found - fail condition */ 447 *bit_off = pcpu_chunk_map_bits(chunk); 448 } 449 450 /* 451 * Metadata free area iterators. These perform aggregation of free areas 452 * based on the metadata blocks and return the offset @bit_off and size in 453 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 454 * a fit is found for the allocation request. 455 */ 456 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 457 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 458 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 459 (bit_off) += (bits) + 1, \ 460 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 461 462 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 463 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 464 &(bits)); \ 465 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 466 (bit_off) += (bits), \ 467 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 468 &(bits))) 469 470 /** 471 * pcpu_mem_zalloc - allocate memory 472 * @size: bytes to allocate 473 * @gfp: allocation flags 474 * 475 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 476 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 477 * This is to facilitate passing through whitelisted flags. The 478 * returned memory is always zeroed. 479 * 480 * RETURNS: 481 * Pointer to the allocated area on success, NULL on failure. 482 */ 483 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 484 { 485 if (WARN_ON_ONCE(!slab_is_available())) 486 return NULL; 487 488 if (size <= PAGE_SIZE) 489 return kzalloc(size, gfp); 490 else 491 return __vmalloc(size, gfp | __GFP_ZERO); 492 } 493 494 /** 495 * pcpu_mem_free - free memory 496 * @ptr: memory to free 497 * 498 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 499 */ 500 static void pcpu_mem_free(void *ptr) 501 { 502 kvfree(ptr); 503 } 504 505 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 506 bool move_front) 507 { 508 if (chunk != pcpu_reserved_chunk) { 509 struct list_head *pcpu_slot; 510 511 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk)); 512 if (move_front) 513 list_move(&chunk->list, &pcpu_slot[slot]); 514 else 515 list_move_tail(&chunk->list, &pcpu_slot[slot]); 516 } 517 } 518 519 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 520 { 521 __pcpu_chunk_move(chunk, slot, true); 522 } 523 524 /** 525 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 526 * @chunk: chunk of interest 527 * @oslot: the previous slot it was on 528 * 529 * This function is called after an allocation or free changed @chunk. 530 * New slot according to the changed state is determined and @chunk is 531 * moved to the slot. Note that the reserved chunk is never put on 532 * chunk slots. 533 * 534 * CONTEXT: 535 * pcpu_lock. 536 */ 537 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 538 { 539 int nslot = pcpu_chunk_slot(chunk); 540 541 if (oslot != nslot) 542 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 543 } 544 545 /* 546 * pcpu_update_empty_pages - update empty page counters 547 * @chunk: chunk of interest 548 * @nr: nr of empty pages 549 * 550 * This is used to keep track of the empty pages now based on the premise 551 * a md_block covers a page. The hint update functions recognize if a block 552 * is made full or broken to calculate deltas for keeping track of free pages. 553 */ 554 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 555 { 556 chunk->nr_empty_pop_pages += nr; 557 if (chunk != pcpu_reserved_chunk) 558 pcpu_nr_empty_pop_pages += nr; 559 } 560 561 /* 562 * pcpu_region_overlap - determines if two regions overlap 563 * @a: start of first region, inclusive 564 * @b: end of first region, exclusive 565 * @x: start of second region, inclusive 566 * @y: end of second region, exclusive 567 * 568 * This is used to determine if the hint region [a, b) overlaps with the 569 * allocated region [x, y). 570 */ 571 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 572 { 573 return (a < y) && (x < b); 574 } 575 576 /** 577 * pcpu_block_update - updates a block given a free area 578 * @block: block of interest 579 * @start: start offset in block 580 * @end: end offset in block 581 * 582 * Updates a block given a known free area. The region [start, end) is 583 * expected to be the entirety of the free area within a block. Chooses 584 * the best starting offset if the contig hints are equal. 585 */ 586 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 587 { 588 int contig = end - start; 589 590 block->first_free = min(block->first_free, start); 591 if (start == 0) 592 block->left_free = contig; 593 594 if (end == block->nr_bits) 595 block->right_free = contig; 596 597 if (contig > block->contig_hint) { 598 /* promote the old contig_hint to be the new scan_hint */ 599 if (start > block->contig_hint_start) { 600 if (block->contig_hint > block->scan_hint) { 601 block->scan_hint_start = 602 block->contig_hint_start; 603 block->scan_hint = block->contig_hint; 604 } else if (start < block->scan_hint_start) { 605 /* 606 * The old contig_hint == scan_hint. But, the 607 * new contig is larger so hold the invariant 608 * scan_hint_start < contig_hint_start. 609 */ 610 block->scan_hint = 0; 611 } 612 } else { 613 block->scan_hint = 0; 614 } 615 block->contig_hint_start = start; 616 block->contig_hint = contig; 617 } else if (contig == block->contig_hint) { 618 if (block->contig_hint_start && 619 (!start || 620 __ffs(start) > __ffs(block->contig_hint_start))) { 621 /* start has a better alignment so use it */ 622 block->contig_hint_start = start; 623 if (start < block->scan_hint_start && 624 block->contig_hint > block->scan_hint) 625 block->scan_hint = 0; 626 } else if (start > block->scan_hint_start || 627 block->contig_hint > block->scan_hint) { 628 /* 629 * Knowing contig == contig_hint, update the scan_hint 630 * if it is farther than or larger than the current 631 * scan_hint. 632 */ 633 block->scan_hint_start = start; 634 block->scan_hint = contig; 635 } 636 } else { 637 /* 638 * The region is smaller than the contig_hint. So only update 639 * the scan_hint if it is larger than or equal and farther than 640 * the current scan_hint. 641 */ 642 if ((start < block->contig_hint_start && 643 (contig > block->scan_hint || 644 (contig == block->scan_hint && 645 start > block->scan_hint_start)))) { 646 block->scan_hint_start = start; 647 block->scan_hint = contig; 648 } 649 } 650 } 651 652 /* 653 * pcpu_block_update_scan - update a block given a free area from a scan 654 * @chunk: chunk of interest 655 * @bit_off: chunk offset 656 * @bits: size of free area 657 * 658 * Finding the final allocation spot first goes through pcpu_find_block_fit() 659 * to find a block that can hold the allocation and then pcpu_alloc_area() 660 * where a scan is used. When allocations require specific alignments, 661 * we can inadvertently create holes which will not be seen in the alloc 662 * or free paths. 663 * 664 * This takes a given free area hole and updates a block as it may change the 665 * scan_hint. We need to scan backwards to ensure we don't miss free bits 666 * from alignment. 667 */ 668 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 669 int bits) 670 { 671 int s_off = pcpu_off_to_block_off(bit_off); 672 int e_off = s_off + bits; 673 int s_index, l_bit; 674 struct pcpu_block_md *block; 675 676 if (e_off > PCPU_BITMAP_BLOCK_BITS) 677 return; 678 679 s_index = pcpu_off_to_block_index(bit_off); 680 block = chunk->md_blocks + s_index; 681 682 /* scan backwards in case of alignment skipping free bits */ 683 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 684 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 685 686 pcpu_block_update(block, s_off, e_off); 687 } 688 689 /** 690 * pcpu_chunk_refresh_hint - updates metadata about a chunk 691 * @chunk: chunk of interest 692 * @full_scan: if we should scan from the beginning 693 * 694 * Iterates over the metadata blocks to find the largest contig area. 695 * A full scan can be avoided on the allocation path as this is triggered 696 * if we broke the contig_hint. In doing so, the scan_hint will be before 697 * the contig_hint or after if the scan_hint == contig_hint. This cannot 698 * be prevented on freeing as we want to find the largest area possibly 699 * spanning blocks. 700 */ 701 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 702 { 703 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 704 int bit_off, bits; 705 706 /* promote scan_hint to contig_hint */ 707 if (!full_scan && chunk_md->scan_hint) { 708 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 709 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 710 chunk_md->contig_hint = chunk_md->scan_hint; 711 chunk_md->scan_hint = 0; 712 } else { 713 bit_off = chunk_md->first_free; 714 chunk_md->contig_hint = 0; 715 } 716 717 bits = 0; 718 pcpu_for_each_md_free_region(chunk, bit_off, bits) 719 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 720 } 721 722 /** 723 * pcpu_block_refresh_hint 724 * @chunk: chunk of interest 725 * @index: index of the metadata block 726 * 727 * Scans over the block beginning at first_free and updates the block 728 * metadata accordingly. 729 */ 730 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 731 { 732 struct pcpu_block_md *block = chunk->md_blocks + index; 733 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 734 unsigned int rs, re, start; /* region start, region end */ 735 736 /* promote scan_hint to contig_hint */ 737 if (block->scan_hint) { 738 start = block->scan_hint_start + block->scan_hint; 739 block->contig_hint_start = block->scan_hint_start; 740 block->contig_hint = block->scan_hint; 741 block->scan_hint = 0; 742 } else { 743 start = block->first_free; 744 block->contig_hint = 0; 745 } 746 747 block->right_free = 0; 748 749 /* iterate over free areas and update the contig hints */ 750 bitmap_for_each_clear_region(alloc_map, rs, re, start, 751 PCPU_BITMAP_BLOCK_BITS) 752 pcpu_block_update(block, rs, re); 753 } 754 755 /** 756 * pcpu_block_update_hint_alloc - update hint on allocation path 757 * @chunk: chunk of interest 758 * @bit_off: chunk offset 759 * @bits: size of request 760 * 761 * Updates metadata for the allocation path. The metadata only has to be 762 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 763 * scans are required if the block's contig hint is broken. 764 */ 765 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 766 int bits) 767 { 768 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 769 int nr_empty_pages = 0; 770 struct pcpu_block_md *s_block, *e_block, *block; 771 int s_index, e_index; /* block indexes of the freed allocation */ 772 int s_off, e_off; /* block offsets of the freed allocation */ 773 774 /* 775 * Calculate per block offsets. 776 * The calculation uses an inclusive range, but the resulting offsets 777 * are [start, end). e_index always points to the last block in the 778 * range. 779 */ 780 s_index = pcpu_off_to_block_index(bit_off); 781 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 782 s_off = pcpu_off_to_block_off(bit_off); 783 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 784 785 s_block = chunk->md_blocks + s_index; 786 e_block = chunk->md_blocks + e_index; 787 788 /* 789 * Update s_block. 