xref: /openbmc/linux/mm/percpu.c (revision 7fb2e072)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the following:
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
73 
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
78 
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/percpu.h>
81 
82 #include "percpu-internal.h"
83 
84 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
85 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
86 #define PCPU_ATOMIC_MAP_MARGIN_LOW	32
87 #define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
88 #define PCPU_EMPTY_POP_PAGES_LOW	2
89 #define PCPU_EMPTY_POP_PAGES_HIGH	4
90 
91 #ifdef CONFIG_SMP
92 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
93 #ifndef __addr_to_pcpu_ptr
94 #define __addr_to_pcpu_ptr(addr)					\
95 	(void __percpu *)((unsigned long)(addr) -			\
96 			  (unsigned long)pcpu_base_addr	+		\
97 			  (unsigned long)__per_cpu_start)
98 #endif
99 #ifndef __pcpu_ptr_to_addr
100 #define __pcpu_ptr_to_addr(ptr)						\
101 	(void __force *)((unsigned long)(ptr) +				\
102 			 (unsigned long)pcpu_base_addr -		\
103 			 (unsigned long)__per_cpu_start)
104 #endif
105 #else	/* CONFIG_SMP */
106 /* on UP, it's always identity mapped */
107 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
108 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
109 #endif	/* CONFIG_SMP */
110 
111 static int pcpu_unit_pages __ro_after_init;
112 static int pcpu_unit_size __ro_after_init;
113 static int pcpu_nr_units __ro_after_init;
114 static int pcpu_atom_size __ro_after_init;
115 int pcpu_nr_slots __ro_after_init;
116 static size_t pcpu_chunk_struct_size __ro_after_init;
117 
118 /* cpus with the lowest and highest unit addresses */
119 static unsigned int pcpu_low_unit_cpu __ro_after_init;
120 static unsigned int pcpu_high_unit_cpu __ro_after_init;
121 
122 /* the address of the first chunk which starts with the kernel static area */
123 void *pcpu_base_addr __ro_after_init;
124 EXPORT_SYMBOL_GPL(pcpu_base_addr);
125 
126 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
127 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
128 
129 /* group information, used for vm allocation */
130 static int pcpu_nr_groups __ro_after_init;
131 static const unsigned long *pcpu_group_offsets __ro_after_init;
132 static const size_t *pcpu_group_sizes __ro_after_init;
133 
134 /*
135  * The first chunk which always exists.  Note that unlike other
136  * chunks, this one can be allocated and mapped in several different
137  * ways and thus often doesn't live in the vmalloc area.
138  */
139 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
140 
141 /*
142  * Optional reserved chunk.  This chunk reserves part of the first
143  * chunk and serves it for reserved allocations.  The amount of
144  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
145  * area doesn't exist, the following variables contain NULL and 0
146  * respectively.
147  */
148 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
149 static int pcpu_reserved_chunk_limit __ro_after_init;
150 
151 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
152 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
153 
154 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
155 
156 /* chunks which need their map areas extended, protected by pcpu_lock */
157 static LIST_HEAD(pcpu_map_extend_chunks);
158 
159 /*
160  * The number of empty populated pages, protected by pcpu_lock.  The
161  * reserved chunk doesn't contribute to the count.
162  */
163 static int pcpu_nr_empty_pop_pages;
164 
165 /*
166  * Balance work is used to populate or destroy chunks asynchronously.  We
167  * try to keep the number of populated free pages between
168  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
169  * empty chunk.
170  */
171 static void pcpu_balance_workfn(struct work_struct *work);
172 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
173 static bool pcpu_async_enabled __read_mostly;
174 static bool pcpu_atomic_alloc_failed;
175 
176 static void pcpu_schedule_balance_work(void)
177 {
178 	if (pcpu_async_enabled)
179 		schedule_work(&pcpu_balance_work);
180 }
181 
182 static bool pcpu_addr_in_first_chunk(void *addr)
183 {
184 	void *first_start = pcpu_first_chunk->base_addr;
185 
186 	return addr >= first_start && addr < first_start + pcpu_unit_size;
187 }
188 
189 static bool pcpu_addr_in_reserved_chunk(void *addr)
190 {
191 	void *first_start = pcpu_first_chunk->base_addr;
192 
193 	return addr >= first_start &&
194 		addr < first_start + pcpu_reserved_chunk_limit;
195 }
196 
197 static int __pcpu_size_to_slot(int size)
198 {
199 	int highbit = fls(size);	/* size is in bytes */
200 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
201 }
202 
203 static int pcpu_size_to_slot(int size)
204 {
205 	if (size == pcpu_unit_size)
206 		return pcpu_nr_slots - 1;
207 	return __pcpu_size_to_slot(size);
208 }
209 
210 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
211 {
212 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
213 		return 0;
214 
215 	return pcpu_size_to_slot(chunk->free_size);
216 }
217 
218 /* set the pointer to a chunk in a page struct */
219 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
220 {
221 	page->index = (unsigned long)pcpu;
222 }
223 
224 /* obtain pointer to a chunk from a page struct */
225 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
226 {
227 	return (struct pcpu_chunk *)page->index;
228 }
229 
230 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
231 {
232 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
233 }
234 
235 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
236 				     unsigned int cpu, int page_idx)
237 {
238 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
239 		(page_idx << PAGE_SHIFT);
240 }
241 
242 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
243 					   int *rs, int *re, int end)
244 {
245 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
246 	*re = find_next_bit(chunk->populated, end, *rs + 1);
247 }
248 
249 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
250 					 int *rs, int *re, int end)
251 {
252 	*rs = find_next_bit(chunk->populated, end, *rs);
253 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
254 }
255 
256 /*
257  * (Un)populated page region iterators.  Iterate over (un)populated
258  * page regions between @start and @end in @chunk.  @rs and @re should
259  * be integer variables and will be set to start and end page index of
260  * the current region.
261  */
262 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
263 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
264 	     (rs) < (re);						    \
265 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
266 
267 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
268 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
269 	     (rs) < (re);						    \
270 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
271 
272 /**
273  * pcpu_mem_zalloc - allocate memory
274  * @size: bytes to allocate
275  *
276  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
277  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
278  * memory is always zeroed.
279  *
280  * CONTEXT:
281  * Does GFP_KERNEL allocation.
282  *
283  * RETURNS:
284  * Pointer to the allocated area on success, NULL on failure.
285  */
286 static void *pcpu_mem_zalloc(size_t size)
287 {
288 	if (WARN_ON_ONCE(!slab_is_available()))
289 		return NULL;
290 
291 	if (size <= PAGE_SIZE)
292 		return kzalloc(size, GFP_KERNEL);
293 	else
294 		return vzalloc(size);
295 }
296 
297 /**
298  * pcpu_mem_free - free memory
299  * @ptr: memory to free
300  *
301  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
302  */
303 static void pcpu_mem_free(void *ptr)
304 {
305 	kvfree(ptr);
306 }
307 
308 /**
309  * pcpu_count_occupied_pages - count the number of pages an area occupies
310  * @chunk: chunk of interest
311  * @i: index of the area in question
312  *
313  * Count the number of pages chunk's @i'th area occupies.  When the area's
314  * start and/or end address isn't aligned to page boundary, the straddled
315  * page is included in the count iff the rest of the page is free.
316  */
317 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
318 {
319 	int off = chunk->map[i] & ~1;
320 	int end = chunk->map[i + 1] & ~1;
321 
322 	if (!PAGE_ALIGNED(off) && i > 0) {
323 		int prev = chunk->map[i - 1];
324 
325 		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
326 			off = round_down(off, PAGE_SIZE);
327 	}
328 
329 	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
330 		int next = chunk->map[i + 1];
331 		int nend = chunk->map[i + 2] & ~1;
332 
333 		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
334 			end = round_up(end, PAGE_SIZE);
335 	}
336 
337 	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
338 }
339 
340 /**
341  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
342  * @chunk: chunk of interest
343  * @oslot: the previous slot it was on
344  *
345  * This function is called after an allocation or free changed @chunk.
346  * New slot according to the changed state is determined and @chunk is
347  * moved to the slot.  Note that the reserved chunk is never put on
348  * chunk slots.
349  *
350  * CONTEXT:
351  * pcpu_lock.
352  */
353 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
354 {
355 	int nslot = pcpu_chunk_slot(chunk);
356 
357 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
358 		if (oslot < nslot)
359 			list_move(&chunk->list, &pcpu_slot[nslot]);
360 		else
361 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
362 	}
363 }
364 
365 /**
366  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
367  * @chunk: chunk of interest
368  * @is_atomic: the allocation context
369  *
370  * Determine whether area map of @chunk needs to be extended.  If
371  * @is_atomic, only the amount necessary for a new allocation is
372  * considered; however, async extension is scheduled if the left amount is
373  * low.  If !@is_atomic, it aims for more empty space.  Combined, this
374  * ensures that the map is likely to have enough available space to
375  * accomodate atomic allocations which can't extend maps directly.
376  *
377  * CONTEXT:
378  * pcpu_lock.
379  *
380  * RETURNS:
381  * New target map allocation length if extension is necessary, 0
382  * otherwise.
