xref: /openbmc/linux/mm/percpu.c (revision 752beb5e)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * Copyright (C) 2017		Facebook Inc.
8  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
9  *
10  * This file is released under the GPLv2 license.
11  *
12  * The percpu allocator handles both static and dynamic areas.  Percpu
13  * areas are allocated in chunks which are divided into units.  There is
14  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
15  * based on NUMA properties of the machine.
16  *
17  *  c0                           c1                         c2
18  *  -------------------          -------------------        ------------
19  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
20  *  -------------------  ......  -------------------  ....  ------------
21  *
22  * Allocation is done by offsets into a unit's address space.  Ie., an
23  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
25  * and even sparse.  Access is handled by configuring percpu base
26  * registers according to the cpu to unit mappings and offsetting the
27  * base address using pcpu_unit_size.
28  *
29  * There is special consideration for the first chunk which must handle
30  * the static percpu variables in the kernel image as allocation services
31  * are not online yet.  In short, the first chunk is structured like so:
32  *
33  *                  <Static | [Reserved] | Dynamic>
34  *
35  * The static data is copied from the original section managed by the
36  * linker.  The reserved section, if non-zero, primarily manages static
37  * percpu variables from kernel modules.  Finally, the dynamic section
38  * takes care of normal allocations.
39  *
40  * The allocator organizes chunks into lists according to free size and
41  * tries to allocate from the fullest chunk first.  Each chunk is managed
42  * by a bitmap with metadata blocks.  The allocation map is updated on
43  * every allocation and free to reflect the current state while the boundary
44  * map is only updated on allocation.  Each metadata block contains
45  * information to help mitigate the need to iterate over large portions
46  * of the bitmap.  The reverse mapping from page to chunk is stored in
47  * the page's index.  Lastly, units are lazily backed and grow in unison.
48  *
49  * There is a unique conversion that goes on here between bytes and bits.
50  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
51  * tracks the number of pages it is responsible for in nr_pages.  Helper
52  * functions are used to convert from between the bytes, bits, and blocks.
53  * All hints are managed in bits unless explicitly stated.
54  *
55  * To use this allocator, arch code should do the following:
56  *
57  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58  *   regular address to percpu pointer and back if they need to be
59  *   different from the default
60  *
61  * - use pcpu_setup_first_chunk() during percpu area initialization to
62  *   setup the first chunk containing the kernel static percpu area
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include <linux/bitmap.h>
68 #include <linux/memblock.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84 
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92 
93 #include "percpu-internal.h"
94 
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT		5
97 /* chunks in slots below this are subject to being sidelined on failed alloc */
98 #define PCPU_SLOT_FAIL_THRESHOLD	3
99 
100 #define PCPU_EMPTY_POP_PAGES_LOW	2
101 #define PCPU_EMPTY_POP_PAGES_HIGH	4
102 
103 #ifdef CONFIG_SMP
104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105 #ifndef __addr_to_pcpu_ptr
106 #define __addr_to_pcpu_ptr(addr)					\
107 	(void __percpu *)((unsigned long)(addr) -			\
108 			  (unsigned long)pcpu_base_addr	+		\
109 			  (unsigned long)__per_cpu_start)
110 #endif
111 #ifndef __pcpu_ptr_to_addr
112 #define __pcpu_ptr_to_addr(ptr)						\
113 	(void __force *)((unsigned long)(ptr) +				\
114 			 (unsigned long)pcpu_base_addr -		\
115 			 (unsigned long)__per_cpu_start)
116 #endif
117 #else	/* CONFIG_SMP */
118 /* on UP, it's always identity mapped */
119 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
120 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
121 #endif	/* CONFIG_SMP */
122 
123 static int pcpu_unit_pages __ro_after_init;
124 static int pcpu_unit_size __ro_after_init;
125 static int pcpu_nr_units __ro_after_init;
126 static int pcpu_atom_size __ro_after_init;
127 int pcpu_nr_slots __ro_after_init;
128 static size_t pcpu_chunk_struct_size __ro_after_init;
129 
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __ro_after_init;
132 static unsigned int pcpu_high_unit_cpu __ro_after_init;
133 
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __ro_after_init;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
137 
138 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
140 
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __ro_after_init;
143 static const unsigned long *pcpu_group_offsets __ro_after_init;
144 static const size_t *pcpu_group_sizes __ro_after_init;
145 
146 /*
147  * The first chunk which always exists.  Note that unlike other
148  * chunks, this one can be allocated and mapped in several different
149  * ways and thus often doesn't live in the vmalloc area.
150  */
151 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
152 
153 /*
154  * Optional reserved chunk.  This chunk reserves part of the first
155  * chunk and serves it for reserved allocations.  When the reserved
156  * region doesn't exist, the following variable is NULL.
157  */
158 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
159 
160 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
161 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
162 
163 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
164 
165 /* chunks which need their map areas extended, protected by pcpu_lock */
166 static LIST_HEAD(pcpu_map_extend_chunks);
167 
168 /*
169  * The number of empty populated pages, protected by pcpu_lock.  The
170  * reserved chunk doesn't contribute to the count.
171  */
172 int pcpu_nr_empty_pop_pages;
173 
174 /*
175  * The number of populated pages in use by the allocator, protected by
176  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
177  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178  * and increments/decrements this count by 1).
179  */
180 static unsigned long pcpu_nr_populated;
181 
182 /*
183  * Balance work is used to populate or destroy chunks asynchronously.  We
184  * try to keep the number of populated free pages between
185  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186  * empty chunk.
187  */
188 static void pcpu_balance_workfn(struct work_struct *work);
189 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
190 static bool pcpu_async_enabled __read_mostly;
191 static bool pcpu_atomic_alloc_failed;
192 
193 static void pcpu_schedule_balance_work(void)
194 {
195 	if (pcpu_async_enabled)
196 		schedule_work(&pcpu_balance_work);
197 }
198 
199 /**
200  * pcpu_addr_in_chunk - check if the address is served from this chunk
201  * @chunk: chunk of interest
202  * @addr: percpu address
203  *
204  * RETURNS:
205  * True if the address is served from this chunk.
206  */
207 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
208 {
209 	void *start_addr, *end_addr;
210 
211 	if (!chunk)
212 		return false;
213 
214 	start_addr = chunk->base_addr + chunk->start_offset;
215 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
216 		   chunk->end_offset;
217 
218 	return addr >= start_addr && addr < end_addr;
219 }
220 
221 static int __pcpu_size_to_slot(int size)
222 {
223 	int highbit = fls(size);	/* size is in bytes */
224 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
225 }
226 
227 static int pcpu_size_to_slot(int size)
228 {
229 	if (size == pcpu_unit_size)
230 		return pcpu_nr_slots - 1;
231 	return __pcpu_size_to_slot(size);
232 }
233 
234 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
235 {
236 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
237 
238 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
239 	    chunk_md->contig_hint == 0)
240 		return 0;
241 
242 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
243 }
244 
245 /* set the pointer to a chunk in a page struct */
246 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
247 {
248 	page->index = (unsigned long)pcpu;
249 }
250 
251 /* obtain pointer to a chunk from a page struct */
252 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
253 {
254 	return (struct pcpu_chunk *)page->index;
255 }
256 
257 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
258 {
259 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
260 }
261 
262 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
263 {
264 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
265 }
266 
267 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
268 				     unsigned int cpu, int page_idx)
269 {
270 	return (unsigned long)chunk->base_addr +
271 	       pcpu_unit_page_offset(cpu, page_idx);
272 }
273 
274 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
275 {
276 	*rs = find_next_zero_bit(bitmap, end, *rs);
277 	*re = find_next_bit(bitmap, end, *rs + 1);
278 }
279 
280 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
281 {
282 	*rs = find_next_bit(bitmap, end, *rs);
283 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
284 }
285 
286 /*
287  * Bitmap region iterators.  Iterates over the bitmap between
288  * [@start, @end) in @chunk.  @rs and @re should be integer variables
289  * and will be set to start and end index of the current free region.
290  */
291 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
292 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
293 	     (rs) < (re);						     \
294 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
295 
296 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
297 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
298 	     (rs) < (re);						     \
299 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
300 
301 /*
302  * The following are helper functions to help access bitmaps and convert
303  * between bitmap offsets to address offsets.
304  */
305 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
306 {
307 	return chunk->alloc_map +
308 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
309 }
310 
311 static unsigned long pcpu_off_to_block_index(int off)
312 {
313 	return off / PCPU_BITMAP_BLOCK_BITS;
314 }
315 
316 static unsigned long pcpu_off_to_block_off(int off)
317 {
318 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
319 }
320 
321 static unsigned long pcpu_block_off_to_off(int index, int off)
322 {
323 	return index * PCPU_BITMAP_BLOCK_BITS + off;
324 }
325 
326 /*
327  * pcpu_next_hint - determine which hint to use
328  * @block: block of interest
329  * @alloc_bits: size of allocation
330  *
331  * This determines if we should scan based on the scan_hint or first_free.