790 * block->first_free must be updated if the allocation takes its place. 791 * If the allocation breaks the contig_hint, a scan is required to 792 * restore this hint. 793 */ 794 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 795 nr_empty_pages++; 796 797 if (s_off == s_block->first_free) 798 s_block->first_free = find_next_zero_bit( 799 pcpu_index_alloc_map(chunk, s_index), 800 PCPU_BITMAP_BLOCK_BITS, 801 s_off + bits); 802 803 if (pcpu_region_overlap(s_block->scan_hint_start, 804 s_block->scan_hint_start + s_block->scan_hint, 805 s_off, 806 s_off + bits)) 807 s_block->scan_hint = 0; 808 809 if (pcpu_region_overlap(s_block->contig_hint_start, 810 s_block->contig_hint_start + 811 s_block->contig_hint, 812 s_off, 813 s_off + bits)) { 814 /* block contig hint is broken - scan to fix it */ 815 if (!s_off) 816 s_block->left_free = 0; 817 pcpu_block_refresh_hint(chunk, s_index); 818 } else { 819 /* update left and right contig manually */ 820 s_block->left_free = min(s_block->left_free, s_off); 821 if (s_index == e_index) 822 s_block->right_free = min_t(int, s_block->right_free, 823 PCPU_BITMAP_BLOCK_BITS - e_off); 824 else 825 s_block->right_free = 0; 826 } 827 828 /* 829 * Update e_block. 830 */ 831 if (s_index != e_index) { 832 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 833 nr_empty_pages++; 834 835 /* 836 * When the allocation is across blocks, the end is along 837 * the left part of the e_block. 838 */ 839 e_block->first_free = find_next_zero_bit( 840 pcpu_index_alloc_map(chunk, e_index), 841 PCPU_BITMAP_BLOCK_BITS, e_off); 842 843 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 844 /* reset the block */ 845 e_block++; 846 } else { 847 if (e_off > e_block->scan_hint_start) 848 e_block->scan_hint = 0; 849 850 e_block->left_free = 0; 851 if (e_off > e_block->contig_hint_start) { 852 /* contig hint is broken - scan to fix it */ 853 pcpu_block_refresh_hint(chunk, e_index); 854 } else { 855 e_block->right_free = 856 min_t(int, e_block->right_free, 857 PCPU_BITMAP_BLOCK_BITS - e_off); 858 } 859 } 860 861 /* update in-between md_blocks */ 862 nr_empty_pages += (e_index - s_index - 1); 863 for (block = s_block + 1; block < e_block; block++) { 864 block->scan_hint = 0; 865 block->contig_hint = 0; 866 block->left_free = 0; 867 block->right_free = 0; 868 } 869 } 870 871 if (nr_empty_pages) 872 pcpu_update_empty_pages(chunk, -nr_empty_pages); 873 874 if (pcpu_region_overlap(chunk_md->scan_hint_start, 875 chunk_md->scan_hint_start + 876 chunk_md->scan_hint, 877 bit_off, 878 bit_off + bits)) 879 chunk_md->scan_hint = 0; 880 881 /* 882 * The only time a full chunk scan is required is if the chunk 883 * contig hint is broken. Otherwise, it means a smaller space 884 * was used and therefore the chunk contig hint is still correct. 885 */ 886 if (pcpu_region_overlap(chunk_md->contig_hint_start, 887 chunk_md->contig_hint_start + 888 chunk_md->contig_hint, 889 bit_off, 890 bit_off + bits)) 891 pcpu_chunk_refresh_hint(chunk, false); 892 } 893 894 /** 895 * pcpu_block_update_hint_free - updates the block hints on the free path 896 * @chunk: chunk of interest 897 * @bit_off: chunk offset 898 * @bits: size of request 899 * 900 * Updates metadata for the allocation path. This avoids a blind block 901 * refresh by making use of the block contig hints. If this fails, it scans 902 * forward and backward to determine the extent of the free area. This is 903 * capped at the boundary of blocks. 904 * 905 * A chunk update is triggered if a page becomes free, a block becomes free, 906 * or the free spans across blocks. This tradeoff is to minimize iterating 907 * over the block metadata to update chunk_md->contig_hint. 908 * chunk_md->contig_hint may be off by up to a page, but it will never be more 909 * than the available space. If the contig hint is contained in one block, it 910 * will be accurate. 911 */ 912 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 913 int bits) 914 { 915 int nr_empty_pages = 0; 916 struct pcpu_block_md *s_block, *e_block, *block; 917 int s_index, e_index; /* block indexes of the freed allocation */ 918 int s_off, e_off; /* block offsets of the freed allocation */ 919 int start, end; /* start and end of the whole free area */ 920 921 /* 922 * Calculate per block offsets. 923 * The calculation uses an inclusive range, but the resulting offsets 924 * are [start, end). e_index always points to the last block in the 925 * range. 926 */ 927 s_index = pcpu_off_to_block_index(bit_off); 928 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 929 s_off = pcpu_off_to_block_off(bit_off); 930 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 931 932 s_block = chunk->md_blocks + s_index; 933 e_block = chunk->md_blocks + e_index; 934 935 /* 936 * Check if the freed area aligns with the block->contig_hint. 937 * If it does, then the scan to find the beginning/end of the 938 * larger free area can be avoided. 939 * 940 * start and end refer to beginning and end of the free area 941 * within each their respective blocks. This is not necessarily 942 * the entire free area as it may span blocks past the beginning 943 * or end of the block. 944 */ 945 start = s_off; 946 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 947 start = s_block->contig_hint_start; 948 } else { 949 /* 950 * Scan backwards to find the extent of the free area. 951 * find_last_bit returns the starting bit, so if the start bit 952 * is returned, that means there was no last bit and the 953 * remainder of the chunk is free. 954 */ 955 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 956 start); 957 start = (start == l_bit) ? 0 : l_bit + 1; 958 } 959 960 end = e_off; 961 if (e_off == e_block->contig_hint_start) 962 end = e_block->contig_hint_start + e_block->contig_hint; 963 else 964 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 965 PCPU_BITMAP_BLOCK_BITS, end); 966 967 /* update s_block */ 968 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 969 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 970 nr_empty_pages++; 971 pcpu_block_update(s_block, start, e_off); 972 973 /* freeing in the same block */ 974 if (s_index != e_index) { 975 /* update e_block */ 976 if (end == PCPU_BITMAP_BLOCK_BITS) 977 nr_empty_pages++; 978 pcpu_block_update(e_block, 0, end); 979 980 /* reset md_blocks in the middle */ 981 nr_empty_pages += (e_index - s_index - 1); 982 for (block = s_block + 1; block < e_block; block++) { 983 block->first_free = 0; 984 block->scan_hint = 0; 985 block->contig_hint_start = 0; 986 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 987 block->left_free = PCPU_BITMAP_BLOCK_BITS; 988 block->right_free = PCPU_BITMAP_BLOCK_BITS; 989 } 990 } 991 992 if (nr_empty_pages) 993 pcpu_update_empty_pages(chunk, nr_empty_pages); 994 995 /* 996 * Refresh chunk metadata when the free makes a block free or spans 997 * across blocks. The contig_hint may be off by up to a page, but if 998 * the contig_hint is contained in a block, it will be accurate with 999 * the else condition below. 1000 */ 1001 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 1002 pcpu_chunk_refresh_hint(chunk, true); 1003 else 1004 pcpu_block_update(&chunk->chunk_md, 1005 pcpu_block_off_to_off(s_index, start), 1006 end); 1007 } 1008 1009 /** 1010 * pcpu_is_populated - determines if the region is populated 1011 * @chunk: chunk of interest 1012 * @bit_off: chunk offset 1013 * @bits: size of area 1014 * @next_off: return value for the next offset to start searching 1015 * 1016 * For atomic allocations, check if the backing pages are populated. 1017 * 1018 * RETURNS: 1019 * Bool if the backing pages are populated. 1020 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1021 */ 1022 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1023 int *next_off) 1024 { 1025 unsigned int page_start, page_end, rs, re; 1026 1027 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1028 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1029 1030 rs = page_start; 1031 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); 1032 if (rs >= page_end) 1033 return true; 1034 1035 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1036 return false; 1037 } 1038 1039 /** 1040 * pcpu_find_block_fit - finds the block index to start searching 1041 * @chunk: chunk of interest 1042 * @alloc_bits: size of request in allocation units 1043 * @align: alignment of area (max PAGE_SIZE bytes) 1044 * @pop_only: use populated regions only 1045 * 1046 * Given a chunk and an allocation spec, find the offset to begin searching 1047 * for a free region. This iterates over the bitmap metadata blocks to 1048 * find an offset that will be guaranteed to fit the requirements. It is 1049 * not quite first fit as if the allocation does not fit in the contig hint 1050 * of a block or chunk, it is skipped. This errs on the side of caution 1051 * to prevent excess iteration. Poor alignment can cause the allocator to 1052 * skip over blocks and chunks that have valid free areas. 1053 * 1054 * RETURNS: 1055 * The offset in the bitmap to begin searching. 1056 * -1 if no offset is found. 1057 */ 1058 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1059 size_t align, bool pop_only) 1060 { 1061 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1062 int bit_off, bits, next_off; 1063 1064 /* 1065 * Check to see if the allocation can fit in the chunk's contig hint. 1066 * This is an optimization to prevent scanning by assuming if it 1067 * cannot fit in the global hint, there is memory pressure and creating 1068 * a new chunk would happen soon. 1069 */ 1070 bit_off = ALIGN(chunk_md->contig_hint_start, align) - 1071 chunk_md->contig_hint_start; 1072 if (bit_off + alloc_bits > chunk_md->contig_hint) 1073 return -1; 1074 1075 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1076 bits = 0; 1077 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1078 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1079 &next_off)) 1080 break; 1081 1082 bit_off = next_off; 1083 bits = 0; 1084 } 1085 1086 if (bit_off == pcpu_chunk_map_bits(chunk)) 1087 return -1; 1088 1089 return bit_off; 1090 } 1091 1092 /* 1093 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1094 * @map: the address to base the search on 1095 * @size: the bitmap size in bits 1096 * @start: the bitnumber to start searching at 1097 * @nr: the number of zeroed bits we're looking for 1098 * @align_mask: alignment mask for zero area 1099 * @largest_off: offset of the largest area skipped 1100 * @largest_bits: size of the largest area skipped 1101 * 1102 * The @align_mask should be one less than a power of 2. 1103 * 1104 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1105 * the largest area that was skipped. This is imperfect, but in general is 1106 * good enough. The largest remembered region is the largest failed region 1107 * seen. This does not include anything we possibly skipped due to alignment. 1108 * pcpu_block_update_scan() does scan backwards to try and recover what was 1109 * lost to alignment. While this can cause scanning to miss earlier possible 1110 * free areas, smaller allocations will eventually fill those holes. 