383  */
384 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
385 {
386 	int margin, new_alloc;
387 
388 	lockdep_assert_held(&pcpu_lock);
389 
390 	if (is_atomic) {
391 		margin = 3;
392 
393 		if (chunk->map_alloc <
394 		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
395 			if (list_empty(&chunk->map_extend_list)) {
396 				list_add_tail(&chunk->map_extend_list,
397 					      &pcpu_map_extend_chunks);
398 				pcpu_schedule_balance_work();
399 			}
400 		}
401 	} else {
402 		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
403 	}
404 
405 	if (chunk->map_alloc >= chunk->map_used + margin)
406 		return 0;
407 
408 	new_alloc = PCPU_DFL_MAP_ALLOC;
409 	while (new_alloc < chunk->map_used + margin)
410 		new_alloc *= 2;
411 
412 	return new_alloc;
413 }
414 
415 /**
416  * pcpu_extend_area_map - extend area map of a chunk
417  * @chunk: chunk of interest
418  * @new_alloc: new target allocation length of the area map
419  *
420  * Extend area map of @chunk to have @new_alloc entries.
421  *
422  * CONTEXT:
423  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
424  *
425  * RETURNS:
426  * 0 on success, -errno on failure.
427  */
428 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
429 {
430 	int *old = NULL, *new = NULL;
431 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
432 	unsigned long flags;
433 
434 	lockdep_assert_held(&pcpu_alloc_mutex);
435 
436 	new = pcpu_mem_zalloc(new_size);
437 	if (!new)
438 		return -ENOMEM;
439 
440 	/* acquire pcpu_lock and switch to new area map */
441 	spin_lock_irqsave(&pcpu_lock, flags);
442 
443 	if (new_alloc <= chunk->map_alloc)
444 		goto out_unlock;
445 
446 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
447 	old = chunk->map;
448 
449 	memcpy(new, old, old_size);
450 
451 	chunk->map_alloc = new_alloc;
452 	chunk->map = new;
453 	new = NULL;
454 
455 out_unlock:
456 	spin_unlock_irqrestore(&pcpu_lock, flags);
457 
458 	/*
459 	 * pcpu_mem_free() might end up calling vfree() which uses
460 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
461 	 */
462 	pcpu_mem_free(old);
463 	pcpu_mem_free(new);
464 
465 	return 0;
466 }
467 
468 /**
469  * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
470  * @chunk: chunk the candidate area belongs to
471  * @off: the offset to the start of the candidate area
472  * @this_size: the size of the candidate area
473  * @size: the size of the target allocation
474  * @align: the alignment of the target allocation
475  * @pop_only: only allocate from already populated region
476  *
477  * We're trying to allocate @size bytes aligned at @align.  @chunk's area
478  * at @off sized @this_size is a candidate.  This function determines
479  * whether the target allocation fits in the candidate area and returns the
480  * number of bytes to pad after @off.  If the target area doesn't fit, -1
481  * is returned.
482  *
483  * If @pop_only is %true, this function only considers the already
484  * populated part of the candidate area.
485  */
486 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
487 			    int size, int align, bool pop_only)
488 {
489 	int cand_off = off;
490 
491 	while (true) {
492 		int head = ALIGN(cand_off, align) - off;
493 		int page_start, page_end, rs, re;
494 
495 		if (this_size < head + size)
496 			return -1;
497 
498 		if (!pop_only)
499 			return head;
500 
501 		/*
502 		 * If the first unpopulated page is beyond the end of the
503 		 * allocation, the whole allocation is populated;
504 		 * otherwise, retry from the end of the unpopulated area.
505 		 */
506 		page_start = PFN_DOWN(head + off);
507 		page_end = PFN_UP(head + off + size);
508 
509 		rs = page_start;
510 		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
511 		if (rs >= page_end)
512 			return head;
513 		cand_off = re * PAGE_SIZE;
514 	}
515 }
516 
517 /**
518  * pcpu_alloc_area - allocate area from a pcpu_chunk
519  * @chunk: chunk of interest
520  * @size: wanted size in bytes
521  * @align: wanted align
522  * @pop_only: allocate only from the populated area
523  * @occ_pages_p: out param for the number of pages the area occupies
524  *
525  * Try to allocate @size bytes area aligned at @align from @chunk.
526  * Note that this function only allocates the offset.  It doesn't
527  * populate or map the area.
528  *
529  * @chunk->map must have at least two free slots.
530  *
531  * CONTEXT:
532  * pcpu_lock.
533  *
534  * RETURNS:
535  * Allocated offset in @chunk on success, -1 if no matching area is
536  * found.
537  */
538 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
539 			   bool pop_only, int *occ_pages_p)
540 {
541 	int oslot = pcpu_chunk_slot(chunk);
542 	int max_contig = 0;
543 	int i, off;
544 	bool seen_free = false;
545 	int *p;
546 
547 	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
548 		int head, tail;
549 		int this_size;
550 
551 		off = *p;
552 		if (off & 1)
553 			continue;
554 
555 		this_size = (p[1] & ~1) - off;
556 
557 		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
558 					pop_only);
559 		if (head < 0) {
560 			if (!seen_free) {
561 				chunk->first_free = i;
562 				seen_free = true;
563 			}
564 			max_contig = max(this_size, max_contig);
565 			continue;
566 		}
567 
568 		/*
569 		 * If head is small or the previous block is free,
570 		 * merge'em.  Note that 'small' is defined as smaller
571 		 * than sizeof(int), which is very small but isn't too
572 		 * uncommon for percpu allocations.
573 		 */
574 		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
575 			*p = off += head;
576 			if (p[-1] & 1)
577 				chunk->free_size -= head;
578 			else
579 				max_contig = max(*p - p[-1], max_contig);
580 			this_size -= head;
581 			head = 0;
582 		}
583 
584 		/* if tail is small, just keep it around */
585 		tail = this_size - head - size;
586 		if (tail < sizeof(int)) {
587 			tail = 0;
588 			size = this_size - head;
589 		}
590 
591 		/* split if warranted */
592 		if (head || tail) {
593 			int nr_extra = !!head + !!tail;
594 
595 			/* insert new subblocks */
596 			memmove(p + nr_extra + 1, p + 1,
597 				sizeof(chunk->map[0]) * (chunk->map_used - i));
598 			chunk->map_used += nr_extra;
599 
600 			if (head) {
601 				if (!seen_free) {
602 					chunk->first_free = i;
603 					seen_free = true;
604 				}
605 				*++p = off += head;
606 				++i;
607 				max_contig = max(head, max_contig);
608 			}
609 			if (tail) {
610 				p[1] = off + size;
611 				max_contig = max(tail, max_contig);
612 			}
613 		}
614 
615 		if (!seen_free)
616 			chunk->first_free = i + 1;
617 
618 		/* update hint and mark allocated */
619 		if (i + 1 == chunk->map_used)
620 			chunk->contig_hint = max_contig; /* fully scanned */
621 		else
622 			chunk->contig_hint = max(chunk->contig_hint,
623 						 max_contig);
624 
625 		chunk->free_size -= size;
626 		*p |= 1;
627 
628 		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
629 		pcpu_chunk_relocate(chunk, oslot);
630 		return off;
631 	}
632 
633 	chunk->contig_hint = max_contig;	/* fully scanned */
634 	pcpu_chunk_relocate(chunk, oslot);
635 
636 	/* tell the upper layer that this chunk has no matching area */
637 	return -1;
638 }
639 
640 /**
641  * pcpu_free_area - free area to a pcpu_chunk
642  * @chunk: chunk of interest
643  * @freeme: offset of area to free
644  * @occ_pages_p: out param for the number of pages the area occupies
645  *
646  * Free area starting from @freeme to @chunk.  Note that this function
647  * only modifies the allocation map.  It doesn't depopulate or unmap
648  * the area.
649  *
650  * CONTEXT:
651  * pcpu_lock.