332  * In general, we want to scan from first_free to fulfill allocations by
333  * first fit.  However, if we know a scan_hint at position scan_hint_start
334  * cannot fulfill an allocation, we can begin scanning from there knowing
335  * the contig_hint will be our fallback.
336  */
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
338 {
339 	/*
340 	 * The three conditions below determine if we can skip past the
341 	 * scan_hint.  First, does the scan hint exist.  Second, is the
342 	 * contig_hint after the scan_hint (possibly not true iff
343 	 * contig_hint == scan_hint).  Third, is the allocation request
344 	 * larger than the scan_hint.
345 	 */
346 	if (block->scan_hint &&
347 	    block->contig_hint_start > block->scan_hint_start &&
348 	    alloc_bits > block->scan_hint)
349 		return block->scan_hint_start + block->scan_hint;
350 
351 	return block->first_free;
352 }
353 
354 /**
355  * pcpu_next_md_free_region - finds the next hint free area
356  * @chunk: chunk of interest
357  * @bit_off: chunk offset
358  * @bits: size of free area
359  *
360  * Helper function for pcpu_for_each_md_free_region.  It checks
361  * block->contig_hint and performs aggregation across blocks to find the
362  * next hint.  It modifies bit_off and bits in-place to be consumed in the
363  * loop.
364  */
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
366 				     int *bits)
367 {
368 	int i = pcpu_off_to_block_index(*bit_off);
369 	int block_off = pcpu_off_to_block_off(*bit_off);
370 	struct pcpu_block_md *block;
371 
372 	*bits = 0;
373 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
374 	     block++, i++) {
375 		/* handles contig area across blocks */
376 		if (*bits) {
377 			*bits += block->left_free;
378 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
379 				continue;
380 			return;
381 		}
382 
383 		/*
384 		 * This checks three things.  First is there a contig_hint to
385 		 * check.  Second, have we checked this hint before by
386 		 * comparing the block_off.  Third, is this the same as the
387 		 * right contig hint.  In the last case, it spills over into
388 		 * the next block and should be handled by the contig area
389 		 * across blocks code.
390 		 */
391 		*bits = block->contig_hint;
392 		if (*bits && block->contig_hint_start >= block_off &&
393 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 			*bit_off = pcpu_block_off_to_off(i,
395 					block->contig_hint_start);
396 			return;
397 		}
398 		/* reset to satisfy the second predicate above */
399 		block_off = 0;
400 
401 		*bits = block->right_free;
402 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
403 	}
404 }
405 
406 /**
407  * pcpu_next_fit_region - finds fit areas for a given allocation request
408  * @chunk: chunk of interest
409  * @alloc_bits: size of allocation
410  * @align: alignment of area (max PAGE_SIZE)
411  * @bit_off: chunk offset
412  * @bits: size of free area
413  *
414  * Finds the next free region that is viable for use with a given size and
415  * alignment.  This only returns if there is a valid area to be used for this
416  * allocation.  block->first_free is returned if the allocation request fits
417  * within the block to see if the request can be fulfilled prior to the contig
418  * hint.
419  */
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 				 int align, int *bit_off, int *bits)
422 {
423 	int i = pcpu_off_to_block_index(*bit_off);
424 	int block_off = pcpu_off_to_block_off(*bit_off);
425 	struct pcpu_block_md *block;
426 
427 	*bits = 0;
428 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
429 	     block++, i++) {
430 		/* handles contig area across blocks */
431 		if (*bits) {
432 			*bits += block->left_free;
433 			if (*bits >= alloc_bits)
434 				return;
435 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
436 				continue;
437 		}
438 
439 		/* check block->contig_hint */
440 		*bits = ALIGN(block->contig_hint_start, align) -
441 			block->contig_hint_start;
442 		/*
443 		 * This uses the block offset to determine if this has been
444 		 * checked in the prior iteration.
445 		 */
446 		if (block->contig_hint &&
447 		    block->contig_hint_start >= block_off &&
448 		    block->contig_hint >= *bits + alloc_bits) {
449 			int start = pcpu_next_hint(block, alloc_bits);
450 
451 			*bits += alloc_bits + block->contig_hint_start -
452 				 start;
453 			*bit_off = pcpu_block_off_to_off(i, start);
454 			return;
455 		}
456 		/* reset to satisfy the second predicate above */
457 		block_off = 0;
458 
459 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
460 				 align);
461 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
463 		if (*bits >= alloc_bits)
464 			return;
465 	}
466 
467 	/* no valid offsets were found - fail condition */
468 	*bit_off = pcpu_chunk_map_bits(chunk);
469 }
470 
471 /*
472  * Metadata free area iterators.  These perform aggregation of free areas
473  * based on the metadata blocks and return the offset @bit_off and size in
474  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
475  * a fit is found for the allocation request.
476  */
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
478 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
479 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
480 	     (bit_off) += (bits) + 1,					\
481 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
482 
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
484 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 				  &(bits));				      \
486 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
487 	     (bit_off) += (bits),					      \
488 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
489 				  &(bits)))
490 
491 /**
492  * pcpu_mem_zalloc - allocate memory
493  * @size: bytes to allocate
494  * @gfp: allocation flags
495  *
496  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
497  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498  * This is to facilitate passing through whitelisted flags.  The
499  * returned memory is always zeroed.
500  *
501  * RETURNS:
502  * Pointer to the allocated area on success, NULL on failure.
503  */
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
505 {
506 	if (WARN_ON_ONCE(!slab_is_available()))
507 		return NULL;
508 
509 	if (size <= PAGE_SIZE)
510 		return kzalloc(size, gfp);
511 	else
512 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
513 }
514 
515 /**
516  * pcpu_mem_free - free memory
517  * @ptr: memory to free
518  *
519  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
520  */
521 static void pcpu_mem_free(void *ptr)
522 {
523 	kvfree(ptr);
524 }
525 
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
527 			      bool move_front)
528 {
529 	if (chunk != pcpu_reserved_chunk) {
530 		if (move_front)
531 			list_move(&chunk->list, &pcpu_slot[slot]);
532 		else
533 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
534 	}
535 }
536 
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
538 {
539 	__pcpu_chunk_move(chunk, slot, true);
540 }
541 
542 /**
543  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544  * @chunk: chunk of interest
545  * @oslot: the previous slot it was on
546  *
547  * This function is called after an allocation or free changed @chunk.
548  * New slot according to the changed state is determined and @chunk is
549  * moved to the slot.  Note that the reserved chunk is never put on
550  * chunk slots.
551  *
552  * CONTEXT:
553  * pcpu_lock.
554  */
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
556 {
557 	int nslot = pcpu_chunk_slot(chunk);
558 
559 	if (oslot != nslot)
560 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
561 }
562 
563 /*
564  * pcpu_update_empty_pages - update empty page counters
565  * @chunk: chunk of interest
566  * @nr: nr of empty pages
567  *
568  * This is used to keep track of the empty pages now based on the premise
569  * a md_block covers a page.  The hint update functions recognize if a block
570  * is made full or broken to calculate deltas for keeping track of free pages.
571  */
572 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
573 {
574 	chunk->nr_empty_pop_pages += nr;
575 	if (chunk != pcpu_reserved_chunk)
576 		pcpu_nr_empty_pop_pages += nr;
577 }
578 
579 /*
580  * pcpu_region_overlap - determines if two regions overlap
581  * @a: start of first region, inclusive
582  * @b: end of first region, exclusive
583  * @x: start of second region, inclusive
584  * @y: end of second region, exclusive
585  *
586  * This is used to determine if the hint region [a, b) overlaps with the
587  * allocated region [x, y).
588  */
589 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
590 {
591 	return (a < y) && (x < b);
592 }
593 
594 /**
595  * pcpu_block_update - updates a block given a free area
596  * @block: block of interest
597  * @start: start offset in block
598  * @end: end offset in block
599  *
600  * Updates a block given a known free area.  The region [start, end) is
601  * expected to be the entirety of the free area within a block.  Chooses
602  * the best starting offset if the contig hints are equal.
603  */
604 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
605 {
606 	int contig = end - start;
607 
608 	block->first_free = min(block->first_free, start);
609 	if (start == 0)
610 		block->left_free = contig;
611 
612 	if (end == block->nr_bits)
613 		block->right_free = contig;
614 
615 	if (contig > block->contig_hint) {
616 		/* promote the old contig_hint to be the new scan_hint */
617 		if (start > block->contig_hint_start) {
618 			if (block->contig_hint > block->scan_hint) {
619 				block->scan_hint_start =
620 					block->contig_hint_start;
621 				block->scan_hint = block->contig_hint;
622 			} else if (start < block->scan_hint_start) {
623 				/*
624 				 * The old contig_hint == scan_hint.  But, the
625 				 * new contig is larger so hold the invariant
626 				 * scan_hint_start < contig_hint_start.