1111 */ 1112 static unsigned long pcpu_find_zero_area(unsigned long *map, 1113 unsigned long size, 1114 unsigned long start, 1115 unsigned long nr, 1116 unsigned long align_mask, 1117 unsigned long *largest_off, 1118 unsigned long *largest_bits) 1119 { 1120 unsigned long index, end, i, area_off, area_bits; 1121 again: 1122 index = find_next_zero_bit(map, size, start); 1123 1124 /* Align allocation */ 1125 index = __ALIGN_MASK(index, align_mask); 1126 area_off = index; 1127 1128 end = index + nr; 1129 if (end > size) 1130 return end; 1131 i = find_next_bit(map, end, index); 1132 if (i < end) { 1133 area_bits = i - area_off; 1134 /* remember largest unused area with best alignment */ 1135 if (area_bits > *largest_bits || 1136 (area_bits == *largest_bits && *largest_off && 1137 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1138 *largest_off = area_off; 1139 *largest_bits = area_bits; 1140 } 1141 1142 start = i + 1; 1143 goto again; 1144 } 1145 return index; 1146 } 1147 1148 /** 1149 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1150 * @chunk: chunk of interest 1151 * @alloc_bits: size of request in allocation units 1152 * @align: alignment of area (max PAGE_SIZE) 1153 * @start: bit_off to start searching 1154 * 1155 * This function takes in a @start offset to begin searching to fit an 1156 * allocation of @alloc_bits with alignment @align. It needs to scan 1157 * the allocation map because if it fits within the block's contig hint, 1158 * @start will be block->first_free. This is an attempt to fill the 1159 * allocation prior to breaking the contig hint. The allocation and 1160 * boundary maps are updated accordingly if it confirms a valid 1161 * free area. 1162 * 1163 * RETURNS: 1164 * Allocated addr offset in @chunk on success. 1165 * -1 if no matching area is found. 1166 */ 1167 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1168 size_t align, int start) 1169 { 1170 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1171 size_t align_mask = (align) ? (align - 1) : 0; 1172 unsigned long area_off = 0, area_bits = 0; 1173 int bit_off, end, oslot; 1174 1175 lockdep_assert_held(&pcpu_lock); 1176 1177 oslot = pcpu_chunk_slot(chunk); 1178 1179 /* 1180 * Search to find a fit. 1181 */ 1182 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1183 pcpu_chunk_map_bits(chunk)); 1184 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1185 align_mask, &area_off, &area_bits); 1186 if (bit_off >= end) 1187 return -1; 1188 1189 if (area_bits) 1190 pcpu_block_update_scan(chunk, area_off, area_bits); 1191 1192 /* update alloc map */ 1193 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1194 1195 /* update boundary map */ 1196 set_bit(bit_off, chunk->bound_map); 1197 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1198 set_bit(bit_off + alloc_bits, chunk->bound_map); 1199 1200 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1201 1202 /* update first free bit */ 1203 if (bit_off == chunk_md->first_free) 1204 chunk_md->first_free = find_next_zero_bit( 1205 chunk->alloc_map, 1206 pcpu_chunk_map_bits(chunk), 1207 bit_off + alloc_bits); 1208 1209 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1210 1211 pcpu_chunk_relocate(chunk, oslot); 1212 1213 return bit_off * PCPU_MIN_ALLOC_SIZE; 1214 } 1215 1216 /** 1217 * pcpu_free_area - frees the corresponding offset 1218 * @chunk: chunk of interest 1219 * @off: addr offset into chunk 1220 * 1221 * This function determines the size of an allocation to free using 1222 * the boundary bitmap and clears the allocation map. 1223 * 1224 * RETURNS: 1225 * Number of freed bytes. 1226 */ 1227 static int pcpu_free_area(struct pcpu_chunk *chunk, int off) 1228 { 1229 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1230 int bit_off, bits, end, oslot, freed; 1231 1232 lockdep_assert_held(&pcpu_lock); 1233 pcpu_stats_area_dealloc(chunk); 1234 1235 oslot = pcpu_chunk_slot(chunk); 1236 1237 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1238 1239 /* find end index */ 1240 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1241 bit_off + 1); 1242 bits = end - bit_off; 1243 bitmap_clear(chunk->alloc_map, bit_off, bits); 1244 1245 freed = bits * PCPU_MIN_ALLOC_SIZE; 1246 1247 /* update metadata */ 1248 chunk->free_bytes += freed; 1249 1250 /* update first free bit */ 1251 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1252 1253 pcpu_block_update_hint_free(chunk, bit_off, bits); 1254 1255 pcpu_chunk_relocate(chunk, oslot); 1256 1257 return freed; 1258 } 1259 1260 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1261 { 1262 block->scan_hint = 0; 1263 block->contig_hint = nr_bits; 1264 block->left_free = nr_bits; 1265 block->right_free = nr_bits; 1266 block->first_free = 0; 1267 block->nr_bits = nr_bits; 1268 } 1269 1270 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1271 { 1272 struct pcpu_block_md *md_block; 1273 1274 /* init the chunk's block */ 1275 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1276 1277 for (md_block = chunk->md_blocks; 1278 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1279 md_block++) 1280 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1281 } 1282 1283 /** 1284 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1285 * @tmp_addr: the start of the region served 1286 * @map_size: size of the region served 1287 * 1288 * This is responsible for creating the chunks that serve the first chunk. The 1289 * base_addr is page aligned down of @tmp_addr while the region end is page 1290 * aligned up. Offsets are kept track of to determine the region served. All 1291 * this is done to appease the bitmap allocator in avoiding partial blocks. 1292 * 1293 * RETURNS: 1294 * Chunk serving the region at @tmp_addr of @map_size. 1295 */ 1296 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1297 int map_size) 1298 { 1299 struct pcpu_chunk *chunk; 1300 unsigned long aligned_addr, lcm_align; 1301 int start_offset, offset_bits, region_size, region_bits; 1302 size_t alloc_size; 1303 1304 /* region calculations */ 1305 aligned_addr = tmp_addr & PAGE_MASK; 1306 1307 start_offset = tmp_addr - aligned_addr; 1308 1309 /* 1310 * Align the end of the region with the LCM of PAGE_SIZE and 1311 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1312 * the other. 1313 */ 1314 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1315 region_size = ALIGN(start_offset + map_size, lcm_align); 1316 1317 /* allocate chunk */ 1318 alloc_size = sizeof(struct pcpu_chunk) + 1319 BITS_TO_LONGS(region_size >> PAGE_SHIFT) * sizeof(unsigned long); 1320 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1321 if (!chunk) 1322 panic("%s: Failed to allocate %zu bytes\n", __func__, 1323 alloc_size); 1324 1325 INIT_LIST_HEAD(&chunk->list); 1326 1327 chunk->base_addr = (void *)aligned_addr; 1328 chunk->start_offset = start_offset; 1329 chunk->end_offset = region_size - chunk->start_offset - map_size; 1330 1331 chunk->nr_pages = region_size >> PAGE_SHIFT; 1332 region_bits = pcpu_chunk_map_bits(chunk); 1333 1334 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1335 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1336 if (!chunk->alloc_map) 1337 panic("%s: Failed to allocate %zu bytes\n", __func__, 1338 alloc_size); 1339 1340 alloc_size = 1341 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1342 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1343 if (!chunk->bound_map) 1344 panic("%s: Failed to allocate %zu bytes\n", __func__, 1345 alloc_size); 1346 1347 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1348 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1349 if (!chunk->md_blocks) 1350 panic("%s: Failed to allocate %zu bytes\n", __func__, 1351 alloc_size); 1352 1353 #ifdef CONFIG_MEMCG_KMEM 1354 /* first chunk isn't memcg-aware */ 1355 chunk->obj_cgroups = NULL; 1356 #endif 1357 pcpu_init_md_blocks(chunk); 1358 1359 /* manage populated page bitmap */ 1360 chunk->immutable = true; 1361 bitmap_fill(chunk->populated, chunk->nr_pages); 1362 chunk->nr_populated = chunk->nr_pages; 1363 chunk->nr_empty_pop_pages = chunk->nr_pages; 1364 1365 chunk->free_bytes = map_size; 1366 1367 if (chunk->start_offset) { 1368 /* hide the beginning of the bitmap */ 1369 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1370 bitmap_set(chunk->alloc_map, 0, offset_bits); 1371 set_bit(0, chunk->bound_map); 1372 set_bit(offset_bits, chunk->bound_map); 1373 1374 chunk->chunk_md.first_free = offset_bits; 1375 1376 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1377 } 1378 1379 if (chunk->end_offset) { 1380 /* hide the end of the bitmap */ 1381 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1382 bitmap_set(chunk->alloc_map, 1383 pcpu_chunk_map_bits(chunk) - offset_bits, 1384 offset_bits); 1385 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1386 chunk->bound_map); 1387 set_bit(region_bits, chunk->bound_map); 1388 1389 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1390 - offset_bits, offset_bits); 1391 } 1392 1393 return chunk; 1394 } 1395 1396 static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp) 1397 { 1398 struct pcpu_chunk *chunk; 1399 int region_bits; 1400 1401 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1402 if (!chunk) 1403 return NULL; 1404 1405 INIT_LIST_HEAD(&chunk->list); 1406 chunk->nr_pages = pcpu_unit_pages; 1407 region_bits = pcpu_chunk_map_bits(chunk); 1408 1409 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1410 sizeof(chunk->alloc_map[0]), gfp); 1411 if (!chunk->alloc_map) 1412 goto alloc_map_fail; 1413 1414 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1415 sizeof(chunk->bound_map[0]), gfp); 1416 if (!chunk->bound_map) 1417 goto bound_map_fail; 1418 1419 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1420 sizeof(chunk->md_blocks[0]), gfp); 1421 if (!chunk->md_blocks) 1422 goto md_blocks_fail; 1423 1424 #ifdef CONFIG_MEMCG_KMEM 1425 if (pcpu_is_memcg_chunk(type)) { 1426 chunk->obj_cgroups = 1427 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * 1428 sizeof(struct obj_cgroup *), gfp); 1429 if (!chunk->obj_cgroups) 1430 goto objcg_fail; 1431 } 1432 #endif 1433 1434 pcpu_init_md_blocks(chunk); 1435 1436 /* init metadata */ 1437 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1438 1439 return chunk; 1440 1441 #ifdef CONFIG_MEMCG_KMEM 1442 objcg_fail: 1443 pcpu_mem_free(chunk->md_blocks); 1444 #endif 1445 md_blocks_fail: 1446 pcpu_mem_free(chunk->bound_map); 1447 bound_map_fail: 1448 pcpu_mem_free(chunk->alloc_map); 1449 alloc_map_fail: 1450 pcpu_mem_free(chunk); 1451 1452 return NULL; 1453 } 1454 1455 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1456 { 1457 if (!chunk) 1458 return; 1459 #ifdef CONFIG_MEMCG_KMEM 1460 pcpu_mem_free(chunk->obj_cgroups); 1461 #endif 1462 pcpu_mem_free(chunk->md_blocks); 1463 pcpu_mem_free(chunk->bound_map); 1464 pcpu_mem_free(chunk->alloc_map); 1465 pcpu_mem_free(chunk); 1466 } 1467 1468 /** 1469 * pcpu_chunk_populated - post-population bookkeeping 1470 * @chunk: pcpu_chunk which got populated 1471 * @page_start: the start page 1472 * @page_end: the end page 1473 * 1474 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1475 * the bookkeeping information accordingly. Must be called after each 1476 * successful population. 