652  */
653 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
654 			   int *occ_pages_p)
655 {
656 	int oslot = pcpu_chunk_slot(chunk);
657 	int off = 0;
658 	unsigned i, j;
659 	int to_free = 0;
660 	int *p;
661 
662 	lockdep_assert_held(&pcpu_lock);
663 	pcpu_stats_area_dealloc(chunk);
664 
665 	freeme |= 1;	/* we are searching for <given offset, in use> pair */
666 
667 	i = 0;
668 	j = chunk->map_used;
669 	while (i != j) {
670 		unsigned k = (i + j) / 2;
671 		off = chunk->map[k];
672 		if (off < freeme)
673 			i = k + 1;
674 		else if (off > freeme)
675 			j = k;
676 		else
677 			i = j = k;
678 	}
679 	BUG_ON(off != freeme);
680 
681 	if (i < chunk->first_free)
682 		chunk->first_free = i;
683 
684 	p = chunk->map + i;
685 	*p = off &= ~1;
686 	chunk->free_size += (p[1] & ~1) - off;
687 
688 	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
689 
690 	/* merge with next? */
691 	if (!(p[1] & 1))
692 		to_free++;
693 	/* merge with previous? */
694 	if (i > 0 && !(p[-1] & 1)) {
695 		to_free++;
696 		i--;
697 		p--;
698 	}
699 	if (to_free) {
700 		chunk->map_used -= to_free;
701 		memmove(p + 1, p + 1 + to_free,
702 			(chunk->map_used - i) * sizeof(chunk->map[0]));
703 	}
704 
705 	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
706 	pcpu_chunk_relocate(chunk, oslot);
707 }
708 
709 static struct pcpu_chunk *pcpu_alloc_chunk(void)
710 {
711 	struct pcpu_chunk *chunk;
712 
713 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
714 	if (!chunk)
715 		return NULL;
716 
717 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
718 						sizeof(chunk->map[0]));
719 	if (!chunk->map) {
720 		pcpu_mem_free(chunk);
721 		return NULL;
722 	}
723 
724 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
725 	chunk->map[0] = 0;
726 	chunk->map[1] = pcpu_unit_size | 1;
727 	chunk->map_used = 1;
728 	chunk->has_reserved = false;
729 
730 	INIT_LIST_HEAD(&chunk->list);
731 	INIT_LIST_HEAD(&chunk->map_extend_list);
732 	chunk->free_size = pcpu_unit_size;
733 	chunk->contig_hint = pcpu_unit_size;
734 
735 	return chunk;
736 }
737 
738 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
739 {
740 	if (!chunk)
741 		return;
742 	pcpu_mem_free(chunk->map);
743 	pcpu_mem_free(chunk);
744 }
745 
746 /**
747  * pcpu_chunk_populated - post-population bookkeeping
748  * @chunk: pcpu_chunk which got populated
749  * @page_start: the start page
750  * @page_end: the end page
751  *
752  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
753  * the bookkeeping information accordingly.  Must be called after each
754  * successful population.
755  */
756 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
757 				 int page_start, int page_end)
758 {
759 	int nr = page_end - page_start;
760 
761 	lockdep_assert_held(&pcpu_lock);
762 
763 	bitmap_set(chunk->populated, page_start, nr);
764 	chunk->nr_populated += nr;
765 	pcpu_nr_empty_pop_pages += nr;
766 }
767 
768 /**
769  * pcpu_chunk_depopulated - post-depopulation bookkeeping
770  * @chunk: pcpu_chunk which got depopulated
771  * @page_start: the start page
772  * @page_end: the end page
773  *
774  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
775  * Update the bookkeeping information accordingly.  Must be called after
776  * each successful depopulation.
777  */
778 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
779 				   int page_start, int page_end)
780 {
781 	int nr = page_end - page_start;
782 
783 	lockdep_assert_held(&pcpu_lock);
784 
785 	bitmap_clear(chunk->populated, page_start, nr);
786 	chunk->nr_populated -= nr;
787 	pcpu_nr_empty_pop_pages -= nr;
788 }
789 
790 /*
791  * Chunk management implementation.
792  *
793  * To allow different implementations, chunk alloc/free and
794  * [de]population are implemented in a separate file which is pulled
795  * into this file and compiled together.  The following functions
796  * should be implemented.
797  *
798  * pcpu_populate_chunk		- populate the specified range of a chunk
799  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
800  * pcpu_create_chunk		- create a new chunk
801  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
802  * pcpu_addr_to_page		- translate address to physical address
803  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
804  */
805 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
806 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
807 static struct pcpu_chunk *pcpu_create_chunk(void);
808 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
809 static struct page *pcpu_addr_to_page(void *addr);
810 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
811 
812 #ifdef CONFIG_NEED_PER_CPU_KM
813 #include "percpu-km.c"
814 #else
815 #include "percpu-vm.c"
816 #endif
817 
818 /**
819  * pcpu_chunk_addr_search - determine chunk containing specified address
820  * @addr: address for which the chunk needs to be determined.
821  *
822  * RETURNS:
823  * The address of the found chunk.
824  */
825 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
826 {
827 	/* is it in the first chunk? */
828 	if (pcpu_addr_in_first_chunk(addr)) {
829 		/* is it in the reserved area? */
830 		if (pcpu_addr_in_reserved_chunk(addr))
831 			return pcpu_reserved_chunk;
832 		return pcpu_first_chunk;
833 	}
834 
835 	/*
836 	 * The address is relative to unit0 which might be unused and
837 	 * thus unmapped.  Offset the address to the unit space of the
838 	 * current processor before looking it up in the vmalloc
839 	 * space.  Note that any possible cpu id can be used here, so
840 	 * there's no need to worry about preemption or cpu hotplug.
841 	 */
842 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
843 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
844 }
845 
846 /**
847  * pcpu_alloc - the percpu allocator
848  * @size: size of area to allocate in bytes
849  * @align: alignment of area (max PAGE_SIZE)
850  * @reserved: allocate from the reserved chunk if available
851  * @gfp: allocation flags
852  *
853  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
854  * contain %GFP_KERNEL, the allocation is atomic.
855  *
856  * RETURNS:
857  * Percpu pointer to the allocated area on success, NULL on failure.
858  */
859 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
860 				 gfp_t gfp)
861 {
862 	static int warn_limit = 10;
863 	struct pcpu_chunk *chunk;
864 	const char *err;
865 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
866 	int occ_pages = 0;
867 	int slot, off, new_alloc, cpu, ret;
868 	unsigned long flags;
869 	void __percpu *ptr;
870 
871 	/*
872 	 * We want the lowest bit of offset available for in-use/free
873 	 * indicator, so force >= 16bit alignment and make size even.
874 	 */
875 	if (unlikely(align < 2))
876 		align = 2;
877 
878 	size = ALIGN(size, 2);
879 
880 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
881 		     !is_power_of_2(align))) {
882 		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
883 		     size, align);
884 		return NULL;
885 	}
886 
887 	if (!is_atomic)
888 		mutex_lock(&pcpu_alloc_mutex);
889 
890 	spin_lock_irqsave(&pcpu_lock, flags);
891 
892 	/* serve reserved allocations from the reserved chunk if available */
893 	if (reserved && pcpu_reserved_chunk) {
894 		chunk = pcpu_reserved_chunk;
895 
896 		if (size > chunk->contig_hint) {
897 			err = "alloc from reserved chunk failed";
898 			goto fail_unlock;
899 		}
900 
901 		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
902 			spin_unlock_irqrestore(&pcpu_lock, flags);
903 			if (is_atomic ||
904 			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
905 				err = "failed to extend area map of reserved chunk";
906 				goto fail;
907 			}
908 			spin_lock_irqsave(&pcpu_lock, flags);
909 		}
910 
911 		off = pcpu_alloc_area(chunk, size, align, is_atomic,
912 				      &occ_pages);
913 		if (off >= 0)
914 			goto area_found;
915 
916 		err = "alloc from reserved chunk failed";
917 		goto fail_unlock;
918 	}
919 
920 restart:
921 	/* search through normal chunks */
922 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
923 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
924 			if (size > chunk->contig_hint)
925 				continue;
926 
927 			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
928 			if (new_alloc) {
929 				if (is_atomic)
930 					continue;
931 				spin_unlock_irqrestore(&pcpu_lock, flags);
932 				if (pcpu_extend_area_map(chunk,
933 							 new_alloc) < 0) {
934 					err = "failed to extend area map";
935 					goto fail;
936 				}
937 				spin_lock_irqsave(&pcpu_lock, flags);
938 				/*
939 				 * pcpu_lock has been dropped, need to
940 				 * restart cpu_slot list walking.
941 				 */
942 				goto restart;
943 			}
944 
945 			off = pcpu_alloc_area(chunk, size, align, is_atomic,
946 					      &occ_pages);
947 			if (off >= 0)
948 				goto area_found;
949 		}
950 	}
951 
952 	spin_unlock_irqrestore(&pcpu_lock, flags);
953 
954 	/*
955 	 * No space left.  Create a new chunk.  We don't want multiple
956 	 * tasks to create chunks simultaneously.  Serialize and create iff
957 	 * there's still no empty chunk after grabbing the mutex.