627 				 */
628 				block->scan_hint = 0;
629 			}
630 		} else {
631 			block->scan_hint = 0;
632 		}
633 		block->contig_hint_start = start;
634 		block->contig_hint = contig;
635 	} else if (contig == block->contig_hint) {
636 		if (block->contig_hint_start &&
637 		    (!start ||
638 		     __ffs(start) > __ffs(block->contig_hint_start))) {
639 			/* start has a better alignment so use it */
640 			block->contig_hint_start = start;
641 			if (start < block->scan_hint_start &&
642 			    block->contig_hint > block->scan_hint)
643 				block->scan_hint = 0;
644 		} else if (start > block->scan_hint_start ||
645 			   block->contig_hint > block->scan_hint) {
646 			/*
647 			 * Knowing contig == contig_hint, update the scan_hint
648 			 * if it is farther than or larger than the current
649 			 * scan_hint.
650 			 */
651 			block->scan_hint_start = start;
652 			block->scan_hint = contig;
653 		}
654 	} else {
655 		/*
656 		 * The region is smaller than the contig_hint.  So only update
657 		 * the scan_hint if it is larger than or equal and farther than
658 		 * the current scan_hint.
659 		 */
660 		if ((start < block->contig_hint_start &&
661 		     (contig > block->scan_hint ||
662 		      (contig == block->scan_hint &&
663 		       start > block->scan_hint_start)))) {
664 			block->scan_hint_start = start;
665 			block->scan_hint = contig;
666 		}
667 	}
668 }
669 
670 /*
671  * pcpu_block_update_scan - update a block given a free area from a scan
672  * @chunk: chunk of interest
673  * @bit_off: chunk offset
674  * @bits: size of free area
675  *
676  * Finding the final allocation spot first goes through pcpu_find_block_fit()
677  * to find a block that can hold the allocation and then pcpu_alloc_area()
678  * where a scan is used.  When allocations require specific alignments,
679  * we can inadvertently create holes which will not be seen in the alloc
680  * or free paths.
681  *
682  * This takes a given free area hole and updates a block as it may change the
683  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
684  * from alignment.
685  */
686 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
687 				   int bits)
688 {
689 	int s_off = pcpu_off_to_block_off(bit_off);
690 	int e_off = s_off + bits;
691 	int s_index, l_bit;
692 	struct pcpu_block_md *block;
693 
694 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
695 		return;
696 
697 	s_index = pcpu_off_to_block_index(bit_off);
698 	block = chunk->md_blocks + s_index;
699 
700 	/* scan backwards in case of alignment skipping free bits */
701 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
702 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
703 
704 	pcpu_block_update(block, s_off, e_off);
705 }
706 
707 /**
708  * pcpu_chunk_refresh_hint - updates metadata about a chunk
709  * @chunk: chunk of interest
710  * @full_scan: if we should scan from the beginning
711  *
712  * Iterates over the metadata blocks to find the largest contig area.
713  * A full scan can be avoided on the allocation path as this is triggered
714  * if we broke the contig_hint.  In doing so, the scan_hint will be before
715  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
716  * be prevented on freeing as we want to find the largest area possibly
717  * spanning blocks.
718  */
719 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
720 {
721 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
722 	int bit_off, bits;
723 
724 	/* promote scan_hint to contig_hint */
725 	if (!full_scan && chunk_md->scan_hint) {
726 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
727 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
728 		chunk_md->contig_hint = chunk_md->scan_hint;
729 		chunk_md->scan_hint = 0;
730 	} else {
731 		bit_off = chunk_md->first_free;
732 		chunk_md->contig_hint = 0;
733 	}
734 
735 	bits = 0;
736 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
737 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
738 	}
739 }
740 
741 /**
742  * pcpu_block_refresh_hint
743  * @chunk: chunk of interest
744  * @index: index of the metadata block
745  *
746  * Scans over the block beginning at first_free and updates the block
747  * metadata accordingly.
748  */
749 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
750 {
751 	struct pcpu_block_md *block = chunk->md_blocks + index;
752 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
753 	int rs, re, start;	/* region start, region end */
754 
755 	/* promote scan_hint to contig_hint */
756 	if (block->scan_hint) {
757 		start = block->scan_hint_start + block->scan_hint;
758 		block->contig_hint_start = block->scan_hint_start;
759 		block->contig_hint = block->scan_hint;
760 		block->scan_hint = 0;
761 	} else {
762 		start = block->first_free;
763 		block->contig_hint = 0;
764 	}
765 
766 	block->right_free = 0;
767 
768 	/* iterate over free areas and update the contig hints */
769 	pcpu_for_each_unpop_region(alloc_map, rs, re, start,
770 				   PCPU_BITMAP_BLOCK_BITS) {
771 		pcpu_block_update(block, rs, re);
772 	}
773 }
774 
775 /**
776  * pcpu_block_update_hint_alloc - update hint on allocation path
777  * @chunk: chunk of interest
778  * @bit_off: chunk offset
779  * @bits: size of request
780  *
781  * Updates metadata for the allocation path.  The metadata only has to be
782  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
783  * scans are required if the block's contig hint is broken.
784  */
785 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
786 					 int bits)
787 {
788 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
789 	int nr_empty_pages = 0;
790 	struct pcpu_block_md *s_block, *e_block, *block;
791 	int s_index, e_index;	/* block indexes of the freed allocation */
792 	int s_off, e_off;	/* block offsets of the freed allocation */
793 
794 	/*
795 	 * Calculate per block offsets.
796 	 * The calculation uses an inclusive range, but the resulting offsets
797 	 * are [start, end).  e_index always points to the last block in the
798 	 * range.
799 	 */
800 	s_index = pcpu_off_to_block_index(bit_off);
801 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
802 	s_off = pcpu_off_to_block_off(bit_off);
803 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
804 
805 	s_block = chunk->md_blocks + s_index;
806 	e_block = chunk->md_blocks + e_index;
807 
808 	/*
809 	 * Update s_block.
810 	 * block->first_free must be updated if the allocation takes its place.
811 	 * If the allocation breaks the contig_hint, a scan is required to
812 	 * restore this hint.
813 	 */
814 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
815 		nr_empty_pages++;
816 
817 	if (s_off == s_block->first_free)
818 		s_block->first_free = find_next_zero_bit(
819 					pcpu_index_alloc_map(chunk, s_index),
820 					PCPU_BITMAP_BLOCK_BITS,
821 					s_off + bits);
822 
823 	if (pcpu_region_overlap(s_block->scan_hint_start,
824 				s_block->scan_hint_start + s_block->scan_hint,
825 				s_off,
826 				s_off + bits))
827 		s_block->scan_hint = 0;
828 
829 	if (pcpu_region_overlap(s_block->contig_hint_start,
830 				s_block->contig_hint_start +
831 				s_block->contig_hint,
832 				s_off,
833 				s_off + bits)) {
834 		/* block contig hint is broken - scan to fix it */
835 		if (!s_off)
836 			s_block->left_free = 0;
837 		pcpu_block_refresh_hint(chunk, s_index);
838 	} else {
839 		/* update left and right contig manually */
840 		s_block->left_free = min(s_block->left_free, s_off);
841 		if (s_index == e_index)
842 			s_block->right_free = min_t(int, s_block->right_free,
843 					PCPU_BITMAP_BLOCK_BITS - e_off);
844 		else
845 			s_block->right_free = 0;
846 	}
847 
848 	/*
849 	 * Update e_block.
850 	 */
851 	if (s_index != e_index) {
852 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
853 			nr_empty_pages++;
854 
855 		/*
856 		 * When the allocation is across blocks, the end is along
857 		 * the left part of the e_block.
858 		 */
859 		e_block->first_free = find_next_zero_bit(
860 				pcpu_index_alloc_map(chunk, e_index),
861 				PCPU_BITMAP_BLOCK_BITS, e_off);
862 
863 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
864 			/* reset the block */
865 			e_block++;
866 		} else {
867 			if (e_off > e_block->scan_hint_start)
868 				e_block->scan_hint = 0;
869 
870 			e_block->left_free = 0;
871 			if (e_off > e_block->contig_hint_start) {
872 				/* contig hint is broken - scan to fix it */
873 				pcpu_block_refresh_hint(chunk, e_index);
874 			} else {
875 				e_block->right_free =
876 					min_t(int, e_block->right_free,
877 					      PCPU_BITMAP_BLOCK_BITS - e_off);
878 			}
879 		}
880 
881 		/* update in-between md_blocks */
882 		nr_empty_pages += (e_index - s_index - 1);
883 		for (block = s_block + 1; block < e_block; block++) {
884 			block->scan_hint = 0;
885 			block->contig_hint = 0;
886 			block->left_free = 0;
887 			block->right_free = 0;
888 		}
889 	}
890 
891 	if (nr_empty_pages)
892 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
893 
894 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
895 				chunk_md->scan_hint_start +
896 				chunk_md->scan_hint,
897 				bit_off,
898 				bit_off + bits))
899 		chunk_md->scan_hint = 0;
900 
901 	/*
902 	 * The only time a full chunk scan is required is if the chunk
903 	 * contig hint is broken.  Otherwise, it means a smaller space
904 	 * was used and therefore the chunk contig hint is still correct.