1477 * 1478 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1479 * is to serve an allocation in that area. 1480 */ 1481 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1482 int page_end) 1483 { 1484 int nr = page_end - page_start; 1485 1486 lockdep_assert_held(&pcpu_lock); 1487 1488 bitmap_set(chunk->populated, page_start, nr); 1489 chunk->nr_populated += nr; 1490 pcpu_nr_populated += nr; 1491 1492 pcpu_update_empty_pages(chunk, nr); 1493 } 1494 1495 /** 1496 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1497 * @chunk: pcpu_chunk which got depopulated 1498 * @page_start: the start page 1499 * @page_end: the end page 1500 * 1501 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1502 * Update the bookkeeping information accordingly. Must be called after 1503 * each successful depopulation. 1504 */ 1505 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1506 int page_start, int page_end) 1507 { 1508 int nr = page_end - page_start; 1509 1510 lockdep_assert_held(&pcpu_lock); 1511 1512 bitmap_clear(chunk->populated, page_start, nr); 1513 chunk->nr_populated -= nr; 1514 pcpu_nr_populated -= nr; 1515 1516 pcpu_update_empty_pages(chunk, -nr); 1517 } 1518 1519 /* 1520 * Chunk management implementation. 1521 * 1522 * To allow different implementations, chunk alloc/free and 1523 * [de]population are implemented in a separate file which is pulled 1524 * into this file and compiled together. The following functions 1525 * should be implemented. 1526 * 1527 * pcpu_populate_chunk - populate the specified range of a chunk 1528 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1529 * pcpu_create_chunk - create a new chunk 1530 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1531 * pcpu_addr_to_page - translate address to physical address 1532 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1533 */ 1534 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1535 int page_start, int page_end, gfp_t gfp); 1536 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1537 int page_start, int page_end); 1538 static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type, 1539 gfp_t gfp); 1540 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1541 static struct page *pcpu_addr_to_page(void *addr); 1542 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1543 1544 #ifdef CONFIG_NEED_PER_CPU_KM 1545 #include "percpu-km.c" 1546 #else 1547 #include "percpu-vm.c" 1548 #endif 1549 1550 /** 1551 * pcpu_chunk_addr_search - determine chunk containing specified address 1552 * @addr: address for which the chunk needs to be determined. 1553 * 1554 * This is an internal function that handles all but static allocations. 1555 * Static percpu address values should never be passed into the allocator. 1556 * 1557 * RETURNS: 1558 * The address of the found chunk. 1559 */ 1560 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1561 { 1562 /* is it in the dynamic region (first chunk)? */ 1563 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1564 return pcpu_first_chunk; 1565 1566 /* is it in the reserved region? */ 1567 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1568 return pcpu_reserved_chunk; 1569 1570 /* 1571 * The address is relative to unit0 which might be unused and 1572 * thus unmapped. Offset the address to the unit space of the 1573 * current processor before looking it up in the vmalloc 1574 * space. Note that any possible cpu id can be used here, so 1575 * there's no need to worry about preemption or cpu hotplug. 1576 */ 1577 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1578 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1579 } 1580 1581 #ifdef CONFIG_MEMCG_KMEM 1582 static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, 1583 struct obj_cgroup **objcgp) 1584 { 1585 struct obj_cgroup *objcg; 1586 1587 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT)) 1588 return PCPU_CHUNK_ROOT; 1589 1590 objcg = get_obj_cgroup_from_current(); 1591 if (!objcg) 1592 return PCPU_CHUNK_ROOT; 1593 1594 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) { 1595 obj_cgroup_put(objcg); 1596 return PCPU_FAIL_ALLOC; 1597 } 1598 1599 *objcgp = objcg; 1600 return PCPU_CHUNK_MEMCG; 1601 } 1602 1603 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1604 struct pcpu_chunk *chunk, int off, 1605 size_t size) 1606 { 1607 if (!objcg) 1608 return; 1609 1610 if (chunk) { 1611 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; 1612 1613 rcu_read_lock(); 1614 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1615 size * num_possible_cpus()); 1616 rcu_read_unlock(); 1617 } else { 1618 obj_cgroup_uncharge(objcg, size * num_possible_cpus()); 1619 obj_cgroup_put(objcg); 1620 } 1621 } 1622 1623 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1624 { 1625 struct obj_cgroup *objcg; 1626 1627 if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk))) 1628 return; 1629 1630 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; 1631 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; 1632 1633 obj_cgroup_uncharge(objcg, size * num_possible_cpus()); 1634 1635 rcu_read_lock(); 1636 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1637 -(size * num_possible_cpus())); 1638 rcu_read_unlock(); 1639 1640 obj_cgroup_put(objcg); 1641 } 1642 1643 #else /* CONFIG_MEMCG_KMEM */ 1644 static enum pcpu_chunk_type 1645 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) 1646 { 1647 return PCPU_CHUNK_ROOT; 1648 } 1649 1650 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1651 struct pcpu_chunk *chunk, int off, 1652 size_t size) 1653 { 1654 } 1655 1656 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1657 { 1658 } 1659 #endif /* CONFIG_MEMCG_KMEM */ 1660 1661 /** 1662 * pcpu_alloc - the percpu allocator 1663 * @size: size of area to allocate in bytes 1664 * @align: alignment of area (max PAGE_SIZE) 1665 * @reserved: allocate from the reserved chunk if available 1666 * @gfp: allocation flags 1667 * 1668 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1669 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1670 * then no warning will be triggered on invalid or failed allocation 1671 * requests. 1672 * 1673 * RETURNS: 1674 * Percpu pointer to the allocated area on success, NULL on failure. 1675 */ 1676 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1677 gfp_t gfp) 1678 { 1679 gfp_t pcpu_gfp; 1680 bool is_atomic; 1681 bool do_warn; 1682 enum pcpu_chunk_type type; 1683 struct list_head *pcpu_slot; 1684 struct obj_cgroup *objcg = NULL; 1685 static int warn_limit = 10; 1686 struct pcpu_chunk *chunk, *next; 1687 const char *err; 1688 int slot, off, cpu, ret; 1689 unsigned long flags; 1690 void __percpu *ptr; 1691 size_t bits, bit_align; 1692 1693 gfp = current_gfp_context(gfp); 1694 /* whitelisted flags that can be passed to the backing allocators */ 1695 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1696 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1697 do_warn = !(gfp & __GFP_NOWARN); 1698 1699 /* 1700 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1701 * therefore alignment must be a minimum of that many bytes. 1702 * An allocation may have internal fragmentation from rounding up 1703 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1704 */ 1705 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1706 align = PCPU_MIN_ALLOC_SIZE; 1707 1708 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1709 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1710 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1711 1712 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1713 !is_power_of_2(align))) { 1714 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1715 size, align); 1716 return NULL; 1717 } 1718 1719 type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg); 1720 if (unlikely(type == PCPU_FAIL_ALLOC)) 1721 return NULL; 1722 pcpu_slot = pcpu_chunk_list(type); 1723 1724 if (!is_atomic) { 1725 /* 1726 * pcpu_balance_workfn() allocates memory under this mutex, 1727 * and it may wait for memory reclaim. Allow current task 1728 * to become OOM victim, in case of memory pressure. 1729 */ 1730 if (gfp & __GFP_NOFAIL) { 1731 mutex_lock(&pcpu_alloc_mutex); 1732 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { 1733 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1734 return NULL; 1735 } 1736 } 1737 1738 spin_lock_irqsave(&pcpu_lock, flags); 1739 1740 /* serve reserved allocations from the reserved chunk if available */ 1741 if (reserved && pcpu_reserved_chunk) { 1742 chunk = pcpu_reserved_chunk; 1743 1744 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1745 if (off < 0) { 1746 err = "alloc from reserved chunk failed"; 1747 goto fail_unlock; 1748 } 1749 1750 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1751 if (off >= 0) 1752 goto area_found; 1753 1754 err = "alloc from reserved chunk failed"; 1755 goto fail_unlock; 1756 } 1757 1758 restart: 1759 /* search through normal chunks */ 1760 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1761 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) { 1762 off = pcpu_find_block_fit(chunk, bits, bit_align, 1763 is_atomic); 1764 if (off < 0) { 1765 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1766 pcpu_chunk_move(chunk, 0); 1767 continue; 1768 } 1769 1770 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1771 if (off >= 0) 1772 goto area_found; 1773 1774 } 1775 } 1776 1777 spin_unlock_irqrestore(&pcpu_lock, flags); 1778 1779 /* 1780 * No space left. Create a new chunk. We don't want multiple 1781 * tasks to create chunks simultaneously. Serialize and create iff 1782 * there's still no empty chunk after grabbing the mutex. 1783 */ 1784 if (is_atomic) { 1785 err = "atomic alloc failed, no space left"; 1786 goto fail; 1787 } 1788 1789 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1790 chunk = pcpu_create_chunk(type, pcpu_gfp); 1791 if (!chunk) { 1792 err = "failed to allocate new chunk"; 1793 goto fail; 1794 } 1795 1796 spin_lock_irqsave(&pcpu_lock, flags); 1797 pcpu_chunk_relocate(chunk, -1); 1798 } else { 1799 spin_lock_irqsave(&pcpu_lock, flags); 1800 } 1801 1802 goto restart; 1803 1804 area_found: 1805 pcpu_stats_area_alloc(chunk, size); 1806 spin_unlock_irqrestore(&pcpu_lock, flags); 1807 1808 /* populate if not all pages are already there */ 1809 if (!is_atomic) { 1810 unsigned int page_start, page_end, rs, re; 1811 1812 page_start = PFN_DOWN(off); 1813 page_end = PFN_UP(off + size); 1814 1815 bitmap_for_each_clear_region(chunk->populated, rs, re, 1816 page_start, page_end) { 1817 WARN_ON(chunk->immutable); 1818 1819 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1820 1821 spin_lock_irqsave(&pcpu_lock, flags); 1822 if (ret) { 1823 pcpu_free_area(chunk, off); 1824 err = "failed to populate"; 1825 goto fail_unlock; 1826 } 1827 pcpu_chunk_populated(chunk, rs, re); 1828 spin_unlock_irqrestore(&pcpu_lock, flags); 1829 } 1830 1831 mutex_unlock(&pcpu_alloc_mutex); 1832 } 1833 1834 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1835 pcpu_schedule_balance_work(); 1836 1837 /* clear the areas and return address relative to base address */ 1838 for_each_possible_cpu(cpu) 1839 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1840 1841 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1842 kmemleak_alloc_percpu(ptr, size, gfp); 1843 1844 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1845 chunk->base_addr, off, ptr); 1846 1847 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); 1848 1849 return ptr; 1850 1851 fail_unlock: 1852 spin_unlock_irqrestore(&pcpu_lock, flags); 1853 fail: 1854 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1855 1856 if (!is_atomic && do_warn && warn_limit) { 1857 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1858 size, align, is_atomic, err); 1859 dump_stack(); 1860 if (!