958 	 */
959 	if (is_atomic) {
960 		err = "atomic alloc failed, no space left";
961 		goto fail;
962 	}
963 
964 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
965 		chunk = pcpu_create_chunk();
966 		if (!chunk) {
967 			err = "failed to allocate new chunk";
968 			goto fail;
969 		}
970 
971 		spin_lock_irqsave(&pcpu_lock, flags);
972 		pcpu_chunk_relocate(chunk, -1);
973 	} else {
974 		spin_lock_irqsave(&pcpu_lock, flags);
975 	}
976 
977 	goto restart;
978 
979 area_found:
980 	pcpu_stats_area_alloc(chunk, size);
981 	spin_unlock_irqrestore(&pcpu_lock, flags);
982 
983 	/* populate if not all pages are already there */
984 	if (!is_atomic) {
985 		int page_start, page_end, rs, re;
986 
987 		page_start = PFN_DOWN(off);
988 		page_end = PFN_UP(off + size);
989 
990 		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
991 			WARN_ON(chunk->immutable);
992 
993 			ret = pcpu_populate_chunk(chunk, rs, re);
994 
995 			spin_lock_irqsave(&pcpu_lock, flags);
996 			if (ret) {
997 				pcpu_free_area(chunk, off, &occ_pages);
998 				err = "failed to populate";
999 				goto fail_unlock;
1000 			}
1001 			pcpu_chunk_populated(chunk, rs, re);
1002 			spin_unlock_irqrestore(&pcpu_lock, flags);
1003 		}
1004 
1005 		mutex_unlock(&pcpu_alloc_mutex);
1006 	}
1007 
1008 	if (chunk != pcpu_reserved_chunk) {
1009 		spin_lock_irqsave(&pcpu_lock, flags);
1010 		pcpu_nr_empty_pop_pages -= occ_pages;
1011 		spin_unlock_irqrestore(&pcpu_lock, flags);
1012 	}
1013 
1014 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1015 		pcpu_schedule_balance_work();
1016 
1017 	/* clear the areas and return address relative to base address */
1018 	for_each_possible_cpu(cpu)
1019 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1020 
1021 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1022 	kmemleak_alloc_percpu(ptr, size, gfp);
1023 
1024 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1025 			chunk->base_addr, off, ptr);
1026 
1027 	return ptr;
1028 
1029 fail_unlock:
1030 	spin_unlock_irqrestore(&pcpu_lock, flags);
1031 fail:
1032 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1033 
1034 	if (!is_atomic && warn_limit) {
1035 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1036 			size, align, is_atomic, err);
1037 		dump_stack();
1038 		if (!--warn_limit)
1039 			pr_info("limit reached, disable warning\n");
1040 	}
1041 	if (is_atomic) {
1042 		/* see the flag handling in pcpu_blance_workfn() */
1043 		pcpu_atomic_alloc_failed = true;
1044 		pcpu_schedule_balance_work();
1045 	} else {
1046 		mutex_unlock(&pcpu_alloc_mutex);
1047 	}
1048 	return NULL;
1049 }
1050 
1051 /**
1052  * __alloc_percpu_gfp - allocate dynamic percpu area
1053  * @size: size of area to allocate in bytes
1054  * @align: alignment of area (max PAGE_SIZE)
1055  * @gfp: allocation flags
1056  *
1057  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1058  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1059  * be called from any context but is a lot more likely to fail.
1060  *
1061  * RETURNS:
1062  * Percpu pointer to the allocated area on success, NULL on failure.
1063  */
1064 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1065 {
1066 	return pcpu_alloc(size, align, false, gfp);
1067 }
1068 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1069 
1070 /**
1071  * __alloc_percpu - allocate dynamic percpu area
1072  * @size: size of area to allocate in bytes
1073  * @align: alignment of area (max PAGE_SIZE)
1074  *
1075  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1076  */
1077 void __percpu *__alloc_percpu(size_t size, size_t align)
1078 {
1079 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1080 }
1081 EXPORT_SYMBOL_GPL(__alloc_percpu);
1082 
1083 /**
1084  * __alloc_reserved_percpu - allocate reserved percpu area
1085  * @size: size of area to allocate in bytes
1086  * @align: alignment of area (max PAGE_SIZE)
1087  *
1088  * Allocate zero-filled percpu area of @size bytes aligned at @align
1089  * from reserved percpu area if arch has set it up; otherwise,
1090  * allocation is served from the same dynamic area.  Might sleep.
1091  * Might trigger writeouts.
1092  *
1093  * CONTEXT:
1094  * Does GFP_KERNEL allocation.
1095  *
1096  * RETURNS:
1097  * Percpu pointer to the allocated area on success, NULL on failure.
1098  */
1099 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1100 {
1101 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1102 }
1103 
1104 /**
1105  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1106  * @work: unused
1107  *
1108  * Reclaim all fully free chunks except for the first one.
1109  */
1110 static void pcpu_balance_workfn(struct work_struct *work)
1111 {
1112 	LIST_HEAD(to_free);
1113 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1114 	struct pcpu_chunk *chunk, *next;
1115 	int slot, nr_to_pop, ret;
1116 
1117 	/*
1118 	 * There's no reason to keep around multiple unused chunks and VM
1119 	 * areas can be scarce.  Destroy all free chunks except for one.
1120 	 */
1121 	mutex_lock(&pcpu_alloc_mutex);
1122 	spin_lock_irq(&pcpu_lock);
1123 
1124 	list_for_each_entry_safe(chunk, next, free_head, list) {
1125 		WARN_ON(chunk->immutable);
1126 
1127 		/* spare the first one */
1128 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1129 			continue;
1130 
1131 		list_del_init(&chunk->map_extend_list);
1132 		list_move(&chunk->list, &to_free);
1133 	}
1134 
1135 	spin_unlock_irq(&pcpu_lock);
1136 
1137 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1138 		int rs, re;
1139 
1140 		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 			pcpu_depopulate_chunk(chunk, rs, re);
1142 			spin_lock_irq(&pcpu_lock);
1143 			pcpu_chunk_depopulated(chunk, rs, re);
1144 			spin_unlock_irq(&pcpu_lock);
1145 		}
1146 		pcpu_destroy_chunk(chunk);
1147 	}
1148 
1149 	/* service chunks which requested async area map extension */
1150 	do {
1151 		int new_alloc = 0;
1152 
1153 		spin_lock_irq(&pcpu_lock);
1154 
1155 		chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1156 					struct pcpu_chunk, map_extend_list);
1157 		if (chunk) {
1158 			list_del_init(&chunk->map_extend_list);
1159 			new_alloc = pcpu_need_to_extend(chunk, false);
1160 		}
1161 
1162 		spin_unlock_irq(&pcpu_lock);
1163 
1164 		if (new_alloc)
1165 			pcpu_extend_area_map(chunk, new_alloc);
1166 	} while (chunk);
1167 
1168 	/*
1169 	 * Ensure there are certain number of free populated pages for
1170 	 * atomic allocs.  Fill up from the most packed so that atomic
1171 	 * allocs don't increase fragmentation.  If atomic allocation
1172 	 * failed previously, always populate the maximum amount.  This
1173 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1174 	 * failing indefinitely; however, large atomic allocs are not
1175 	 * something we support properly and can be highly unreliable and
1176 	 * inefficient.
1177 	 */
1178 retry_pop:
1179 	if (pcpu_atomic_alloc_failed) {
1180 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1181 		/* best effort anyway, don't worry about synchronization */
1182 		pcpu_atomic_alloc_failed = false;
1183 	} else {
1184 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1185 				  pcpu_nr_empty_pop_pages,
1186 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1187 	}
1188 
1189 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1190 		int nr_unpop = 0, rs, re;
1191 
1192 		if (!nr_to_pop)
1193 			break;
1194 
1195 		spin_lock_irq(&pcpu_lock);
1196 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1197 			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1198 			if (nr_unpop)
1199 				break;
1200 		}
1201 		spin_unlock_irq(&pcpu_lock);
1202 
1203 		if (!nr_unpop)
1204 			continue;
1205 
1206 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1207 		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1208 			int nr = min(re - rs, nr_to_pop);
1209 
1210 			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1211 			if (!ret) {
1212 				nr_to_pop -= nr;
1213 				spin_lock_irq(&pcpu_lock);
1214 				pcpu_chunk_populated(chunk, rs, rs + nr);
1215 				spin_unlock_irq(&pcpu_lock);
1216 			} else {
1217 				nr_to_pop = 0;
1218 			}
1219 
1220 			if (!nr_to_pop)
1221 				break;
1222 		}
1223 	}
1224 
1225 	if (nr_to_pop) {
1226 		/* ran out of chunks to populate, create a new one and retry */
1227 		chunk = pcpu_create_chunk();
1228 		if (chunk) {
1229 			spin_lock_irq(&pcpu_lock);
1230 			pcpu_chunk_relocate(chunk, -1);
1231 			spin_unlock_irq(&pcpu_lock);
1232 			goto retry_pop;
1233 		}
1234 	}
1235 
1236 	mutex_unlock(&pcpu_alloc_mutex);
1237 }
1238 
1239 /**
1240  * free_percpu - free percpu area
1241  * @ptr: pointer to area to free
1242  *
1243  * Free percpu area @ptr.
1244  *
1245  * CONTEXT:
1246  * Can be called from atomic context.