905 	 */
906 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
907 				chunk_md->contig_hint_start +
908 				chunk_md->contig_hint,
909 				bit_off,
910 				bit_off + bits))
911 		pcpu_chunk_refresh_hint(chunk, false);
912 }
913 
914 /**
915  * pcpu_block_update_hint_free - updates the block hints on the free path
916  * @chunk: chunk of interest
917  * @bit_off: chunk offset
918  * @bits: size of request
919  *
920  * Updates metadata for the allocation path.  This avoids a blind block
921  * refresh by making use of the block contig hints.  If this fails, it scans
922  * forward and backward to determine the extent of the free area.  This is
923  * capped at the boundary of blocks.
924  *
925  * A chunk update is triggered if a page becomes free, a block becomes free,
926  * or the free spans across blocks.  This tradeoff is to minimize iterating
927  * over the block metadata to update chunk_md->contig_hint.
928  * chunk_md->contig_hint may be off by up to a page, but it will never be more
929  * than the available space.  If the contig hint is contained in one block, it
930  * will be accurate.
931  */
932 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
933 					int bits)
934 {
935 	int nr_empty_pages = 0;
936 	struct pcpu_block_md *s_block, *e_block, *block;
937 	int s_index, e_index;	/* block indexes of the freed allocation */
938 	int s_off, e_off;	/* block offsets of the freed allocation */
939 	int start, end;		/* start and end of the whole free area */
940 
941 	/*
942 	 * Calculate per block offsets.
943 	 * The calculation uses an inclusive range, but the resulting offsets
944 	 * are [start, end).  e_index always points to the last block in the
945 	 * range.
946 	 */
947 	s_index = pcpu_off_to_block_index(bit_off);
948 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
949 	s_off = pcpu_off_to_block_off(bit_off);
950 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
951 
952 	s_block = chunk->md_blocks + s_index;
953 	e_block = chunk->md_blocks + e_index;
954 
955 	/*
956 	 * Check if the freed area aligns with the block->contig_hint.
957 	 * If it does, then the scan to find the beginning/end of the
958 	 * larger free area can be avoided.
959 	 *
960 	 * start and end refer to beginning and end of the free area
961 	 * within each their respective blocks.  This is not necessarily
962 	 * the entire free area as it may span blocks past the beginning
963 	 * or end of the block.
964 	 */
965 	start = s_off;
966 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
967 		start = s_block->contig_hint_start;
968 	} else {
969 		/*
970 		 * Scan backwards to find the extent of the free area.
971 		 * find_last_bit returns the starting bit, so if the start bit
972 		 * is returned, that means there was no last bit and the
973 		 * remainder of the chunk is free.
974 		 */
975 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
976 					  start);
977 		start = (start == l_bit) ? 0 : l_bit + 1;
978 	}
979 
980 	end = e_off;
981 	if (e_off == e_block->contig_hint_start)
982 		end = e_block->contig_hint_start + e_block->contig_hint;
983 	else
984 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
985 				    PCPU_BITMAP_BLOCK_BITS, end);
986 
987 	/* update s_block */
988 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
989 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
990 		nr_empty_pages++;
991 	pcpu_block_update(s_block, start, e_off);
992 
993 	/* freeing in the same block */
994 	if (s_index != e_index) {
995 		/* update e_block */
996 		if (end == PCPU_BITMAP_BLOCK_BITS)
997 			nr_empty_pages++;
998 		pcpu_block_update(e_block, 0, end);
999 
1000 		/* reset md_blocks in the middle */
1001 		nr_empty_pages += (e_index - s_index - 1);
1002 		for (block = s_block + 1; block < e_block; block++) {
1003 			block->first_free = 0;
1004 			block->scan_hint = 0;
1005 			block->contig_hint_start = 0;
1006 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1007 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1008 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1009 		}
1010 	}
1011 
1012 	if (nr_empty_pages)
1013 		pcpu_update_empty_pages(chunk, nr_empty_pages);
1014 
1015 	/*
1016 	 * Refresh chunk metadata when the free makes a block free or spans
1017 	 * across blocks.  The contig_hint may be off by up to a page, but if
1018 	 * the contig_hint is contained in a block, it will be accurate with
1019 	 * the else condition below.
1020 	 */
1021 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1022 		pcpu_chunk_refresh_hint(chunk, true);
1023 	else
1024 		pcpu_block_update(&chunk->chunk_md,
1025 				  pcpu_block_off_to_off(s_index, start),
1026 				  end);
1027 }
1028 
1029 /**
1030  * pcpu_is_populated - determines if the region is populated
1031  * @chunk: chunk of interest
1032  * @bit_off: chunk offset
1033  * @bits: size of area
1034  * @next_off: return value for the next offset to start searching
1035  *
1036  * For atomic allocations, check if the backing pages are populated.
1037  *
1038  * RETURNS:
1039  * Bool if the backing pages are populated.
1040  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1041  */
1042 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1043 			      int *next_off)
1044 {
1045 	int page_start, page_end, rs, re;
1046 
1047 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1048 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1049 
1050 	rs = page_start;
1051 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
1052 	if (rs >= page_end)
1053 		return true;
1054 
1055 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1056 	return false;
1057 }
1058 
1059 /**
1060  * pcpu_find_block_fit - finds the block index to start searching
1061  * @chunk: chunk of interest
1062  * @alloc_bits: size of request in allocation units
1063  * @align: alignment of area (max PAGE_SIZE bytes)
1064  * @pop_only: use populated regions only
1065  *
1066  * Given a chunk and an allocation spec, find the offset to begin searching
1067  * for a free region.  This iterates over the bitmap metadata blocks to
1068  * find an offset that will be guaranteed to fit the requirements.  It is
1069  * not quite first fit as if the allocation does not fit in the contig hint
1070  * of a block or chunk, it is skipped.  This errs on the side of caution
1071  * to prevent excess iteration.  Poor alignment can cause the allocator to
1072  * skip over blocks and chunks that have valid free areas.
1073  *
1074  * RETURNS:
1075  * The offset in the bitmap to begin searching.
1076  * -1 if no offset is found.
1077  */
1078 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1079 			       size_t align, bool pop_only)
1080 {
1081 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1082 	int bit_off, bits, next_off;
1083 
1084 	/*
1085 	 * Check to see if the allocation can fit in the chunk's contig hint.
1086 	 * This is an optimization to prevent scanning by assuming if it
1087 	 * cannot fit in the global hint, there is memory pressure and creating
1088 	 * a new chunk would happen soon.
1089 	 */
1090 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1091 		  chunk_md->contig_hint_start;
1092 	if (bit_off + alloc_bits > chunk_md->contig_hint)
1093 		return -1;
1094 
1095 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1096 	bits = 0;
1097 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1098 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1099 						   &next_off))
1100 			break;
1101 
1102 		bit_off = next_off;
1103 		bits = 0;
1104 	}
1105 
1106 	if (bit_off == pcpu_chunk_map_bits(chunk))
1107 		return -1;
1108 
1109 	return bit_off;
1110 }
1111 
1112 /*
1113  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1114  * @map: the address to base the search on
1115  * @size: the bitmap size in bits
1116  * @start: the bitnumber to start searching at
1117  * @nr: the number of zeroed bits we're looking for
1118  * @align_mask: alignment mask for zero area
1119  * @largest_off: offset of the largest area skipped
1120  * @largest_bits: size of the largest area skipped
1121  *
1122  * The @align_mask should be one less than a power of 2.
1123  *
1124  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1125  * the largest area that was skipped.  This is imperfect, but in general is
1126  * good enough.  The largest remembered region is the largest failed region
1127  * seen.  This does not include anything we possibly skipped due to alignment.
1128  * pcpu_block_update_scan() does scan backwards to try and recover what was
1129  * lost to alignment.  While this can cause scanning to miss earlier possible
1130  * free areas, smaller allocations will eventually fill those holes.
1131  */
1132 static unsigned long pcpu_find_zero_area(unsigned long *map,
1133 					 unsigned long size,
1134 					 unsigned long start,
1135 					 unsigned long nr,
1136 					 unsigned long align_mask,
1137 					 unsigned long *largest_off,
1138 					 unsigned long *largest_bits)
1139 {
1140 	unsigned long index, end, i, area_off, area_bits;
1141 again:
1142 	index = find_next_zero_bit(map, size, start);
1143 
1144 	/* Align allocation */
1145 	index = __ALIGN_MASK(index, align_mask);
1146 	area_off = index;
1147 
1148 	end = index + nr;
1149 	if (end > size)
1150 		return end;
1151 	i = find_next_bit(map, end, index);
1152 	if (i < end) {
1153 		area_bits = i - area_off;
1154 		/* remember largest unused area with best alignment */
1155 		if (area_bits > *largest_bits ||
1156 		    (area_bits == *largest_bits && *largest_off &&
1157 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1158 			*largest_off = area_off;
1159 			*largest_bits = area_bits;
1160 		}
1161 
1162 		start = i + 1;
1163 		goto again;
1164 	}
1165 	return index;
1166 }
1167 
1168 /**
1169  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1170  * @chunk: chunk of interest
1171  * @alloc_bits: size of request in allocation units
1172  * @align: alignment of area (max PAGE_SIZE)
1173  * @start: bit_off to start searching
1174  *
1175  * This function takes in a @start offset to begin searching to fit an
1176  * allocation of @alloc_bits with alignment @align.  It needs to scan
1177  * the allocation map because if it fits within the block's contig hint,
1178  * @start will be block->first_free. This is an attempt to fill the
1179  * allocation prior to breaking the contig hint.  The allocation and
1180  * boundary maps are updated accordingly if it confirms a valid
1181  * free area.