--warn_limit) 1861 pr_info("limit reached, disable warning\n"); 1862 } 1863 if (is_atomic) { 1864 /* see the flag handling in pcpu_blance_workfn() */ 1865 pcpu_atomic_alloc_failed = true; 1866 pcpu_schedule_balance_work(); 1867 } else { 1868 mutex_unlock(&pcpu_alloc_mutex); 1869 } 1870 1871 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1872 1873 return NULL; 1874 } 1875 1876 /** 1877 * __alloc_percpu_gfp - allocate dynamic percpu area 1878 * @size: size of area to allocate in bytes 1879 * @align: alignment of area (max PAGE_SIZE) 1880 * @gfp: allocation flags 1881 * 1882 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1883 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1884 * be called from any context but is a lot more likely to fail. If @gfp 1885 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1886 * allocation requests. 1887 * 1888 * RETURNS: 1889 * Percpu pointer to the allocated area on success, NULL on failure. 1890 */ 1891 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1892 { 1893 return pcpu_alloc(size, align, false, gfp); 1894 } 1895 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1896 1897 /** 1898 * __alloc_percpu - allocate dynamic percpu area 1899 * @size: size of area to allocate in bytes 1900 * @align: alignment of area (max PAGE_SIZE) 1901 * 1902 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1903 */ 1904 void __percpu *__alloc_percpu(size_t size, size_t align) 1905 { 1906 return pcpu_alloc(size, align, false, GFP_KERNEL); 1907 } 1908 EXPORT_SYMBOL_GPL(__alloc_percpu); 1909 1910 /** 1911 * __alloc_reserved_percpu - allocate reserved percpu area 1912 * @size: size of area to allocate in bytes 1913 * @align: alignment of area (max PAGE_SIZE) 1914 * 1915 * Allocate zero-filled percpu area of @size bytes aligned at @align 1916 * from reserved percpu area if arch has set it up; otherwise, 1917 * allocation is served from the same dynamic area. Might sleep. 1918 * Might trigger writeouts. 1919 * 1920 * CONTEXT: 1921 * Does GFP_KERNEL allocation. 1922 * 1923 * RETURNS: 1924 * Percpu pointer to the allocated area on success, NULL on failure. 1925 */ 1926 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1927 { 1928 return pcpu_alloc(size, align, true, GFP_KERNEL); 1929 } 1930 1931 /** 1932 * __pcpu_balance_workfn - manage the amount of free chunks and populated pages 1933 * @type: chunk type 1934 * 1935 * Reclaim all fully free chunks except for the first one. This is also 1936 * responsible for maintaining the pool of empty populated pages. However, 1937 * it is possible that this is called when physical memory is scarce causing 1938 * OOM killer to be triggered. We should avoid doing so until an actual 1939 * allocation causes the failure as it is possible that requests can be 1940 * serviced from already backed regions. 1941 */ 1942 static void __pcpu_balance_workfn(enum pcpu_chunk_type type) 1943 { 1944 /* gfp flags passed to underlying allocators */ 1945 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1946 LIST_HEAD(to_free); 1947 struct list_head *pcpu_slot = pcpu_chunk_list(type); 1948 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1949 struct pcpu_chunk *chunk, *next; 1950 int slot, nr_to_pop, ret; 1951 1952 /* 1953 * There's no reason to keep around multiple unused chunks and VM 1954 * areas can be scarce. Destroy all free chunks except for one. 1955 */ 1956 mutex_lock(&pcpu_alloc_mutex); 1957 spin_lock_irq(&pcpu_lock); 1958 1959 list_for_each_entry_safe(chunk, next, free_head, list) { 1960 WARN_ON(chunk->immutable); 1961 1962 /* spare the first one */ 1963 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1964 continue; 1965 1966 list_move(&chunk->list, &to_free); 1967 } 1968 1969 spin_unlock_irq(&pcpu_lock); 1970 1971 list_for_each_entry_safe(chunk, next, &to_free, list) { 1972 unsigned int rs, re; 1973 1974 bitmap_for_each_set_region(chunk->populated, rs, re, 0, 1975 chunk->nr_pages) { 1976 pcpu_depopulate_chunk(chunk, rs, re); 1977 spin_lock_irq(&pcpu_lock); 1978 pcpu_chunk_depopulated(chunk, rs, re); 1979 spin_unlock_irq(&pcpu_lock); 1980 } 1981 pcpu_destroy_chunk(chunk); 1982 cond_resched(); 1983 } 1984 1985 /* 1986 * Ensure there are certain number of free populated pages for 1987 * atomic allocs. Fill up from the most packed so that atomic 1988 * allocs don't increase fragmentation. If atomic allocation 1989 * failed previously, always populate the maximum amount. This 1990 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1991 * failing indefinitely; however, large atomic allocs are not 1992 * something we support properly and can be highly unreliable and 1993 * inefficient. 1994 */ 1995 retry_pop: 1996 if (pcpu_atomic_alloc_failed) { 1997 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1998 /* best effort anyway, don't worry about synchronization */ 1999 pcpu_atomic_alloc_failed = false; 2000 } else { 2001 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 2002 pcpu_nr_empty_pop_pages, 2003 0, PCPU_EMPTY_POP_PAGES_HIGH); 2004 } 2005 2006 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 2007 unsigned int nr_unpop = 0, rs, re; 2008 2009 if (!nr_to_pop) 2010 break; 2011 2012 spin_lock_irq(&pcpu_lock); 2013 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 2014 nr_unpop = chunk->nr_pages - chunk->nr_populated; 2015 if (nr_unpop) 2016 break; 2017 } 2018 spin_unlock_irq(&pcpu_lock); 2019 2020 if (!nr_unpop) 2021 continue; 2022 2023 /* @chunk can't go away while pcpu_alloc_mutex is held */ 2024 bitmap_for_each_clear_region(chunk->populated, rs, re, 0, 2025 chunk->nr_pages) { 2026 int nr = min_t(int, re - rs, nr_to_pop); 2027 2028 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 2029 if (!ret) { 2030 nr_to_pop -= nr; 2031 spin_lock_irq(&pcpu_lock); 2032 pcpu_chunk_populated(chunk, rs, rs + nr); 2033 spin_unlock_irq(&pcpu_lock); 2034 } else { 2035 nr_to_pop = 0; 2036 } 2037 2038 if (!nr_to_pop) 2039 break; 2040 } 2041 } 2042 2043 if (nr_to_pop) { 2044 /* ran out of chunks to populate, create a new one and retry */ 2045 chunk = pcpu_create_chunk(type, gfp); 2046 if (chunk) { 2047 spin_lock_irq(&pcpu_lock); 2048 pcpu_chunk_relocate(chunk, -1); 2049 spin_unlock_irq(&pcpu_lock); 2050 goto retry_pop; 2051 } 2052 } 2053 2054 mutex_unlock(&pcpu_alloc_mutex); 2055 } 2056 2057 /** 2058 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 2059 * @work: unused 2060 * 2061 * Call __pcpu_balance_workfn() for each chunk type. 2062 */ 2063 static void pcpu_balance_workfn(struct work_struct *work) 2064 { 2065 enum pcpu_chunk_type type; 2066 2067 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) 2068 __pcpu_balance_workfn(type); 2069 } 2070 2071 /** 2072 * free_percpu - free percpu area 2073 * @ptr: pointer to area to free 2074 * 2075 * Free percpu area @ptr. 2076 * 2077 * CONTEXT: 2078 * Can be called from atomic context. 2079 */ 2080 void free_percpu(void __percpu *ptr) 2081 { 2082 void *addr; 2083 struct pcpu_chunk *chunk; 2084 unsigned long flags; 2085 int size, off; 2086 bool need_balance = false; 2087 struct list_head *pcpu_slot; 2088 2089 if (!ptr) 2090 return; 2091 2092 kmemleak_free_percpu(ptr); 2093 2094 addr = __pcpu_ptr_to_addr(ptr); 2095 2096 spin_lock_irqsave(&pcpu_lock, flags); 2097 2098 chunk = pcpu_chunk_addr_search(addr); 2099 off = addr - chunk->base_addr; 2100 2101 size = pcpu_free_area(chunk, off); 2102 2103 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk)); 2104 2105 pcpu_memcg_free_hook(chunk, off, size); 2106 2107 /* if there are more than one fully free chunks, wake up grim reaper */ 2108 if (chunk->free_bytes == pcpu_unit_size) { 2109 struct pcpu_chunk *pos; 2110 2111 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 2112 if (pos != chunk) { 2113 need_balance = true; 2114 break; 2115 } 2116 } 2117 2118 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 2119 2120 spin_unlock_irqrestore(&pcpu_lock, flags); 2121 2122 if (need_balance) 2123 pcpu_schedule_balance_work(); 2124 } 2125 EXPORT_SYMBOL_GPL(free_percpu); 2126 2127 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 2128 { 2129 #ifdef CONFIG_SMP 2130 const size_t static_size = __per_cpu_end - __per_cpu_start; 2131 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2132 unsigned int cpu; 2133 2134 for_each_possible_cpu(cpu) { 2135 void *start = per_cpu_ptr(base, cpu); 2136 void *va = (void *)addr; 2137 2138 if (va >= start && va < start + static_size) { 2139 if (can_addr) { 2140 *can_addr = (unsigned long) (va - start); 2141 *can_addr += (unsigned long) 2142 per_cpu_ptr(base, get_boot_cpu_id()); 2143 } 2144 return true; 2145 } 2146 } 2147 #endif 2148 /* on UP, can't distinguish from other static vars, always false */ 2149 return false; 2150 } 2151 2152 /** 2153 * is_kernel_percpu_address - test whether address is from static percpu area 2154 * @addr: address to test 2155 * 2156 * Test whether @addr belongs to in-kernel static percpu area. Module 2157 * static percpu areas are not considered. For those, use 2158 * is_module_percpu_address(). 2159 * 2160 * RETURNS: 2161 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2162 */ 2163 bool is_kernel_percpu_address(unsigned long addr) 2164 { 2165 return __is_kernel_percpu_address(addr, NULL); 2166 } 2167 2168 /** 2169 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2170 * @addr: the address to be converted to physical address 2171 * 2172 * Given @addr which is dereferenceable address obtained via one of 2173 * percpu access macros, this function translates it into its physical 2174 * address. The caller is responsible for ensuring @addr stays valid 2175 * until this function finishes. 2176 * 2177 * percpu allocator has special setup for the first chunk, which currently 2178 * supports either embedding in linear address space or vmalloc mapping, 2179 * and, from the second one, the backing allocator (currently either vm or 2180 * km) provides translation. 2181 * 2182 * The addr can be translated simply without checking if it falls into the 2183 * first chunk. But the current code reflects better how percpu allocator 2184 * actually works, and the verification can discover both bugs in percpu 2185 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2186 * code. 2187 * 2188 * RETURNS: 2189 * The physical address for @addr. 2190 */ 2191 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2192 { 2193 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2194 bool in_first_chunk = false; 2195 unsigned long first_low, first_high; 2196 unsigned int cpu; 2197 2198 /* 2199 * The following test on unit_low/high isn't strictly 2200 * necessary but will speed up lookups of addresses which 2201 * aren't in the first chunk. 