1247  */
1248 void free_percpu(void __percpu *ptr)
1249 {
1250 	void *addr;
1251 	struct pcpu_chunk *chunk;
1252 	unsigned long flags;
1253 	int off, occ_pages;
1254 
1255 	if (!ptr)
1256 		return;
1257 
1258 	kmemleak_free_percpu(ptr);
1259 
1260 	addr = __pcpu_ptr_to_addr(ptr);
1261 
1262 	spin_lock_irqsave(&pcpu_lock, flags);
1263 
1264 	chunk = pcpu_chunk_addr_search(addr);
1265 	off = addr - chunk->base_addr;
1266 
1267 	pcpu_free_area(chunk, off, &occ_pages);
1268 
1269 	if (chunk != pcpu_reserved_chunk)
1270 		pcpu_nr_empty_pop_pages += occ_pages;
1271 
1272 	/* if there are more than one fully free chunks, wake up grim reaper */
1273 	if (chunk->free_size == pcpu_unit_size) {
1274 		struct pcpu_chunk *pos;
1275 
1276 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1277 			if (pos != chunk) {
1278 				pcpu_schedule_balance_work();
1279 				break;
1280 			}
1281 	}
1282 
1283 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1284 
1285 	spin_unlock_irqrestore(&pcpu_lock, flags);
1286 }
1287 EXPORT_SYMBOL_GPL(free_percpu);
1288 
1289 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1290 {
1291 #ifdef CONFIG_SMP
1292 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1293 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1294 	unsigned int cpu;
1295 
1296 	for_each_possible_cpu(cpu) {
1297 		void *start = per_cpu_ptr(base, cpu);
1298 		void *va = (void *)addr;
1299 
1300 		if (va >= start && va < start + static_size) {
1301 			if (can_addr) {
1302 				*can_addr = (unsigned long) (va - start);
1303 				*can_addr += (unsigned long)
1304 					per_cpu_ptr(base, get_boot_cpu_id());
1305 			}
1306 			return true;
1307 		}
1308 	}
1309 #endif
1310 	/* on UP, can't distinguish from other static vars, always false */
1311 	return false;
1312 }
1313 
1314 /**
1315  * is_kernel_percpu_address - test whether address is from static percpu area
1316  * @addr: address to test
1317  *
1318  * Test whether @addr belongs to in-kernel static percpu area.  Module
1319  * static percpu areas are not considered.  For those, use
1320  * is_module_percpu_address().
1321  *
1322  * RETURNS:
1323  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1324  */
1325 bool is_kernel_percpu_address(unsigned long addr)
1326 {
1327 	return __is_kernel_percpu_address(addr, NULL);
1328 }
1329 
1330 /**
1331  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1332  * @addr: the address to be converted to physical address
1333  *
1334  * Given @addr which is dereferenceable address obtained via one of
1335  * percpu access macros, this function translates it into its physical
1336  * address.  The caller is responsible for ensuring @addr stays valid
1337  * until this function finishes.
1338  *
1339  * percpu allocator has special setup for the first chunk, which currently
1340  * supports either embedding in linear address space or vmalloc mapping,
1341  * and, from the second one, the backing allocator (currently either vm or
1342  * km) provides translation.
1343  *
1344  * The addr can be translated simply without checking if it falls into the
1345  * first chunk. But the current code reflects better how percpu allocator
1346  * actually works, and the verification can discover both bugs in percpu
1347  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1348  * code.
1349  *
1350  * RETURNS:
1351  * The physical address for @addr.
1352  */
1353 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1354 {
1355 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1356 	bool in_first_chunk = false;
1357 	unsigned long first_low, first_high;
1358 	unsigned int cpu;
1359 
1360 	/*
1361 	 * The following test on unit_low/high isn't strictly
1362 	 * necessary but will speed up lookups of addresses which
1363 	 * aren't in the first chunk.
1364 	 */
1365 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1366 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1367 				     pcpu_unit_pages);
1368 	if ((unsigned long)addr >= first_low &&
1369 	    (unsigned long)addr < first_high) {
1370 		for_each_possible_cpu(cpu) {
1371 			void *start = per_cpu_ptr(base, cpu);
1372 
1373 			if (addr >= start && addr < start + pcpu_unit_size) {
1374 				in_first_chunk = true;
1375 				break;
1376 			}
1377 		}
1378 	}
1379 
1380 	if (in_first_chunk) {
1381 		if (!is_vmalloc_addr(addr))
1382 			return __pa(addr);
1383 		else
1384 			return page_to_phys(vmalloc_to_page(addr)) +
1385 			       offset_in_page(addr);
1386 	} else
1387 		return page_to_phys(pcpu_addr_to_page(addr)) +
1388 		       offset_in_page(addr);
1389 }
1390 
1391 /**
1392  * pcpu_alloc_alloc_info - allocate percpu allocation info
1393  * @nr_groups: the number of groups
1394  * @nr_units: the number of units
1395  *
1396  * Allocate ai which is large enough for @nr_groups groups containing
1397  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1398  * cpu_map array which is long enough for @nr_units and filled with
1399  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1400  * pointer of other groups.
1401  *
1402  * RETURNS:
1403  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1404  * failure.
1405  */
1406 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1407 						      int nr_units)
1408 {
1409 	struct pcpu_alloc_info *ai;
1410 	size_t base_size, ai_size;
1411 	void *ptr;
1412 	int unit;
1413 
1414 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1415 			  __alignof__(ai->groups[0].cpu_map[0]));
1416 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1417 
1418 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1419 	if (!ptr)
1420 		return NULL;
1421 	ai = ptr;
1422 	ptr += base_size;
1423 
1424 	ai->groups[0].cpu_map = ptr;
1425 
1426 	for (unit = 0; unit < nr_units; unit++)
1427 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1428 
1429 	ai->nr_groups = nr_groups;
1430 	ai->__ai_size = PFN_ALIGN(ai_size);
1431 
1432 	return ai;
1433 }
1434 
1435 /**
1436  * pcpu_free_alloc_info - free percpu allocation info
1437  * @ai: pcpu_alloc_info to free
1438  *
1439  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1440  */
1441 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1442 {
1443 	memblock_free_early(__pa(ai), ai->__ai_size);
1444 }
1445 
1446 /**
1447  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1448  * @lvl: loglevel
1449  * @ai: allocation info to dump
1450  *
1451  * Print out information about @ai using loglevel @lvl.
1452  */
1453 static void pcpu_dump_alloc_info(const char *lvl,
1454 				 const struct pcpu_alloc_info *ai)
1455 {
1456 	int group_width = 1, cpu_width = 1, width;
1457 	char empty_str[] = "--------";
1458 	int alloc = 0, alloc_end = 0;
1459 	int group, v;
1460 	int upa, apl;	/* units per alloc, allocs per line */
1461 
1462 	v = ai->nr_groups;
1463 	while (v /= 10)
1464 		group_width++;
1465 
1466 	v = num_possible_cpus();
1467 	while (v /= 10)
1468 		cpu_width++;
1469 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1470 
1471 	upa = ai->alloc_size / ai->unit_size;
1472 	width = upa * (cpu_width + 1) + group_width + 3;
1473 	apl = rounddown_pow_of_two(max(60 / width, 1));
1474 
1475 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1476 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1477 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1478 
1479 	for (group = 0; group < ai->nr_groups; group++) {
1480 		const struct pcpu_group_info *gi = &ai->groups[group];
1481 		int unit = 0, unit_end = 0;
1482 
1483 		BUG_ON(gi->nr_units % upa);
1484 		for (alloc_end += gi->nr_units / upa;
1485 		     alloc < alloc_end; alloc++) {
1486 			if (!(alloc % apl)) {
1487 				pr_cont("\n");
1488 				printk("%spcpu-alloc: ", lvl);
1489 			}
1490 			pr_cont("[%0*d] ", group_width, group);
1491 
1492 			for (unit_end += upa; unit < unit_end; unit++)
1493 				if (gi->cpu_map[unit] != NR_CPUS)
1494 					pr_cont("%0*d ",
1495 						cpu_width, gi->cpu_map[unit]);
1496 				else
1497 					pr_cont("%s ", empty_str);
1498 		}
1499 	}
1500 	pr_cont("\n");
1501 }
1502 
1503 /**
1504  * pcpu_setup_first_chunk - initialize the first percpu chunk
1505  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1506  * @base_addr: mapped address
1507  *
1508  * Initialize the first percpu chunk which contains the kernel static
1509  * perpcu area.  This function is to be called from arch percpu area
1510  * setup path.
1511  *
1512  * @ai contains all information necessary to initialize the first
1513  * chunk and prime the dynamic percpu allocator.
1514  *
1515  * @ai->static_size is the size of static percpu area.
1516  *
1517  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1518  * reserve after the static area in the first chunk.  This reserves
1519  * the first chunk such that it's available only through reserved
1520  * percpu allocation.  This is primarily used to serve module percpu
1521  * static areas on architectures where the addressing model has
1522  * limited offset range for symbol relocations to guarantee module
1523  * percpu symbols fall inside the relocatable range.
1524  *
1525  * @ai->dyn_size determines the number of bytes available for dynamic
1526  * allocation in the first chunk.  The area between @ai->static_size +
1527  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1528  *
1529  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1530  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1531  * @ai->dyn_size.
1532  *
1533  * @ai->atom_size is the allocation atom size and used as alignment
1534  * for vm areas.
1535  *
1536  * @ai->alloc_size is the allocation size and always multiple of
1537  * @ai->atom_size.  This is larger than @ai->atom_size if
1538  * @ai->unit_size is larger than @ai->atom_size.
1539  *
1540  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1541  * percpu areas.  Units which should be colocated are put into the
1542  * same group.  Dynamic VM areas will be allocated according to these
1543  * groupings.  If @ai->nr_groups is zero, a single group containing
1544  * all units is assumed.
1545  *
1546  * The caller should have mapped the first chunk at @base_addr and
1547  * copied static data to each unit.