1182  *
1183  * RETURNS:
1184  * Allocated addr offset in @chunk on success.
1185  * -1 if no matching area is found.
1186  */
1187 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1188 			   size_t align, int start)
1189 {
1190 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1191 	size_t align_mask = (align) ? (align - 1) : 0;
1192 	unsigned long area_off = 0, area_bits = 0;
1193 	int bit_off, end, oslot;
1194 
1195 	lockdep_assert_held(&pcpu_lock);
1196 
1197 	oslot = pcpu_chunk_slot(chunk);
1198 
1199 	/*
1200 	 * Search to find a fit.
1201 	 */
1202 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1203 		    pcpu_chunk_map_bits(chunk));
1204 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1205 				      align_mask, &area_off, &area_bits);
1206 	if (bit_off >= end)
1207 		return -1;
1208 
1209 	if (area_bits)
1210 		pcpu_block_update_scan(chunk, area_off, area_bits);
1211 
1212 	/* update alloc map */
1213 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1214 
1215 	/* update boundary map */
1216 	set_bit(bit_off, chunk->bound_map);
1217 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1218 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1219 
1220 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1221 
1222 	/* update first free bit */
1223 	if (bit_off == chunk_md->first_free)
1224 		chunk_md->first_free = find_next_zero_bit(
1225 					chunk->alloc_map,
1226 					pcpu_chunk_map_bits(chunk),
1227 					bit_off + alloc_bits);
1228 
1229 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1230 
1231 	pcpu_chunk_relocate(chunk, oslot);
1232 
1233 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1234 }
1235 
1236 /**
1237  * pcpu_free_area - frees the corresponding offset
1238  * @chunk: chunk of interest
1239  * @off: addr offset into chunk
1240  *
1241  * This function determines the size of an allocation to free using
1242  * the boundary bitmap and clears the allocation map.
1243  */
1244 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1245 {
1246 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1247 	int bit_off, bits, end, oslot;
1248 
1249 	lockdep_assert_held(&pcpu_lock);
1250 	pcpu_stats_area_dealloc(chunk);
1251 
1252 	oslot = pcpu_chunk_slot(chunk);
1253 
1254 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1255 
1256 	/* find end index */
1257 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1258 			    bit_off + 1);
1259 	bits = end - bit_off;
1260 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1261 
1262 	/* update metadata */
1263 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1264 
1265 	/* update first free bit */
1266 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1267 
1268 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1269 
1270 	pcpu_chunk_relocate(chunk, oslot);
1271 }
1272 
1273 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1274 {
1275 	block->scan_hint = 0;
1276 	block->contig_hint = nr_bits;
1277 	block->left_free = nr_bits;
1278 	block->right_free = nr_bits;
1279 	block->first_free = 0;
1280 	block->nr_bits = nr_bits;
1281 }
1282 
1283 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1284 {
1285 	struct pcpu_block_md *md_block;
1286 
1287 	/* init the chunk's block */
1288 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1289 
1290 	for (md_block = chunk->md_blocks;
1291 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1292 	     md_block++)
1293 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1294 }
1295 
1296 /**
1297  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1298  * @tmp_addr: the start of the region served
1299  * @map_size: size of the region served
1300  *
1301  * This is responsible for creating the chunks that serve the first chunk.  The
1302  * base_addr is page aligned down of @tmp_addr while the region end is page
1303  * aligned up.  Offsets are kept track of to determine the region served. All
1304  * this is done to appease the bitmap allocator in avoiding partial blocks.
1305  *
1306  * RETURNS:
1307  * Chunk serving the region at @tmp_addr of @map_size.
1308  */
1309 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1310 							 int map_size)
1311 {
1312 	struct pcpu_chunk *chunk;
1313 	unsigned long aligned_addr, lcm_align;
1314 	int start_offset, offset_bits, region_size, region_bits;
1315 	size_t alloc_size;
1316 
1317 	/* region calculations */
1318 	aligned_addr = tmp_addr & PAGE_MASK;
1319 
1320 	start_offset = tmp_addr - aligned_addr;
1321 
1322 	/*
1323 	 * Align the end of the region with the LCM of PAGE_SIZE and
1324 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1325 	 * the other.
1326 	 */
1327 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1328 	region_size = ALIGN(start_offset + map_size, lcm_align);
1329 
1330 	/* allocate chunk */
1331 	alloc_size = sizeof(struct pcpu_chunk) +
1332 		BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1333 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1334 	if (!chunk)
1335 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1336 		      alloc_size);
1337 
1338 	INIT_LIST_HEAD(&chunk->list);
1339 
1340 	chunk->base_addr = (void *)aligned_addr;
1341 	chunk->start_offset = start_offset;
1342 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1343 
1344 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1345 	region_bits = pcpu_chunk_map_bits(chunk);
1346 
1347 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1348 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1349 	if (!chunk->alloc_map)
1350 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1351 		      alloc_size);
1352 
1353 	alloc_size =
1354 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1355 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1356 	if (!chunk->bound_map)
1357 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1358 		      alloc_size);
1359 
1360 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1361 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1362 	if (!chunk->md_blocks)
1363 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1364 		      alloc_size);
1365 
1366 	pcpu_init_md_blocks(chunk);
1367 
1368 	/* manage populated page bitmap */
1369 	chunk->immutable = true;
1370 	bitmap_fill(chunk->populated, chunk->nr_pages);
1371 	chunk->nr_populated = chunk->nr_pages;
1372 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1373 
1374 	chunk->free_bytes = map_size;
1375 
1376 	if (chunk->start_offset) {
1377 		/* hide the beginning of the bitmap */
1378 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1379 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1380 		set_bit(0, chunk->bound_map);
1381 		set_bit(offset_bits, chunk->bound_map);
1382 
1383 		chunk->chunk_md.first_free = offset_bits;
1384 
1385 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1386 	}
1387 
1388 	if (chunk->end_offset) {
1389 		/* hide the end of the bitmap */
1390 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1391 		bitmap_set(chunk->alloc_map,
1392 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1393 			   offset_bits);
1394 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1395 			chunk->bound_map);
1396 		set_bit(region_bits, chunk->bound_map);
1397 
1398 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1399 					     - offset_bits, offset_bits);
1400 	}
1401 
1402 	return chunk;
1403 }
1404 
1405 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1406 {
1407 	struct pcpu_chunk *chunk;
1408 	int region_bits;
1409 
1410 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1411 	if (!chunk)
1412 		return NULL;
1413 
1414 	INIT_LIST_HEAD(&chunk->list);
1415 	chunk->nr_pages = pcpu_unit_pages;
1416 	region_bits = pcpu_chunk_map_bits(chunk);
1417 
1418 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1419 					   sizeof(chunk->alloc_map[0]), gfp);
1420 	if (!chunk->alloc_map)
1421 		goto alloc_map_fail;
1422 
1423 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1424 					   sizeof(chunk->bound_map[0]), gfp);
1425 	if (!chunk->bound_map)
1426 		goto bound_map_fail;
1427 
1428 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1429 					   sizeof(chunk->md_blocks[0]), gfp);
1430 	if (!chunk->md_blocks)
1431 		goto md_blocks_fail;
1432 
1433 	pcpu_init_md_blocks(chunk);
1434 
1435 	/* init metadata */
1436 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1437 
1438 	return chunk;
1439 
1440 md_blocks_fail:
1441 	pcpu_mem_free(chunk->bound_map);
1442 bound_map_fail:
1443 	pcpu_mem_free(chunk->alloc_map);
1444 alloc_map_fail:
1445 	pcpu_mem_free(chunk);
1446 
1447 	return NULL;
1448 }
1449 
1450 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1451 {
1452 	if (!chunk)
1453 		return;
1454 	pcpu_mem_free(chunk->md_blocks);
1455 	pcpu_mem_free(chunk->bound_map);
1456 	pcpu_mem_free(chunk->alloc_map);
1457 	pcpu_mem_free(chunk);
1458 }
1459 
1460 /**
1461  * pcpu_chunk_populated - post-population bookkeeping
1462  * @chunk: pcpu_chunk which got populated
1463  * @page_start: the start page
1464  * @page_end: the end page
1465  *
1466  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1467  * the bookkeeping information accordingly.  Must be called after each
1468  * successful population.