2202 * 2203 * The address check is against full chunk sizes. pcpu_base_addr 2204 * points to the beginning of the first chunk including the 2205 * static region. Assumes good intent as the first chunk may 2206 * not be full (ie. < pcpu_unit_pages in size). 2207 */ 2208 first_low = (unsigned long)pcpu_base_addr + 2209 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2210 first_high = (unsigned long)pcpu_base_addr + 2211 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2212 if ((unsigned long)addr >= first_low && 2213 (unsigned long)addr < first_high) { 2214 for_each_possible_cpu(cpu) { 2215 void *start = per_cpu_ptr(base, cpu); 2216 2217 if (addr >= start && addr < start + pcpu_unit_size) { 2218 in_first_chunk = true; 2219 break; 2220 } 2221 } 2222 } 2223 2224 if (in_first_chunk) { 2225 if (!is_vmalloc_addr(addr)) 2226 return __pa(addr); 2227 else 2228 return page_to_phys(vmalloc_to_page(addr)) + 2229 offset_in_page(addr); 2230 } else 2231 return page_to_phys(pcpu_addr_to_page(addr)) + 2232 offset_in_page(addr); 2233 } 2234 2235 /** 2236 * pcpu_alloc_alloc_info - allocate percpu allocation info 2237 * @nr_groups: the number of groups 2238 * @nr_units: the number of units 2239 * 2240 * Allocate ai which is large enough for @nr_groups groups containing 2241 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2242 * cpu_map array which is long enough for @nr_units and filled with 2243 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2244 * pointer of other groups. 2245 * 2246 * RETURNS: 2247 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2248 * failure. 2249 */ 2250 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2251 int nr_units) 2252 { 2253 struct pcpu_alloc_info *ai; 2254 size_t base_size, ai_size; 2255 void *ptr; 2256 int unit; 2257 2258 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2259 __alignof__(ai->groups[0].cpu_map[0])); 2260 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2261 2262 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2263 if (!ptr) 2264 return NULL; 2265 ai = ptr; 2266 ptr += base_size; 2267 2268 ai->groups[0].cpu_map = ptr; 2269 2270 for (unit = 0; unit < nr_units; unit++) 2271 ai->groups[0].cpu_map[unit] = NR_CPUS; 2272 2273 ai->nr_groups = nr_groups; 2274 ai->__ai_size = PFN_ALIGN(ai_size); 2275 2276 return ai; 2277 } 2278 2279 /** 2280 * pcpu_free_alloc_info - free percpu allocation info 2281 * @ai: pcpu_alloc_info to free 2282 * 2283 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2284 */ 2285 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2286 { 2287 memblock_free_early(__pa(ai), ai->__ai_size); 2288 } 2289 2290 /** 2291 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2292 * @lvl: loglevel 2293 * @ai: allocation info to dump 2294 * 2295 * Print out information about @ai using loglevel @lvl. 2296 */ 2297 static void pcpu_dump_alloc_info(const char *lvl, 2298 const struct pcpu_alloc_info *ai) 2299 { 2300 int group_width = 1, cpu_width = 1, width; 2301 char empty_str[] = "--------"; 2302 int alloc = 0, alloc_end = 0; 2303 int group, v; 2304 int upa, apl; /* units per alloc, allocs per line */ 2305 2306 v = ai->nr_groups; 2307 while (v /= 10) 2308 group_width++; 2309 2310 v = num_possible_cpus(); 2311 while (v /= 10) 2312 cpu_width++; 2313 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2314 2315 upa = ai->alloc_size / ai->unit_size; 2316 width = upa * (cpu_width + 1) + group_width + 3; 2317 apl = rounddown_pow_of_two(max(60 / width, 1)); 2318 2319 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2320 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2321 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2322 2323 for (group = 0; group < ai->nr_groups; group++) { 2324 const struct pcpu_group_info *gi = &ai->groups[group]; 2325 int unit = 0, unit_end = 0; 2326 2327 BUG_ON(gi->nr_units % upa); 2328 for (alloc_end += gi->nr_units / upa; 2329 alloc < alloc_end; alloc++) { 2330 if (!(alloc % apl)) { 2331 pr_cont("\n"); 2332 printk("%spcpu-alloc: ", lvl); 2333 } 2334 pr_cont("[%0*d] ", group_width, group); 2335 2336 for (unit_end += upa; unit < unit_end; unit++) 2337 if (gi->cpu_map[unit] != NR_CPUS) 2338 pr_cont("%0*d ", 2339 cpu_width, gi->cpu_map[unit]); 2340 else 2341 pr_cont("%s ", empty_str); 2342 } 2343 } 2344 pr_cont("\n"); 2345 } 2346 2347 /** 2348 * pcpu_setup_first_chunk - initialize the first percpu chunk 2349 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2350 * @base_addr: mapped address 2351 * 2352 * Initialize the first percpu chunk which contains the kernel static 2353 * percpu area. This function is to be called from arch percpu area 2354 * setup path. 2355 * 2356 * @ai contains all information necessary to initialize the first 2357 * chunk and prime the dynamic percpu allocator. 2358 * 2359 * @ai->static_size is the size of static percpu area. 2360 * 2361 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2362 * reserve after the static area in the first chunk. This reserves 2363 * the first chunk such that it's available only through reserved 2364 * percpu allocation. This is primarily used to serve module percpu 2365 * static areas on architectures where the addressing model has 2366 * limited offset range for symbol relocations to guarantee module 2367 * percpu symbols fall inside the relocatable range. 2368 * 2369 * @ai->dyn_size determines the number of bytes available for dynamic 2370 * allocation in the first chunk. The area between @ai->static_size + 2371 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2372 * 2373 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2374 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2375 * @ai->dyn_size. 2376 * 2377 * @ai->atom_size is the allocation atom size and used as alignment 2378 * for vm areas. 2379 * 2380 * @ai->alloc_size is the allocation size and always multiple of 2381 * @ai->atom_size. This is larger than @ai->atom_size if 2382 * @ai->unit_size is larger than @ai->atom_size. 2383 * 2384 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2385 * percpu areas. Units which should be colocated are put into the 2386 * same group. Dynamic VM areas will be allocated according to these 2387 * groupings. If @ai->nr_groups is zero, a single group containing 2388 * all units is assumed. 2389 * 2390 * The caller should have mapped the first chunk at @base_addr and 2391 * copied static data to each unit. 2392 * 2393 * The first chunk will always contain a static and a dynamic region. 2394 * However, the static region is not managed by any chunk. If the first 2395 * chunk also contains a reserved region, it is served by two chunks - 2396 * one for the reserved region and one for the dynamic region. They 2397 * share the same vm, but use offset regions in the area allocation map. 2398 * The chunk serving the dynamic region is circulated in the chunk slots 2399 * and available for dynamic allocation like any other chunk. 2400 */ 2401 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2402 void *base_addr) 2403 { 2404 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2405 size_t static_size, dyn_size; 2406 struct pcpu_chunk *chunk; 2407 unsigned long *group_offsets; 2408 size_t *group_sizes; 2409 unsigned long *unit_off; 2410 unsigned int cpu; 2411 int *unit_map; 2412 int group, unit, i; 2413 int map_size; 2414 unsigned long tmp_addr; 2415 size_t alloc_size; 2416 enum pcpu_chunk_type type; 2417 2418 #define PCPU_SETUP_BUG_ON(cond) do { \ 2419 if (unlikely(cond)) { \ 2420 pr_emerg("failed to initialize, %s\n", #cond); \ 2421 pr_emerg("cpu_possible_mask=%*pb\n", \ 2422 cpumask_pr_args(cpu_possible_mask)); \ 2423 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2424 BUG(); \ 2425 } \ 2426 } while (0) 2427 2428 /* sanity checks */ 2429 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2430 #ifdef CONFIG_SMP 2431 PCPU_SETUP_BUG_ON(!ai->static_size); 2432 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2433 #endif 2434 PCPU_SETUP_BUG_ON(!base_addr); 2435 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2436 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2437 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2438 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2439 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2440 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2441 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2442 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2443 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2444 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2445 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2446 2447 /* process group information and build config tables accordingly */ 2448 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2449 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2450 if (!group_offsets) 2451 panic("%s: Failed to allocate %zu bytes\n", __func__, 2452 alloc_size); 2453 2454 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2455 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2456 if (!group_sizes) 2457 panic("%s: Failed to allocate %zu bytes\n", __func__, 2458 alloc_size); 2459 2460 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2461 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2462 if (!unit_map) 2463 panic("%s: Failed to allocate %zu bytes\n", __func__, 2464 alloc_size); 2465 2466 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2467 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2468 if (!unit_off) 2469 panic("%s: Failed to allocate %zu bytes\n", __func__, 2470 alloc_size); 2471 2472 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2473 unit_map[cpu] = UINT_MAX; 2474 2475 pcpu_low_unit_cpu = NR_CPUS; 2476 pcpu_high_unit_cpu = NR_CPUS; 2477 2478 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2479 const struct pcpu_group_info *gi = &ai->groups[group]; 2480 2481 group_offsets[group] = gi->base_offset; 2482 group_sizes[group] = gi->nr_units * ai->unit_size; 2483 2484 for (i = 0; i < gi->nr_units; i++) { 2485 cpu = gi->cpu_map[i]; 2486 if (cpu == NR_CPUS) 2487 continue; 2488 2489 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2490 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2491 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2492 2493 unit_map[cpu] = unit + i; 2494 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2495 2496 /* determine low/high unit_cpu */ 2497 if (pcpu_low_unit_cpu == NR_CPUS || 2498 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2499 pcpu_low_unit_cpu = cpu; 2500 if (pcpu_high_unit_cpu == NR_CPUS || 2501 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2502 pcpu_high_unit_cpu = cpu; 2503 } 2504 } 2505 pcpu_nr_units = unit; 2506 2507 for_each_possible_cpu(cpu) 2508 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2509 2510 /* we're done parsing the input, undefine BUG macro and dump config */ 2511 #undef PCPU_SETUP_BUG_ON 2512 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2513 2514 pcpu_nr_groups = ai->nr_groups; 2515 pcpu_group_offsets = group_offsets; 2516 pcpu_group_sizes = group_sizes; 2517 pcpu_unit_map = unit_map; 2518 pcpu_unit_offsets = unit_off; 2519 2520 /* determine basic parameters */ 2521 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2522 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2523 pcpu_atom_size = ai->atom_size; 2524 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2525 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2526 2527 pcpu_stats_save_ai(ai); 2528 2529 /* 2530 * Allocate chunk slots. The additional last slot is for 2531 * empty chunks. 