1548  *
1549  * If the first chunk ends up with both reserved and dynamic areas, it
1550  * is served by two chunks - one to serve the core static and reserved
1551  * areas and the other for the dynamic area.  They share the same vm
1552  * and page map but uses different area allocation map to stay away
1553  * from each other.  The latter chunk is circulated in the chunk slots
1554  * and available for dynamic allocation like any other chunks.
1555  *
1556  * RETURNS:
1557  * 0 on success, -errno on failure.
1558  */
1559 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1560 				  void *base_addr)
1561 {
1562 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1563 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1564 	size_t dyn_size = ai->dyn_size;
1565 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1566 	struct pcpu_chunk *schunk, *dchunk = NULL;
1567 	unsigned long *group_offsets;
1568 	size_t *group_sizes;
1569 	unsigned long *unit_off;
1570 	unsigned int cpu;
1571 	int *unit_map;
1572 	int group, unit, i;
1573 
1574 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1575 	if (unlikely(cond)) {						\
1576 		pr_emerg("failed to initialize, %s\n", #cond);		\
1577 		pr_emerg("cpu_possible_mask=%*pb\n",			\
1578 			 cpumask_pr_args(cpu_possible_mask));		\
1579 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1580 		BUG();							\
1581 	}								\
1582 } while (0)
1583 
1584 	/* sanity checks */
1585 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1586 #ifdef CONFIG_SMP
1587 	PCPU_SETUP_BUG_ON(!ai->static_size);
1588 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1589 #endif
1590 	PCPU_SETUP_BUG_ON(!base_addr);
1591 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1592 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1593 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1594 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1595 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1596 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1597 
1598 	/* process group information and build config tables accordingly */
1599 	group_offsets = memblock_virt_alloc(ai->nr_groups *
1600 					     sizeof(group_offsets[0]), 0);
1601 	group_sizes = memblock_virt_alloc(ai->nr_groups *
1602 					   sizeof(group_sizes[0]), 0);
1603 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1604 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1605 
1606 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1607 		unit_map[cpu] = UINT_MAX;
1608 
1609 	pcpu_low_unit_cpu = NR_CPUS;
1610 	pcpu_high_unit_cpu = NR_CPUS;
1611 
1612 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1613 		const struct pcpu_group_info *gi = &ai->groups[group];
1614 
1615 		group_offsets[group] = gi->base_offset;
1616 		group_sizes[group] = gi->nr_units * ai->unit_size;
1617 
1618 		for (i = 0; i < gi->nr_units; i++) {
1619 			cpu = gi->cpu_map[i];
1620 			if (cpu == NR_CPUS)
1621 				continue;
1622 
1623 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1624 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1625 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1626 
1627 			unit_map[cpu] = unit + i;
1628 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1629 
1630 			/* determine low/high unit_cpu */
1631 			if (pcpu_low_unit_cpu == NR_CPUS ||
1632 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1633 				pcpu_low_unit_cpu = cpu;
1634 			if (pcpu_high_unit_cpu == NR_CPUS ||
1635 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1636 				pcpu_high_unit_cpu = cpu;
1637 		}
1638 	}
1639 	pcpu_nr_units = unit;
1640 
1641 	for_each_possible_cpu(cpu)
1642 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1643 
1644 	/* we're done parsing the input, undefine BUG macro and dump config */
1645 #undef PCPU_SETUP_BUG_ON
1646 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1647 
1648 	pcpu_nr_groups = ai->nr_groups;
1649 	pcpu_group_offsets = group_offsets;
1650 	pcpu_group_sizes = group_sizes;
1651 	pcpu_unit_map = unit_map;
1652 	pcpu_unit_offsets = unit_off;
1653 
1654 	/* determine basic parameters */
1655 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1656 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1657 	pcpu_atom_size = ai->atom_size;
1658 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1659 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1660 
1661 	pcpu_stats_save_ai(ai);
1662 
1663 	/*
1664 	 * Allocate chunk slots.  The additional last slot is for
1665 	 * empty chunks.
1666 	 */
1667 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1668 	pcpu_slot = memblock_virt_alloc(
1669 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1670 	for (i = 0; i < pcpu_nr_slots; i++)
1671 		INIT_LIST_HEAD(&pcpu_slot[i]);
1672 
1673 	/*
1674 	 * Initialize static chunk.  If reserved_size is zero, the
1675 	 * static chunk covers static area + dynamic allocation area
1676 	 * in the first chunk.  If reserved_size is not zero, it
1677 	 * covers static area + reserved area (mostly used for module
1678 	 * static percpu allocation).
1679 	 */
1680 	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1681 	INIT_LIST_HEAD(&schunk->list);
1682 	INIT_LIST_HEAD(&schunk->map_extend_list);
1683 	schunk->base_addr = base_addr;
1684 	schunk->map = smap;
1685 	schunk->map_alloc = ARRAY_SIZE(smap);
1686 	schunk->immutable = true;
1687 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1688 	schunk->nr_populated = pcpu_unit_pages;
1689 
1690 	if (ai->reserved_size) {
1691 		schunk->free_size = ai->reserved_size;
1692 		pcpu_reserved_chunk = schunk;
1693 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1694 	} else {
1695 		schunk->free_size = dyn_size;
1696 		dyn_size = 0;			/* dynamic area covered */
1697 	}
1698 	schunk->contig_hint = schunk->free_size;
1699 
1700 	schunk->map[0] = 1;
1701 	schunk->map[1] = ai->static_size;
1702 	schunk->map_used = 1;
1703 	if (schunk->free_size)
1704 		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1705 	schunk->map[schunk->map_used] |= 1;
1706 	schunk->has_reserved = true;
1707 
1708 	/* init dynamic chunk if necessary */
1709 	if (dyn_size) {
1710 		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1711 		INIT_LIST_HEAD(&dchunk->list);
1712 		INIT_LIST_HEAD(&dchunk->map_extend_list);
1713 		dchunk->base_addr = base_addr;
1714 		dchunk->map = dmap;
1715 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1716 		dchunk->immutable = true;
1717 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1718 		dchunk->nr_populated = pcpu_unit_pages;
1719 
1720 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1721 		dchunk->map[0] = 1;
1722 		dchunk->map[1] = pcpu_reserved_chunk_limit;
1723 		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1724 		dchunk->map_used = 2;
1725 		dchunk->has_reserved = true;
1726 	}
1727 
1728 	/* link the first chunk in */
1729 	pcpu_first_chunk = dchunk ?: schunk;
1730 	pcpu_nr_empty_pop_pages +=
1731 		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1732 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1733 
1734 	pcpu_stats_chunk_alloc();
1735 	trace_percpu_create_chunk(base_addr);
1736 
1737 	/* we're done */
1738 	pcpu_base_addr = base_addr;
1739 	return 0;
1740 }
1741 
1742 #ifdef CONFIG_SMP
1743 
1744 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1745 	[PCPU_FC_AUTO]	= "auto",
1746 	[PCPU_FC_EMBED]	= "embed",
1747 	[PCPU_FC_PAGE]	= "page",
1748 };
1749 
1750 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1751 
1752 static int __init percpu_alloc_setup(char *str)
1753 {
1754 	if (!str)
1755 		return -EINVAL;
1756 
1757 	if (0)
1758 		/* nada */;
1759 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1760 	else if (!strcmp(str, "embed"))
1761 		pcpu_chosen_fc = PCPU_FC_EMBED;
1762 #endif
1763 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1764 	else if (!strcmp(str, "page"))
1765 		pcpu_chosen_fc = PCPU_FC_PAGE;
1766 #endif
1767 	else
1768 		pr_warn("unknown allocator %s specified\n", str);
1769 
1770 	return 0;
1771 }
1772 early_param("percpu_alloc", percpu_alloc_setup);
1773 
1774 /*
1775  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1776  * Build it if needed by the arch config or the generic setup is going
1777  * to be used.
1778  */
1779 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1780 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1781 #define BUILD_EMBED_FIRST_CHUNK
1782 #endif
1783 
1784 /* build pcpu_page_first_chunk() iff needed by the arch config */
1785 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1786 #define BUILD_PAGE_FIRST_CHUNK
1787 #endif
1788 
1789 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1790 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1791 /**
1792  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1793  * @reserved_size: the size of reserved percpu area in bytes
1794  * @dyn_size: minimum free size for dynamic allocation in bytes
1795  * @atom_size: allocation atom size
1796  * @cpu_distance_fn: callback to determine distance between cpus, optional
1797  *
1798  * This function determines grouping of units, their mappings to cpus
1799  * and other parameters considering needed percpu size, allocation
1800  * atom size and distances between CPUs.
1801  *
1802  * Groups are always multiples of atom size and CPUs which are of
1803  * LOCAL_DISTANCE both ways are grouped together and share space for
1804  * units in the same group.  The returned configuration is guaranteed
1805  * to have CPUs on different nodes on different groups and >=75% usage
1806  * of allocated virtual address space.
1807  *
1808  * RETURNS:
1809  * On success, pointer to the new allocation_info is returned.  On
1810  * failure, ERR_PTR value is returned.