1469  *
1470  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1471  * is to serve an allocation in that area.
1472  */
1473 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1474 				 int page_end)
1475 {
1476 	int nr = page_end - page_start;
1477 
1478 	lockdep_assert_held(&pcpu_lock);
1479 
1480 	bitmap_set(chunk->populated, page_start, nr);
1481 	chunk->nr_populated += nr;
1482 	pcpu_nr_populated += nr;
1483 
1484 	pcpu_update_empty_pages(chunk, nr);
1485 }
1486 
1487 /**
1488  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1489  * @chunk: pcpu_chunk which got depopulated
1490  * @page_start: the start page
1491  * @page_end: the end page
1492  *
1493  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1494  * Update the bookkeeping information accordingly.  Must be called after
1495  * each successful depopulation.
1496  */
1497 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1498 				   int page_start, int page_end)
1499 {
1500 	int nr = page_end - page_start;
1501 
1502 	lockdep_assert_held(&pcpu_lock);
1503 
1504 	bitmap_clear(chunk->populated, page_start, nr);
1505 	chunk->nr_populated -= nr;
1506 	pcpu_nr_populated -= nr;
1507 
1508 	pcpu_update_empty_pages(chunk, -nr);
1509 }
1510 
1511 /*
1512  * Chunk management implementation.
1513  *
1514  * To allow different implementations, chunk alloc/free and
1515  * [de]population are implemented in a separate file which is pulled
1516  * into this file and compiled together.  The following functions
1517  * should be implemented.
1518  *
1519  * pcpu_populate_chunk		- populate the specified range of a chunk
1520  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1521  * pcpu_create_chunk		- create a new chunk
1522  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1523  * pcpu_addr_to_page		- translate address to physical address
1524  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1525  */
1526 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1527 			       int page_start, int page_end, gfp_t gfp);
1528 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1529 				  int page_start, int page_end);
1530 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1531 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1532 static struct page *pcpu_addr_to_page(void *addr);
1533 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1534 
1535 #ifdef CONFIG_NEED_PER_CPU_KM
1536 #include "percpu-km.c"
1537 #else
1538 #include "percpu-vm.c"
1539 #endif
1540 
1541 /**
1542  * pcpu_chunk_addr_search - determine chunk containing specified address
1543  * @addr: address for which the chunk needs to be determined.
1544  *
1545  * This is an internal function that handles all but static allocations.
1546  * Static percpu address values should never be passed into the allocator.
1547  *
1548  * RETURNS:
1549  * The address of the found chunk.
1550  */
1551 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1552 {
1553 	/* is it in the dynamic region (first chunk)? */
1554 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1555 		return pcpu_first_chunk;
1556 
1557 	/* is it in the reserved region? */
1558 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1559 		return pcpu_reserved_chunk;
1560 
1561 	/*
1562 	 * The address is relative to unit0 which might be unused and
1563 	 * thus unmapped.  Offset the address to the unit space of the
1564 	 * current processor before looking it up in the vmalloc
1565 	 * space.  Note that any possible cpu id can be used here, so
1566 	 * there's no need to worry about preemption or cpu hotplug.
1567 	 */
1568 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1569 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1570 }
1571 
1572 /**
1573  * pcpu_alloc - the percpu allocator
1574  * @size: size of area to allocate in bytes
1575  * @align: alignment of area (max PAGE_SIZE)
1576  * @reserved: allocate from the reserved chunk if available
1577  * @gfp: allocation flags
1578  *
1579  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1580  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1581  * then no warning will be triggered on invalid or failed allocation
1582  * requests.
1583  *
1584  * RETURNS:
1585  * Percpu pointer to the allocated area on success, NULL on failure.
1586  */
1587 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1588 				 gfp_t gfp)
1589 {
1590 	/* whitelisted flags that can be passed to the backing allocators */
1591 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1592 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1593 	bool do_warn = !(gfp & __GFP_NOWARN);
1594 	static int warn_limit = 10;
1595 	struct pcpu_chunk *chunk, *next;
1596 	const char *err;
1597 	int slot, off, cpu, ret;
1598 	unsigned long flags;
1599 	void __percpu *ptr;
1600 	size_t bits, bit_align;
1601 
1602 	/*
1603 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1604 	 * therefore alignment must be a minimum of that many bytes.
1605 	 * An allocation may have internal fragmentation from rounding up
1606 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1607 	 */
1608 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1609 		align = PCPU_MIN_ALLOC_SIZE;
1610 
1611 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1612 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1613 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1614 
1615 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1616 		     !is_power_of_2(align))) {
1617 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1618 		     size, align);
1619 		return NULL;
1620 	}
1621 
1622 	if (!is_atomic) {
1623 		/*
1624 		 * pcpu_balance_workfn() allocates memory under this mutex,
1625 		 * and it may wait for memory reclaim. Allow current task
1626 		 * to become OOM victim, in case of memory pressure.
1627 		 */
1628 		if (gfp & __GFP_NOFAIL)
1629 			mutex_lock(&pcpu_alloc_mutex);
1630 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1631 			return NULL;
1632 	}
1633 
1634 	spin_lock_irqsave(&pcpu_lock, flags);
1635 
1636 	/* serve reserved allocations from the reserved chunk if available */
1637 	if (reserved && pcpu_reserved_chunk) {
1638 		chunk = pcpu_reserved_chunk;
1639 
1640 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1641 		if (off < 0) {
1642 			err = "alloc from reserved chunk failed";
1643 			goto fail_unlock;
1644 		}
1645 
1646 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1647 		if (off >= 0)
1648 			goto area_found;
1649 
1650 		err = "alloc from reserved chunk failed";
1651 		goto fail_unlock;
1652 	}
1653 
1654 restart:
1655 	/* search through normal chunks */
1656 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1657 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1658 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1659 						  is_atomic);
1660 			if (off < 0) {
1661 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1662 					pcpu_chunk_move(chunk, 0);
1663 				continue;
1664 			}
1665 
1666 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1667 			if (off >= 0)
1668 				goto area_found;
1669 
1670 		}
1671 	}
1672 
1673 	spin_unlock_irqrestore(&pcpu_lock, flags);
1674 
1675 	/*
1676 	 * No space left.  Create a new chunk.  We don't want multiple
1677 	 * tasks to create chunks simultaneously.  Serialize and create iff
1678 	 * there's still no empty chunk after grabbing the mutex.
1679 	 */
1680 	if (is_atomic) {
1681 		err = "atomic alloc failed, no space left";
1682 		goto fail;
1683 	}
1684 
1685 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1686 		chunk = pcpu_create_chunk(pcpu_gfp);
1687 		if (!chunk) {
1688 			err = "failed to allocate new chunk";
1689 			goto fail;
1690 		}
1691 
1692 		spin_lock_irqsave(&pcpu_lock, flags);
1693 		pcpu_chunk_relocate(chunk, -1);
1694 	} else {
1695 		spin_lock_irqsave(&pcpu_lock, flags);
1696 	}
1697 
1698 	goto restart;
1699 
1700 area_found:
1701 	pcpu_stats_area_alloc(chunk, size);
1702 	spin_unlock_irqrestore(&pcpu_lock, flags);
1703 
1704 	/* populate if not all pages are already there */
1705 	if (!is_atomic) {
1706 		int page_start, page_end, rs, re;
1707 
1708 		page_start = PFN_DOWN(off);
1709 		page_end = PFN_UP(off + size);
1710 
1711 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1712 					   page_start, page_end) {
1713 			WARN_ON(chunk->immutable);
1714 
1715 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1716 
1717 			spin_lock_irqsave(&pcpu_lock, flags);
1718 			if (ret) {
1719 				pcpu_free_area(chunk, off);
1720 				err = "failed to populate";
1721 				goto fail_unlock;
1722 			}
1723 			pcpu_chunk_populated(chunk, rs, re);
1724 			spin_unlock_irqrestore(&pcpu_lock, flags);
1725 		}
1726 
1727 		mutex_unlock(&pcpu_alloc_mutex);
1728 	}
1729 
1730 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1731 		pcpu_schedule_balance_work();
1732 
1733 	/* clear the areas and return address relative to base address */
1734 	for_each_possible_cpu(cpu)
1735 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1736 
1737 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1738 	kmemleak_alloc_percpu(ptr, size, gfp);
1739 
1740 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1741 			chunk->base_addr, off, ptr);
1742 
1743 	return ptr;
1744 
1745 fail_unlock:
1746 	spin_unlock_irqrestore(&pcpu_lock, flags);
1747 fail:
1748 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1749 
1750 	if (!is_atomic && do_warn && warn_limit) {
1751 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1752 			size, align, is_atomic, err);
1753 		dump_stack();
1754 		if (!--warn_limit)
1755 			pr_info("limit reached, disable warning\n");
1756 	}
1757 	if (is_atomic) {
1758 		/* see the flag handling in pcpu_blance_workfn() */
1759 		pcpu_atomic_alloc_failed = true;
1760 		pcpu_schedule_balance_work();
1761 	} else {
1762 		mutex_unlock(&pcpu_alloc_mutex);
1763 	}
1764 	return NULL;
1765 }
1766 
1767 /**
1768  * __alloc_percpu_gfp - allocate dynamic percpu area
1769  * @size: size of area to allocate in bytes
1770  * @align: alignment of area (max PAGE_SIZE)
1771  * @gfp: allocation flags
1772  *
1773  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1774  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1775  * be called from any context but is a lot more likely to fail. If @gfp
1776  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1777  * allocation requests.