2532 */ 2533 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2534 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * 2535 sizeof(pcpu_chunk_lists[0]) * 2536 PCPU_NR_CHUNK_TYPES, 2537 SMP_CACHE_BYTES); 2538 if (!pcpu_chunk_lists) 2539 panic("%s: Failed to allocate %zu bytes\n", __func__, 2540 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) * 2541 PCPU_NR_CHUNK_TYPES); 2542 2543 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) 2544 for (i = 0; i < pcpu_nr_slots; i++) 2545 INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]); 2546 2547 /* 2548 * The end of the static region needs to be aligned with the 2549 * minimum allocation size as this offsets the reserved and 2550 * dynamic region. The first chunk ends page aligned by 2551 * expanding the dynamic region, therefore the dynamic region 2552 * can be shrunk to compensate while still staying above the 2553 * configured sizes. 2554 */ 2555 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2556 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2557 2558 /* 2559 * Initialize first chunk. 2560 * If the reserved_size is non-zero, this initializes the reserved 2561 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2562 * and the dynamic region is initialized here. The first chunk, 2563 * pcpu_first_chunk, will always point to the chunk that serves 2564 * the dynamic region. 2565 */ 2566 tmp_addr = (unsigned long)base_addr + static_size; 2567 map_size = ai->reserved_size ?: dyn_size; 2568 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2569 2570 /* init dynamic chunk if necessary */ 2571 if (ai->reserved_size) { 2572 pcpu_reserved_chunk = chunk; 2573 2574 tmp_addr = (unsigned long)base_addr + static_size + 2575 ai->reserved_size; 2576 map_size = dyn_size; 2577 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2578 } 2579 2580 /* link the first chunk in */ 2581 pcpu_first_chunk = chunk; 2582 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2583 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2584 2585 /* include all regions of the first chunk */ 2586 pcpu_nr_populated += PFN_DOWN(size_sum); 2587 2588 pcpu_stats_chunk_alloc(); 2589 trace_percpu_create_chunk(base_addr); 2590 2591 /* we're done */ 2592 pcpu_base_addr = base_addr; 2593 } 2594 2595 #ifdef CONFIG_SMP 2596 2597 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2598 [PCPU_FC_AUTO] = "auto", 2599 [PCPU_FC_EMBED] = "embed", 2600 [PCPU_FC_PAGE] = "page", 2601 }; 2602 2603 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2604 2605 static int __init percpu_alloc_setup(char *str) 2606 { 2607 if (!str) 2608 return -EINVAL; 2609 2610 if (0) 2611 /* nada */; 2612 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2613 else if (!strcmp(str, "embed")) 2614 pcpu_chosen_fc = PCPU_FC_EMBED; 2615 #endif 2616 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2617 else if (!strcmp(str, "page")) 2618 pcpu_chosen_fc = PCPU_FC_PAGE; 2619 #endif 2620 else 2621 pr_warn("unknown allocator %s specified\n", str); 2622 2623 return 0; 2624 } 2625 early_param("percpu_alloc", percpu_alloc_setup); 2626 2627 /* 2628 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2629 * Build it if needed by the arch config or the generic setup is going 2630 * to be used. 2631 */ 2632 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2633 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2634 #define BUILD_EMBED_FIRST_CHUNK 2635 #endif 2636 2637 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2638 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2639 #define BUILD_PAGE_FIRST_CHUNK 2640 #endif 2641 2642 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2643 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2644 /** 2645 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2646 * @reserved_size: the size of reserved percpu area in bytes 2647 * @dyn_size: minimum free size for dynamic allocation in bytes 2648 * @atom_size: allocation atom size 2649 * @cpu_distance_fn: callback to determine distance between cpus, optional 2650 * 2651 * This function determines grouping of units, their mappings to cpus 2652 * and other parameters considering needed percpu size, allocation 2653 * atom size and distances between CPUs. 2654 * 2655 * Groups are always multiples of atom size and CPUs which are of 2656 * LOCAL_DISTANCE both ways are grouped together and share space for 2657 * units in the same group. The returned configuration is guaranteed 2658 * to have CPUs on different nodes on different groups and >=75% usage 2659 * of allocated virtual address space. 2660 * 2661 * RETURNS: 2662 * On success, pointer to the new allocation_info is returned. On 2663 * failure, ERR_PTR value is returned. 2664 */ 2665 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2666 size_t reserved_size, size_t dyn_size, 2667 size_t atom_size, 2668 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2669 { 2670 static int group_map[NR_CPUS] __initdata; 2671 static int group_cnt[NR_CPUS] __initdata; 2672 const size_t static_size = __per_cpu_end - __per_cpu_start; 2673 int nr_groups = 1, nr_units = 0; 2674 size_t size_sum, min_unit_size, alloc_size; 2675 int upa, max_upa, best_upa; /* units_per_alloc */ 2676 int last_allocs, group, unit; 2677 unsigned int cpu, tcpu; 2678 struct pcpu_alloc_info *ai; 2679 unsigned int *cpu_map; 2680 2681 /* this function may be called multiple times */ 2682 memset(group_map, 0, sizeof(group_map)); 2683 memset(group_cnt, 0, sizeof(group_cnt)); 2684 2685 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2686 size_sum = PFN_ALIGN(static_size + reserved_size + 2687 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2688 dyn_size = size_sum - static_size - reserved_size; 2689 2690 /* 2691 * Determine min_unit_size, alloc_size and max_upa such that 2692 * alloc_size is multiple of atom_size and is the smallest 2693 * which can accommodate 4k aligned segments which are equal to 2694 * or larger than min_unit_size. 2695 */ 2696 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2697 2698 /* determine the maximum # of units that can fit in an allocation */ 2699 alloc_size = roundup(min_unit_size, atom_size); 2700 upa = alloc_size / min_unit_size; 2701 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2702 upa--; 2703 max_upa = upa; 2704 2705 /* group cpus according to their proximity */ 2706 for_each_possible_cpu(cpu) { 2707 group = 0; 2708 next_group: 2709 for_each_possible_cpu(tcpu) { 2710 if (cpu == tcpu) 2711 break; 2712 if (group_map[tcpu] == group && cpu_distance_fn && 2713 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2714 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2715 group++; 2716 nr_groups = max(nr_groups, group + 1); 2717 goto next_group; 2718 } 2719 } 2720 group_map[cpu] = group; 2721 group_cnt[group]++; 2722 } 2723 2724 /* 2725 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2726 * Expand the unit_size until we use >= 75% of the units allocated. 2727 * Related to atom_size, which could be much larger than the unit_size. 2728 */ 2729 last_allocs = INT_MAX; 2730 for (upa = max_upa; upa; upa--) { 2731 int allocs = 0, wasted = 0; 2732 2733 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2734 continue; 2735 2736 for (group = 0; group < nr_groups; group++) { 2737 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2738 allocs += this_allocs; 2739 wasted += this_allocs * upa - group_cnt[group]; 2740 } 2741 2742 /* 2743 * Don't accept if wastage is over 1/3. The 2744 * greater-than comparison ensures upa==1 always 2745 * passes the following check. 2746 */ 2747 if (wasted > num_possible_cpus() / 3) 2748 continue; 2749 2750 /* and then don't consume more memory */ 2751 if (allocs > last_allocs) 2752 break; 2753 last_allocs = allocs; 2754 best_upa = upa; 2755 } 2756 upa = best_upa; 2757 2758 /* allocate and fill alloc_info */ 2759 for (group = 0; group < nr_groups; group++) 2760 nr_units += roundup(group_cnt[group], upa); 2761 2762 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2763 if (!ai) 2764 return ERR_PTR(-ENOMEM); 2765 cpu_map = ai->groups[0].cpu_map; 2766 2767 for (group = 0; group < nr_groups; group++) { 2768 ai->groups[group].cpu_map = cpu_map; 2769 cpu_map += roundup(group_cnt[group], upa); 2770 } 2771 2772 ai->static_size = static_size; 2773 ai->reserved_size = reserved_size; 2774 ai->dyn_size = dyn_size; 2775 ai->unit_size = alloc_size / upa; 2776 ai->atom_size = atom_size; 2777 ai->alloc_size = alloc_size; 2778 2779 for (group = 0, unit = 0; group < nr_groups; group++) { 2780 struct pcpu_group_info *gi = &ai->groups[group]; 2781 2782 /* 2783 * Initialize base_offset as if all groups are located 2784 * back-to-back. The caller should update this to 2785 * reflect actual allocation. 2786 */ 2787 gi->base_offset = unit * ai->unit_size; 2788 2789 for_each_possible_cpu(cpu) 2790 if (group_map[cpu] == group) 2791 gi->cpu_map[gi->nr_units++] = cpu; 2792 gi->nr_units = roundup(gi->nr_units, upa); 2793 unit += gi->nr_units; 2794 } 2795 BUG_ON(unit != nr_units); 2796 2797 return ai; 2798 } 2799 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2800 2801 #if defined(BUILD_EMBED_FIRST_CHUNK) 2802 /** 2803 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2804 * @reserved_size: the size of reserved percpu area in bytes 2805 * @dyn_size: minimum free size for dynamic allocation in bytes 2806 * @atom_size: allocation atom size 2807 * @cpu_distance_fn: callback to determine distance between cpus, optional 2808 * @alloc_fn: function to allocate percpu page 2809 * @free_fn: function to free percpu page 2810 * 2811 * This is a helper to ease setting up embedded first percpu chunk and 2812 * can be called where pcpu_setup_first_chunk() is expected. 2813 * 2814 * If this function is used to setup the first chunk, it is allocated 2815 * by calling @alloc_fn and used as-is without being mapped into 2816 * vmalloc area. Allocations are always whole multiples of @atom_size 2817 * aligned to @atom_size. 2818 * 2819 * This enables the first chunk to piggy back on the linear physical 2820 * mapping which often uses larger page size. Please note that this 2821 * can result in very sparse cpu->unit mapping on NUMA machines thus 2822 * requiring large vmalloc address space. Don't use this allocator if 2823 * vmalloc space is not orders of magnitude larger than distances 2824 * between node memory addresses (ie. 32bit NUMA machines). 2825 * 2826 * @dyn_size specifies the minimum dynamic area size. 2827 * 2828 * If the needed size is smaller than the minimum or specified unit 2829 * size, the leftover is returned using @free_fn. 2830 * 2831 * RETURNS: 2832 * 0 on success, -errno on failure. 