1811  */
1812 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1813 				size_t reserved_size, size_t dyn_size,
1814 				size_t atom_size,
1815 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1816 {
1817 	static int group_map[NR_CPUS] __initdata;
1818 	static int group_cnt[NR_CPUS] __initdata;
1819 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1820 	int nr_groups = 1, nr_units = 0;
1821 	size_t size_sum, min_unit_size, alloc_size;
1822 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1823 	int last_allocs, group, unit;
1824 	unsigned int cpu, tcpu;
1825 	struct pcpu_alloc_info *ai;
1826 	unsigned int *cpu_map;
1827 
1828 	/* this function may be called multiple times */
1829 	memset(group_map, 0, sizeof(group_map));
1830 	memset(group_cnt, 0, sizeof(group_cnt));
1831 
1832 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1833 	size_sum = PFN_ALIGN(static_size + reserved_size +
1834 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1835 	dyn_size = size_sum - static_size - reserved_size;
1836 
1837 	/*
1838 	 * Determine min_unit_size, alloc_size and max_upa such that
1839 	 * alloc_size is multiple of atom_size and is the smallest
1840 	 * which can accommodate 4k aligned segments which are equal to
1841 	 * or larger than min_unit_size.
1842 	 */
1843 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1844 
1845 	alloc_size = roundup(min_unit_size, atom_size);
1846 	upa = alloc_size / min_unit_size;
1847 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1848 		upa--;
1849 	max_upa = upa;
1850 
1851 	/* group cpus according to their proximity */
1852 	for_each_possible_cpu(cpu) {
1853 		group = 0;
1854 	next_group:
1855 		for_each_possible_cpu(tcpu) {
1856 			if (cpu == tcpu)
1857 				break;
1858 			if (group_map[tcpu] == group && cpu_distance_fn &&
1859 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1860 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1861 				group++;
1862 				nr_groups = max(nr_groups, group + 1);
1863 				goto next_group;
1864 			}
1865 		}
1866 		group_map[cpu] = group;
1867 		group_cnt[group]++;
1868 	}
1869 
1870 	/*
1871 	 * Expand unit size until address space usage goes over 75%
1872 	 * and then as much as possible without using more address
1873 	 * space.
1874 	 */
1875 	last_allocs = INT_MAX;
1876 	for (upa = max_upa; upa; upa--) {
1877 		int allocs = 0, wasted = 0;
1878 
1879 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1880 			continue;
1881 
1882 		for (group = 0; group < nr_groups; group++) {
1883 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1884 			allocs += this_allocs;
1885 			wasted += this_allocs * upa - group_cnt[group];
1886 		}
1887 
1888 		/*
1889 		 * Don't accept if wastage is over 1/3.  The
1890 		 * greater-than comparison ensures upa==1 always
1891 		 * passes the following check.
1892 		 */
1893 		if (wasted > num_possible_cpus() / 3)
1894 			continue;
1895 
1896 		/* and then don't consume more memory */
1897 		if (allocs > last_allocs)
1898 			break;
1899 		last_allocs = allocs;
1900 		best_upa = upa;
1901 	}
1902 	upa = best_upa;
1903 
1904 	/* allocate and fill alloc_info */
1905 	for (group = 0; group < nr_groups; group++)
1906 		nr_units += roundup(group_cnt[group], upa);
1907 
1908 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1909 	if (!ai)
1910 		return ERR_PTR(-ENOMEM);
1911 	cpu_map = ai->groups[0].cpu_map;
1912 
1913 	for (group = 0; group < nr_groups; group++) {
1914 		ai->groups[group].cpu_map = cpu_map;
1915 		cpu_map += roundup(group_cnt[group], upa);
1916 	}
1917 
1918 	ai->static_size = static_size;
1919 	ai->reserved_size = reserved_size;
1920 	ai->dyn_size = dyn_size;
1921 	ai->unit_size = alloc_size / upa;
1922 	ai->atom_size = atom_size;
1923 	ai->alloc_size = alloc_size;
1924 
1925 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1926 		struct pcpu_group_info *gi = &ai->groups[group];
1927 
1928 		/*
1929 		 * Initialize base_offset as if all groups are located
1930 		 * back-to-back.  The caller should update this to
1931 		 * reflect actual allocation.
1932 		 */
1933 		gi->base_offset = unit * ai->unit_size;
1934 
1935 		for_each_possible_cpu(cpu)
1936 			if (group_map[cpu] == group)
1937 				gi->cpu_map[gi->nr_units++] = cpu;
1938 		gi->nr_units = roundup(gi->nr_units, upa);
1939 		unit += gi->nr_units;
1940 	}
1941 	BUG_ON(unit != nr_units);
1942 
1943 	return ai;
1944 }
1945 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1946 
1947 #if defined(BUILD_EMBED_FIRST_CHUNK)
1948 /**
1949  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1950  * @reserved_size: the size of reserved percpu area in bytes
1951  * @dyn_size: minimum free size for dynamic allocation in bytes
1952  * @atom_size: allocation atom size
1953  * @cpu_distance_fn: callback to determine distance between cpus, optional
1954  * @alloc_fn: function to allocate percpu page
1955  * @free_fn: function to free percpu page
1956  *
1957  * This is a helper to ease setting up embedded first percpu chunk and
1958  * can be called where pcpu_setup_first_chunk() is expected.
1959  *
1960  * If this function is used to setup the first chunk, it is allocated
1961  * by calling @alloc_fn and used as-is without being mapped into
1962  * vmalloc area.  Allocations are always whole multiples of @atom_size
1963  * aligned to @atom_size.
1964  *
1965  * This enables the first chunk to piggy back on the linear physical
1966  * mapping which often uses larger page size.  Please note that this
1967  * can result in very sparse cpu->unit mapping on NUMA machines thus
1968  * requiring large vmalloc address space.  Don't use this allocator if
1969  * vmalloc space is not orders of magnitude larger than distances
1970  * between node memory addresses (ie. 32bit NUMA machines).
1971  *
1972  * @dyn_size specifies the minimum dynamic area size.
1973  *
1974  * If the needed size is smaller than the minimum or specified unit
1975  * size, the leftover is returned using @free_fn.
1976  *
1977  * RETURNS:
1978  * 0 on success, -errno on failure.
1979  */
1980 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1981 				  size_t atom_size,
1982 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1983 				  pcpu_fc_alloc_fn_t alloc_fn,
1984 				  pcpu_fc_free_fn_t free_fn)
1985 {
1986 	void *base = (void *)ULONG_MAX;
1987 	void **areas = NULL;
1988 	struct pcpu_alloc_info *ai;
1989 	size_t size_sum, areas_size;
1990 	unsigned long max_distance;
1991 	int group, i, highest_group, rc;
1992 
1993 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1994 				   cpu_distance_fn);
1995 	if (IS_ERR(ai))
1996 		return PTR_ERR(ai);
1997 
1998 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1999 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2000 
2001 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2002 	if (!areas) {
2003 		rc = -ENOMEM;
2004 		goto out_free;
2005 	}
2006 
2007 	/* allocate, copy and determine base address & max_distance */
2008 	highest_group = 0;
2009 	for (group = 0; group < ai->nr_groups; group++) {
2010 		struct pcpu_group_info *gi = &ai->groups[group];
2011 		unsigned int cpu = NR_CPUS;
2012 		void *ptr;
2013 
2014 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2015 			cpu = gi->cpu_map[i];
2016 		BUG_ON(cpu == NR_CPUS);
2017 
2018 		/* allocate space for the whole group */
2019 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2020 		if (!ptr) {
2021 			rc = -ENOMEM;
2022 			goto out_free_areas;
2023 		}
2024 		/* kmemleak tracks the percpu allocations separately */
2025 		kmemleak_free(ptr);
2026 		areas[group] = ptr;
2027 
2028 		base = min(ptr, base);
2029 		if (ptr > areas[highest_group])
2030 			highest_group = group;
2031 	}
2032 	max_distance = areas[highest_group] - base;
2033 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2034 
2035 	/* warn if maximum distance is further than 75% of vmalloc space */
2036 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2037 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2038 				max_distance, VMALLOC_TOTAL);
2039 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2040 		/* and fail if we have fallback */
2041 		rc = -EINVAL;
2042 		goto out_free_areas;
2043 #endif
2044 	}
2045 
2046 	/*
2047 	 * Copy data and free unused parts.  This should happen after all
2048 	 * allocations are complete; otherwise, we may end up with
2049 	 * overlapping groups.