1778  *
1779  * RETURNS:
1780  * Percpu pointer to the allocated area on success, NULL on failure.
1781  */
1782 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1783 {
1784 	return pcpu_alloc(size, align, false, gfp);
1785 }
1786 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1787 
1788 /**
1789  * __alloc_percpu - allocate dynamic percpu area
1790  * @size: size of area to allocate in bytes
1791  * @align: alignment of area (max PAGE_SIZE)
1792  *
1793  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1794  */
1795 void __percpu *__alloc_percpu(size_t size, size_t align)
1796 {
1797 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1798 }
1799 EXPORT_SYMBOL_GPL(__alloc_percpu);
1800 
1801 /**
1802  * __alloc_reserved_percpu - allocate reserved percpu area
1803  * @size: size of area to allocate in bytes
1804  * @align: alignment of area (max PAGE_SIZE)
1805  *
1806  * Allocate zero-filled percpu area of @size bytes aligned at @align
1807  * from reserved percpu area if arch has set it up; otherwise,
1808  * allocation is served from the same dynamic area.  Might sleep.
1809  * Might trigger writeouts.
1810  *
1811  * CONTEXT:
1812  * Does GFP_KERNEL allocation.
1813  *
1814  * RETURNS:
1815  * Percpu pointer to the allocated area on success, NULL on failure.
1816  */
1817 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1818 {
1819 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1820 }
1821 
1822 /**
1823  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1824  * @work: unused
1825  *
1826  * Reclaim all fully free chunks except for the first one.  This is also
1827  * responsible for maintaining the pool of empty populated pages.  However,
1828  * it is possible that this is called when physical memory is scarce causing
1829  * OOM killer to be triggered.  We should avoid doing so until an actual
1830  * allocation causes the failure as it is possible that requests can be
1831  * serviced from already backed regions.
1832  */
1833 static void pcpu_balance_workfn(struct work_struct *work)
1834 {
1835 	/* gfp flags passed to underlying allocators */
1836 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1837 	LIST_HEAD(to_free);
1838 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1839 	struct pcpu_chunk *chunk, *next;
1840 	int slot, nr_to_pop, ret;
1841 
1842 	/*
1843 	 * There's no reason to keep around multiple unused chunks and VM
1844 	 * areas can be scarce.  Destroy all free chunks except for one.
1845 	 */
1846 	mutex_lock(&pcpu_alloc_mutex);
1847 	spin_lock_irq(&pcpu_lock);
1848 
1849 	list_for_each_entry_safe(chunk, next, free_head, list) {
1850 		WARN_ON(chunk->immutable);
1851 
1852 		/* spare the first one */
1853 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1854 			continue;
1855 
1856 		list_move(&chunk->list, &to_free);
1857 	}
1858 
1859 	spin_unlock_irq(&pcpu_lock);
1860 
1861 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1862 		int rs, re;
1863 
1864 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1865 					 chunk->nr_pages) {
1866 			pcpu_depopulate_chunk(chunk, rs, re);
1867 			spin_lock_irq(&pcpu_lock);
1868 			pcpu_chunk_depopulated(chunk, rs, re);
1869 			spin_unlock_irq(&pcpu_lock);
1870 		}
1871 		pcpu_destroy_chunk(chunk);
1872 		cond_resched();
1873 	}
1874 
1875 	/*
1876 	 * Ensure there are certain number of free populated pages for
1877 	 * atomic allocs.  Fill up from the most packed so that atomic
1878 	 * allocs don't increase fragmentation.  If atomic allocation
1879 	 * failed previously, always populate the maximum amount.  This
1880 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1881 	 * failing indefinitely; however, large atomic allocs are not
1882 	 * something we support properly and can be highly unreliable and
1883 	 * inefficient.
1884 	 */
1885 retry_pop:
1886 	if (pcpu_atomic_alloc_failed) {
1887 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1888 		/* best effort anyway, don't worry about synchronization */
1889 		pcpu_atomic_alloc_failed = false;
1890 	} else {
1891 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1892 				  pcpu_nr_empty_pop_pages,
1893 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1894 	}
1895 
1896 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1897 		int nr_unpop = 0, rs, re;
1898 
1899 		if (!nr_to_pop)
1900 			break;
1901 
1902 		spin_lock_irq(&pcpu_lock);
1903 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1904 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1905 			if (nr_unpop)
1906 				break;
1907 		}
1908 		spin_unlock_irq(&pcpu_lock);
1909 
1910 		if (!nr_unpop)
1911 			continue;
1912 
1913 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1914 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1915 					   chunk->nr_pages) {
1916 			int nr = min(re - rs, nr_to_pop);
1917 
1918 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1919 			if (!ret) {
1920 				nr_to_pop -= nr;
1921 				spin_lock_irq(&pcpu_lock);
1922 				pcpu_chunk_populated(chunk, rs, rs + nr);
1923 				spin_unlock_irq(&pcpu_lock);
1924 			} else {
1925 				nr_to_pop = 0;
1926 			}
1927 
1928 			if (!nr_to_pop)
1929 				break;
1930 		}
1931 	}
1932 
1933 	if (nr_to_pop) {
1934 		/* ran out of chunks to populate, create a new one and retry */
1935 		chunk = pcpu_create_chunk(gfp);
1936 		if (chunk) {
1937 			spin_lock_irq(&pcpu_lock);
1938 			pcpu_chunk_relocate(chunk, -1);
1939 			spin_unlock_irq(&pcpu_lock);
1940 			goto retry_pop;
1941 		}
1942 	}
1943 
1944 	mutex_unlock(&pcpu_alloc_mutex);
1945 }
1946 
1947 /**
1948  * free_percpu - free percpu area
1949  * @ptr: pointer to area to free
1950  *
1951  * Free percpu area @ptr.
1952  *
1953  * CONTEXT:
1954  * Can be called from atomic context.
1955  */
1956 void free_percpu(void __percpu *ptr)
1957 {
1958 	void *addr;
1959 	struct pcpu_chunk *chunk;
1960 	unsigned long flags;
1961 	int off;
1962 	bool need_balance = false;
1963 
1964 	if (!ptr)
1965 		return;
1966 
1967 	kmemleak_free_percpu(ptr);
1968 
1969 	addr = __pcpu_ptr_to_addr(ptr);
1970 
1971 	spin_lock_irqsave(&pcpu_lock, flags);
1972 
1973 	chunk = pcpu_chunk_addr_search(addr);
1974 	off = addr - chunk->base_addr;
1975 
1976 	pcpu_free_area(chunk, off);
1977 
1978 	/* if there are more than one fully free chunks, wake up grim reaper */
1979 	if (chunk->free_bytes == pcpu_unit_size) {
1980 		struct pcpu_chunk *pos;
1981 
1982 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1983 			if (pos != chunk) {
1984 				need_balance = true;
1985 				break;
1986 			}
1987 	}
1988 
1989 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1990 
1991 	spin_unlock_irqrestore(&pcpu_lock, flags);
1992 
1993 	if (need_balance)
1994 		pcpu_schedule_balance_work();
1995 }
1996 EXPORT_SYMBOL_GPL(free_percpu);
1997 
1998 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1999 {
2000 #ifdef CONFIG_SMP
2001 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2002 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2003 	unsigned int cpu;
2004 
2005 	for_each_possible_cpu(cpu) {
2006 		void *start = per_cpu_ptr(base, cpu);
2007 		void *va = (void *)addr;
2008 
2009 		if (va >= start && va < start + static_size) {
2010 			if (can_addr) {
2011 				*can_addr = (unsigned long) (va - start);
2012 				*can_addr += (unsigned long)
2013 					per_cpu_ptr(base, get_boot_cpu_id());
2014 			}
2015 			return true;
2016 		}
2017 	}
2018 #endif
2019 	/* on UP, can't distinguish from other static vars, always false */
2020 	return false;
2021 }
2022 
2023 /**
2024  * is_kernel_percpu_address - test whether address is from static percpu area
2025  * @addr: address to test
2026  *
2027  * Test whether @addr belongs to in-kernel static percpu area.  Module
2028  * static percpu areas are not considered.  For those, use
2029  * is_module_percpu_address().
2030  *
2031  * RETURNS:
2032  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2033  */
2034 bool is_kernel_percpu_address(unsigned long addr)
2035 {
2036 	return __is_kernel_percpu_address(addr, NULL);
2037 }
2038 
2039 /**
2040  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2041  * @addr: the address to be converted to physical address
2042  *
2043  * Given @addr which is dereferenceable address obtained via one of
2044  * percpu access macros, this function translates it into its physical
2045  * address.  The caller is responsible for ensuring @addr stays valid
2046  * until this function finishes.