2833 */ 2834 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2835 size_t atom_size, 2836 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2837 pcpu_fc_alloc_fn_t alloc_fn, 2838 pcpu_fc_free_fn_t free_fn) 2839 { 2840 void *base = (void *)ULONG_MAX; 2841 void **areas = NULL; 2842 struct pcpu_alloc_info *ai; 2843 size_t size_sum, areas_size; 2844 unsigned long max_distance; 2845 int group, i, highest_group, rc = 0; 2846 2847 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2848 cpu_distance_fn); 2849 if (IS_ERR(ai)) 2850 return PTR_ERR(ai); 2851 2852 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2853 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2854 2855 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 2856 if (!areas) { 2857 rc = -ENOMEM; 2858 goto out_free; 2859 } 2860 2861 /* allocate, copy and determine base address & max_distance */ 2862 highest_group = 0; 2863 for (group = 0; group < ai->nr_groups; group++) { 2864 struct pcpu_group_info *gi = &ai->groups[group]; 2865 unsigned int cpu = NR_CPUS; 2866 void *ptr; 2867 2868 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2869 cpu = gi->cpu_map[i]; 2870 BUG_ON(cpu == NR_CPUS); 2871 2872 /* allocate space for the whole group */ 2873 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2874 if (!ptr) { 2875 rc = -ENOMEM; 2876 goto out_free_areas; 2877 } 2878 /* kmemleak tracks the percpu allocations separately */ 2879 kmemleak_free(ptr); 2880 areas[group] = ptr; 2881 2882 base = min(ptr, base); 2883 if (ptr > areas[highest_group]) 2884 highest_group = group; 2885 } 2886 max_distance = areas[highest_group] - base; 2887 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2888 2889 /* warn if maximum distance is further than 75% of vmalloc space */ 2890 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2891 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2892 max_distance, VMALLOC_TOTAL); 2893 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2894 /* and fail if we have fallback */ 2895 rc = -EINVAL; 2896 goto out_free_areas; 2897 #endif 2898 } 2899 2900 /* 2901 * Copy data and free unused parts. This should happen after all 2902 * allocations are complete; otherwise, we may end up with 2903 * overlapping groups. 2904 */ 2905 for (group = 0; group < ai->nr_groups; group++) { 2906 struct pcpu_group_info *gi = &ai->groups[group]; 2907 void *ptr = areas[group]; 2908 2909 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2910 if (gi->cpu_map[i] == NR_CPUS) { 2911 /* unused unit, free whole */ 2912 free_fn(ptr, ai->unit_size); 2913 continue; 2914 } 2915 /* copy and return the unused part */ 2916 memcpy(ptr, __per_cpu_load, ai->static_size); 2917 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2918 } 2919 } 2920 2921 /* base address is now known, determine group base offsets */ 2922 for (group = 0; group < ai->nr_groups; group++) { 2923 ai->groups[group].base_offset = areas[group] - base; 2924 } 2925 2926 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 2927 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 2928 ai->dyn_size, ai->unit_size); 2929 2930 pcpu_setup_first_chunk(ai, base); 2931 goto out_free; 2932 2933 out_free_areas: 2934 for (group = 0; group < ai->nr_groups; group++) 2935 if (areas[group]) 2936 free_fn(areas[group], 2937 ai->groups[group].nr_units * ai->unit_size); 2938 out_free: 2939 pcpu_free_alloc_info(ai); 2940 if (areas) 2941 memblock_free_early(__pa(areas), areas_size); 2942 return rc; 2943 } 2944 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2945 2946 #ifdef BUILD_PAGE_FIRST_CHUNK 2947 /** 2948 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2949 * @reserved_size: the size of reserved percpu area in bytes 2950 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2951 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2952 * @populate_pte_fn: function to populate pte 2953 * 2954 * This is a helper to ease setting up page-remapped first percpu 2955 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2956 * 2957 * This is the basic allocator. Static percpu area is allocated 2958 * page-by-page into vmalloc area. 2959 * 2960 * RETURNS: 2961 * 0 on success, -errno on failure. 2962 */ 2963 int __init pcpu_page_first_chunk(size_t reserved_size, 2964 pcpu_fc_alloc_fn_t alloc_fn, 2965 pcpu_fc_free_fn_t free_fn, 2966 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2967 { 2968 static struct vm_struct vm; 2969 struct pcpu_alloc_info *ai; 2970 char psize_str[16]; 2971 int unit_pages; 2972 size_t pages_size; 2973 struct page **pages; 2974 int unit, i, j, rc = 0; 2975 int upa; 2976 int nr_g0_units; 2977 2978 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2979 2980 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2981 if (IS_ERR(ai)) 2982 return PTR_ERR(ai); 2983 BUG_ON(ai->nr_groups != 1); 2984 upa = ai->alloc_size/ai->unit_size; 2985 nr_g0_units = roundup(num_possible_cpus(), upa); 2986 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2987 pcpu_free_alloc_info(ai); 2988 return -EINVAL; 2989 } 2990 2991 unit_pages = ai->unit_size >> PAGE_SHIFT; 2992 2993 /* unaligned allocations can't be freed, round up to page size */ 2994 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2995 sizeof(pages[0])); 2996 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 2997 if (!pages) 2998 panic("%s: Failed to allocate %zu bytes\n", __func__, 2999 pages_size); 3000 3001 /* allocate pages */ 3002 j = 0; 3003 for (unit = 0; unit < num_possible_cpus(); unit++) { 3004 unsigned int cpu = ai->groups[0].cpu_map[unit]; 3005 for (i = 0; i < unit_pages; i++) { 3006 void *ptr; 3007 3008 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 3009 if (!ptr) { 3010 pr_warn("failed to allocate %s page for cpu%u\n", 3011 psize_str, cpu); 3012 goto enomem; 3013 } 3014 /* kmemleak tracks the percpu allocations separately */ 3015 kmemleak_free(ptr); 3016 pages[j++] = virt_to_page(ptr); 3017 } 3018 } 3019 3020 /* allocate vm area, map the pages and copy static data */ 3021 vm.flags = VM_ALLOC; 3022 vm.size = num_possible_cpus() * ai->unit_size; 3023 vm_area_register_early(&vm, PAGE_SIZE); 3024 3025 for (unit = 0; unit < num_possible_cpus(); unit++) { 3026 unsigned long unit_addr = 3027 (unsigned long)vm.addr + unit * ai->unit_size; 3028 3029 for (i = 0; i < unit_pages; i++) 3030 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 3031 3032 /* pte already populated, the following shouldn't fail */ 3033 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 3034 unit_pages); 3035 if (rc < 0) 3036 panic("failed to map percpu area, err=%d\n", rc); 3037 3038 /* 3039 * FIXME: Archs with virtual cache should flush local 3040 * cache for the linear mapping here - something 3041 * equivalent to flush_cache_vmap() on the local cpu. 3042 * flush_cache_vmap() can't be used as most supporting 3043 * data structures are not set up yet. 3044 */ 3045 3046 /* copy static data */ 3047 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 3048 } 3049 3050 /* we're ready, commit */ 3051 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 3052 unit_pages, psize_str, ai->static_size, 3053 ai->reserved_size, ai->dyn_size); 3054 3055 pcpu_setup_first_chunk(ai, vm.addr); 3056 goto out_free_ar; 3057 3058 enomem: 3059 while (--j >= 0) 3060 free_fn(page_address(pages[j]), PAGE_SIZE); 3061 rc = -ENOMEM; 3062 out_free_ar: 3063 memblock_free_early(__pa(pages), pages_size); 3064 pcpu_free_alloc_info(ai); 3065 return rc; 3066 } 3067 #endif /* BUILD_PAGE_FIRST_CHUNK */ 3068 3069 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 3070 /* 3071 * Generic SMP percpu area setup. 3072 * 3073 * The embedding helper is used because its behavior closely resembles 3074 * the original non-dynamic generic percpu area setup. This is 3075 * important because many archs have addressing restrictions and might 3076 * fail if the percpu area is located far away from the previous 3077 * location. As an added bonus, in non-NUMA cases, embedding is 3078 * generally a good idea TLB-wise because percpu area can piggy back 3079 * on the physical linear memory mapping which uses large page 3080 * mappings on applicable archs. 3081 */ 3082 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 3083 EXPORT_SYMBOL(__per_cpu_offset); 3084 3085 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 3086 size_t align) 3087 { 3088 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 3089 } 3090 3091 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 3092 { 3093 memblock_free_early(__pa(ptr), size); 3094 } 3095 3096 void __init setup_per_cpu_areas(void) 3097 { 3098 unsigned long delta; 3099 unsigned int cpu; 3100 int rc; 3101 3102 /* 3103 * Always reserve area for module percpu variables. That's 3104 * what the legacy allocator did. 3105 */ 3106 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 3107 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 3108 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 3109 if (rc < 0) 3110 panic("Failed to initialize percpu areas."); 3111 3112 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 3113 for_each_possible_cpu(cpu) 3114 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 3115 } 3116 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 3117 3118 #else /* CONFIG_SMP */ 3119 3120 /* 3121 * UP percpu area setup. 3122 * 3123 * UP always uses km-based percpu allocator with identity mapping. 3124 * Static percpu variables are indistinguishable from the usual static 3125 * variables and don't require any special preparation. 3126 */ 3127 void __init setup_per_cpu_areas(void) 3128 { 3129 const size_t unit_size = 3130 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 3131 PERCPU_DYNAMIC_RESERVE)); 3132 struct pcpu_alloc_info *ai; 3133 void *fc; 3134 3135 ai = pcpu_alloc_alloc_info(1, 1); 3136 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 3137 if (!ai || !fc) 3138 panic("Failed to allocate memory for percpu areas."); 3139 /* kmemleak tracks the percpu allocations separately */ 3140 kmemleak_free(fc); 3141 3142 ai->dyn_size = unit_size; 3143 ai->unit_size = unit_size; 3144 ai->atom_size = unit_size; 3145 ai->alloc_size = unit_size; 3146 ai->groups[0].nr_units = 1; 3147 ai->groups[0].cpu_map[0] = 0; 3148 3149 pcpu_setup_first_chunk(ai, fc); 3150 pcpu_free_alloc_info(ai); 3151 } 3152 3153 #endif /* CONFIG_SMP */ 3154 3155 /* 3156 * pcpu_nr_pages - calculate total number of populated backing pages 3157 * 3158 * This reflects the number of pages populated to back chunks. Metadata is 3159 * excluded in the number exposed in meminfo as the number of backing pages 3160 * scales with the number of cpus and can quickly outweigh the memory used for 3161 * metadata. It also keeps this calculation nice and simple. 3162 * 3163 * RETURNS: 3164 * Total number of populated backing pages in use by the allocator. 3165 */ 3166 unsigned long pcpu_nr_pages(void) 3167 { 3168 return pcpu_nr_populated * pcpu_nr_units; 3169 } 3170 3171 /* 3172 * Percpu allocator is initialized early during boot when neither slab or 3173 * workqueue is available. Plug async management until everything is up 3174 * and running. 3175 */ 3176 static int __init percpu_enable_async(void) 3177 { 3178 pcpu_async_enabled = true; 3179 return 0; 3180 } 3181 subsys_initcall(percpu_enable_async); 3182