2050 	 */
2051 	for (group = 0; group < ai->nr_groups; group++) {
2052 		struct pcpu_group_info *gi = &ai->groups[group];
2053 		void *ptr = areas[group];
2054 
2055 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2056 			if (gi->cpu_map[i] == NR_CPUS) {
2057 				/* unused unit, free whole */
2058 				free_fn(ptr, ai->unit_size);
2059 				continue;
2060 			}
2061 			/* copy and return the unused part */
2062 			memcpy(ptr, __per_cpu_load, ai->static_size);
2063 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2064 		}
2065 	}
2066 
2067 	/* base address is now known, determine group base offsets */
2068 	for (group = 0; group < ai->nr_groups; group++) {
2069 		ai->groups[group].base_offset = areas[group] - base;
2070 	}
2071 
2072 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2073 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2074 		ai->dyn_size, ai->unit_size);
2075 
2076 	rc = pcpu_setup_first_chunk(ai, base);
2077 	goto out_free;
2078 
2079 out_free_areas:
2080 	for (group = 0; group < ai->nr_groups; group++)
2081 		if (areas[group])
2082 			free_fn(areas[group],
2083 				ai->groups[group].nr_units * ai->unit_size);
2084 out_free:
2085 	pcpu_free_alloc_info(ai);
2086 	if (areas)
2087 		memblock_free_early(__pa(areas), areas_size);
2088 	return rc;
2089 }
2090 #endif /* BUILD_EMBED_FIRST_CHUNK */
2091 
2092 #ifdef BUILD_PAGE_FIRST_CHUNK
2093 /**
2094  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2095  * @reserved_size: the size of reserved percpu area in bytes
2096  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2097  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2098  * @populate_pte_fn: function to populate pte
2099  *
2100  * This is a helper to ease setting up page-remapped first percpu
2101  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2102  *
2103  * This is the basic allocator.  Static percpu area is allocated
2104  * page-by-page into vmalloc area.
2105  *
2106  * RETURNS:
2107  * 0 on success, -errno on failure.
2108  */
2109 int __init pcpu_page_first_chunk(size_t reserved_size,
2110 				 pcpu_fc_alloc_fn_t alloc_fn,
2111 				 pcpu_fc_free_fn_t free_fn,
2112 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2113 {
2114 	static struct vm_struct vm;
2115 	struct pcpu_alloc_info *ai;
2116 	char psize_str[16];
2117 	int unit_pages;
2118 	size_t pages_size;
2119 	struct page **pages;
2120 	int unit, i, j, rc;
2121 	int upa;
2122 	int nr_g0_units;
2123 
2124 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2125 
2126 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2127 	if (IS_ERR(ai))
2128 		return PTR_ERR(ai);
2129 	BUG_ON(ai->nr_groups != 1);
2130 	upa = ai->alloc_size/ai->unit_size;
2131 	nr_g0_units = roundup(num_possible_cpus(), upa);
2132 	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2133 		pcpu_free_alloc_info(ai);
2134 		return -EINVAL;
2135 	}
2136 
2137 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2138 
2139 	/* unaligned allocations can't be freed, round up to page size */
2140 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2141 			       sizeof(pages[0]));
2142 	pages = memblock_virt_alloc(pages_size, 0);
2143 
2144 	/* allocate pages */
2145 	j = 0;
2146 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2147 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2148 		for (i = 0; i < unit_pages; i++) {
2149 			void *ptr;
2150 
2151 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2152 			if (!ptr) {
2153 				pr_warn("failed to allocate %s page for cpu%u\n",
2154 						psize_str, cpu);
2155 				goto enomem;
2156 			}
2157 			/* kmemleak tracks the percpu allocations separately */
2158 			kmemleak_free(ptr);
2159 			pages[j++] = virt_to_page(ptr);
2160 		}
2161 	}
2162 
2163 	/* allocate vm area, map the pages and copy static data */
2164 	vm.flags = VM_ALLOC;
2165 	vm.size = num_possible_cpus() * ai->unit_size;
2166 	vm_area_register_early(&vm, PAGE_SIZE);
2167 
2168 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2169 		unsigned long unit_addr =
2170 			(unsigned long)vm.addr + unit * ai->unit_size;
2171 
2172 		for (i = 0; i < unit_pages; i++)
2173 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2174 
2175 		/* pte already populated, the following shouldn't fail */
2176 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2177 				      unit_pages);
2178 		if (rc < 0)
2179 			panic("failed to map percpu area, err=%d\n", rc);
2180 
2181 		/*
2182 		 * FIXME: Archs with virtual cache should flush local
2183 		 * cache for the linear mapping here - something
2184 		 * equivalent to flush_cache_vmap() on the local cpu.
2185 		 * flush_cache_vmap() can't be used as most supporting
2186 		 * data structures are not set up yet.
2187 		 */
2188 
2189 		/* copy static data */
2190 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2191 	}
2192 
2193 	/* we're ready, commit */
2194 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2195 		unit_pages, psize_str, vm.addr, ai->static_size,
2196 		ai->reserved_size, ai->dyn_size);
2197 
2198 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2199 	goto out_free_ar;
2200 
2201 enomem:
2202 	while (--j >= 0)
2203 		free_fn(page_address(pages[j]), PAGE_SIZE);
2204 	rc = -ENOMEM;
2205 out_free_ar:
2206 	memblock_free_early(__pa(pages), pages_size);
2207 	pcpu_free_alloc_info(ai);
2208 	return rc;
2209 }
2210 #endif /* BUILD_PAGE_FIRST_CHUNK */
2211 
2212 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2213 /*
2214  * Generic SMP percpu area setup.
2215  *
2216  * The embedding helper is used because its behavior closely resembles
2217  * the original non-dynamic generic percpu area setup.  This is
2218  * important because many archs have addressing restrictions and might
2219  * fail if the percpu area is located far away from the previous
2220  * location.  As an added bonus, in non-NUMA cases, embedding is
2221  * generally a good idea TLB-wise because percpu area can piggy back
2222  * on the physical linear memory mapping which uses large page
2223  * mappings on applicable archs.
2224  */
2225 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2226 EXPORT_SYMBOL(__per_cpu_offset);
2227 
2228 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2229 				       size_t align)
2230 {
2231 	return  memblock_virt_alloc_from_nopanic(
2232 			size, align, __pa(MAX_DMA_ADDRESS));
2233 }
2234 
2235 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2236 {
2237 	memblock_free_early(__pa(ptr), size);
2238 }
2239 
2240 void __init setup_per_cpu_areas(void)
2241 {
2242 	unsigned long delta;
2243 	unsigned int cpu;
2244 	int rc;
2245 
2246 	/*
2247 	 * Always reserve area for module percpu variables.  That's
2248 	 * what the legacy allocator did.
2249 	 */
2250 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2251 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2252 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2253 	if (rc < 0)
2254 		panic("Failed to initialize percpu areas.");
2255 
2256 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2257 	for_each_possible_cpu(cpu)
2258 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2259 }
2260 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2261 
2262 #else	/* CONFIG_SMP */
2263 
2264 /*
2265  * UP percpu area setup.
2266  *
2267  * UP always uses km-based percpu allocator with identity mapping.
2268  * Static percpu variables are indistinguishable from the usual static
2269  * variables and don't require any special preparation.
2270  */
2271 void __init setup_per_cpu_areas(void)
2272 {
2273 	const size_t unit_size =
2274 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2275 					 PERCPU_DYNAMIC_RESERVE));
2276 	struct pcpu_alloc_info *ai;
2277 	void *fc;
2278 
2279 	ai = pcpu_alloc_alloc_info(1, 1);
2280 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2281 					      PAGE_SIZE,
2282 					      __pa(MAX_DMA_ADDRESS));
2283 	if (!ai || !fc)
2284 		panic("Failed to allocate memory for percpu areas.");
2285 	/* kmemleak tracks the percpu allocations separately */
2286 	kmemleak_free(fc);
2287 
2288 	ai->dyn_size = unit_size;
2289 	ai->unit_size = unit_size;
2290 	ai->atom_size = unit_size;
2291 	ai->alloc_size = unit_size;
2292 	ai->groups[0].nr_units = 1;
2293 	ai->groups[0].cpu_map[0] = 0;
2294 
2295 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2296 		panic("Failed to initialize percpu areas.");
2297 }
2298 
2299 #endif	/* CONFIG_SMP */
2300 
2301 /*
2302  * First and reserved chunks are initialized with temporary allocation
2303  * map in initdata so that they can be used before slab is online.
2304  * This function is called after slab is brought up and replaces those
2305  * with properly allocated maps.
2306  */
2307 void __init percpu_init_late(void)
2308 {
2309 	struct pcpu_chunk *target_chunks[] =
2310 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2311 	struct pcpu_chunk *chunk;
2312 	unsigned long flags;
2313 	int i;
2314 
2315 	for (i = 0; (chunk = target_chunks[i]); i++) {
2316 		int *map;
2317 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2318 
2319 		BUILD_BUG_ON(size > PAGE_SIZE);
2320 
2321 		map = pcpu_mem_zalloc(size);
2322 		BUG_ON(!map);
2323 
2324 		spin_lock_irqsave(&pcpu_lock, flags);
2325 		memcpy(map, chunk->map, size);
2326 		chunk->map = map;
2327 		spin_unlock_irqrestore(&pcpu_lock, flags);
2328 	}
2329 }
2330 
2331 /*
2332  * Percpu allocator is initialized early during boot when neither slab or
2333  * workqueue is available.  Plug async management until everything is up
2334  * and running.
2335  */
2336 static int __init percpu_enable_async(void)
2337 {
2338 	pcpu_async_enabled = true;
2339 	return 0;
2340 }
2341 subsys_initcall(percpu_enable_async);
2342