2047  *
2048  * percpu allocator has special setup for the first chunk, which currently
2049  * supports either embedding in linear address space or vmalloc mapping,
2050  * and, from the second one, the backing allocator (currently either vm or
2051  * km) provides translation.
2052  *
2053  * The addr can be translated simply without checking if it falls into the
2054  * first chunk. But the current code reflects better how percpu allocator
2055  * actually works, and the verification can discover both bugs in percpu
2056  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2057  * code.
2058  *
2059  * RETURNS:
2060  * The physical address for @addr.
2061  */
2062 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2063 {
2064 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2065 	bool in_first_chunk = false;
2066 	unsigned long first_low, first_high;
2067 	unsigned int cpu;
2068 
2069 	/*
2070 	 * The following test on unit_low/high isn't strictly
2071 	 * necessary but will speed up lookups of addresses which
2072 	 * aren't in the first chunk.
2073 	 *
2074 	 * The address check is against full chunk sizes.  pcpu_base_addr
2075 	 * points to the beginning of the first chunk including the
2076 	 * static region.  Assumes good intent as the first chunk may
2077 	 * not be full (ie. < pcpu_unit_pages in size).
2078 	 */
2079 	first_low = (unsigned long)pcpu_base_addr +
2080 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2081 	first_high = (unsigned long)pcpu_base_addr +
2082 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2083 	if ((unsigned long)addr >= first_low &&
2084 	    (unsigned long)addr < first_high) {
2085 		for_each_possible_cpu(cpu) {
2086 			void *start = per_cpu_ptr(base, cpu);
2087 
2088 			if (addr >= start && addr < start + pcpu_unit_size) {
2089 				in_first_chunk = true;
2090 				break;
2091 			}
2092 		}
2093 	}
2094 
2095 	if (in_first_chunk) {
2096 		if (!is_vmalloc_addr(addr))
2097 			return __pa(addr);
2098 		else
2099 			return page_to_phys(vmalloc_to_page(addr)) +
2100 			       offset_in_page(addr);
2101 	} else
2102 		return page_to_phys(pcpu_addr_to_page(addr)) +
2103 		       offset_in_page(addr);
2104 }
2105 
2106 /**
2107  * pcpu_alloc_alloc_info - allocate percpu allocation info
2108  * @nr_groups: the number of groups
2109  * @nr_units: the number of units
2110  *
2111  * Allocate ai which is large enough for @nr_groups groups containing
2112  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2113  * cpu_map array which is long enough for @nr_units and filled with
2114  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2115  * pointer of other groups.
2116  *
2117  * RETURNS:
2118  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2119  * failure.
2120  */
2121 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2122 						      int nr_units)
2123 {
2124 	struct pcpu_alloc_info *ai;
2125 	size_t base_size, ai_size;
2126 	void *ptr;
2127 	int unit;
2128 
2129 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
2130 			  __alignof__(ai->groups[0].cpu_map[0]));
2131 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2132 
2133 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2134 	if (!ptr)
2135 		return NULL;
2136 	ai = ptr;
2137 	ptr += base_size;
2138 
2139 	ai->groups[0].cpu_map = ptr;
2140 
2141 	for (unit = 0; unit < nr_units; unit++)
2142 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2143 
2144 	ai->nr_groups = nr_groups;
2145 	ai->__ai_size = PFN_ALIGN(ai_size);
2146 
2147 	return ai;
2148 }
2149 
2150 /**
2151  * pcpu_free_alloc_info - free percpu allocation info
2152  * @ai: pcpu_alloc_info to free
2153  *
2154  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2155  */
2156 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2157 {
2158 	memblock_free_early(__pa(ai), ai->__ai_size);
2159 }
2160 
2161 /**
2162  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2163  * @lvl: loglevel
2164  * @ai: allocation info to dump
2165  *
2166  * Print out information about @ai using loglevel @lvl.
2167  */
2168 static void pcpu_dump_alloc_info(const char *lvl,
2169 				 const struct pcpu_alloc_info *ai)
2170 {
2171 	int group_width = 1, cpu_width = 1, width;
2172 	char empty_str[] = "--------";
2173 	int alloc = 0, alloc_end = 0;
2174 	int group, v;
2175 	int upa, apl;	/* units per alloc, allocs per line */
2176 
2177 	v = ai->nr_groups;
2178 	while (v /= 10)
2179 		group_width++;
2180 
2181 	v = num_possible_cpus();
2182 	while (v /= 10)
2183 		cpu_width++;
2184 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2185 
2186 	upa = ai->alloc_size / ai->unit_size;
2187 	width = upa * (cpu_width + 1) + group_width + 3;
2188 	apl = rounddown_pow_of_two(max(60 / width, 1));
2189 
2190 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2191 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2192 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2193 
2194 	for (group = 0; group < ai->nr_groups; group++) {
2195 		const struct pcpu_group_info *gi = &ai->groups[group];
2196 		int unit = 0, unit_end = 0;
2197 
2198 		BUG_ON(gi->nr_units % upa);
2199 		for (alloc_end += gi->nr_units / upa;
2200 		     alloc < alloc_end; alloc++) {
2201 			if (!(alloc % apl)) {
2202 				pr_cont("\n");
2203 				printk("%spcpu-alloc: ", lvl);
2204 			}
2205 			pr_cont("[%0*d] ", group_width, group);
2206 
2207 			for (unit_end += upa; unit < unit_end; unit++)
2208 				if (gi->cpu_map[unit] != NR_CPUS)
2209 					pr_cont("%0*d ",
2210 						cpu_width, gi->cpu_map[unit]);
2211 				else
2212 					pr_cont("%s ", empty_str);
2213 		}
2214 	}
2215 	pr_cont("\n");
2216 }
2217 
2218 /**
2219  * pcpu_setup_first_chunk - initialize the first percpu chunk
2220  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2221  * @base_addr: mapped address
2222  *
2223  * Initialize the first percpu chunk which contains the kernel static
2224  * perpcu area.  This function is to be called from arch percpu area
2225  * setup path.
2226  *
2227  * @ai contains all information necessary to initialize the first
2228  * chunk and prime the dynamic percpu allocator.
2229  *
2230  * @ai->static_size is the size of static percpu area.
2231  *
2232  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2233  * reserve after the static area in the first chunk.  This reserves
2234  * the first chunk such that it's available only through reserved
2235  * percpu allocation.  This is primarily used to serve module percpu
2236  * static areas on architectures where the addressing model has
2237  * limited offset range for symbol relocations to guarantee module
2238  * percpu symbols fall inside the relocatable range.
2239  *
2240  * @ai->dyn_size determines the number of bytes available for dynamic
2241  * allocation in the first chunk.  The area between @ai->static_size +
2242  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2243  *
2244  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2245  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2246  * @ai->dyn_size.
2247  *
2248  * @ai->atom_size is the allocation atom size and used as alignment
2249  * for vm areas.
2250  *
2251  * @ai->alloc_size is the allocation size and always multiple of
2252  * @ai->atom_size.  This is larger than @ai->atom_size if
2253  * @ai->unit_size is larger than @ai->atom_size.
2254  *
2255  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2256  * percpu areas.  Units which should be colocated are put into the
2257  * same group.  Dynamic VM areas will be allocated according to these
2258  * groupings.  If @ai->nr_groups is zero, a single group containing
2259  * all units is assumed.
2260  *
2261  * The caller should have mapped the first chunk at @base_addr and
2262  * copied static data to each unit.
2263  *
2264  * The first chunk will always contain a static and a dynamic region.
2265  * However, the static region is not managed by any chunk.  If the first
2266  * chunk also contains a reserved region, it is served by two chunks -
2267  * one for the reserved region and one for the dynamic region.  They
2268  * share the same vm, but use offset regions in the area allocation map.
2269  * The chunk serving the dynamic region is circulated in the chunk slots
2270  * and available for dynamic allocation like any other chunk.
2271  *
2272  * RETURNS:
2273  * 0 on success, -errno on failure.
2274  */
2275 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2276 				  void *base_addr)
2277 {
2278 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2279 	size_t static_size, dyn_size;
2280 	struct pcpu_chunk *chunk;
2281 	unsigned long *group_offsets;
2282 	size_t *group_sizes;
2283 	unsigned long *unit_off;
2284 	unsigned int cpu;
2285 	int *unit_map;
2286 	int group, unit, i;
2287 	int map_size;
2288 	unsigned long tmp_addr;
2289 	size_t alloc_size;
2290 
2291 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2292 	if (unlikely(cond)) {						\
2293 		pr_emerg("failed to initialize, %s\n", #cond);		\
2294 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2295 			 cpumask_pr_args(cpu_possible_mask));		\
2296 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2297 		BUG();							\
2298 	}								\
2299 } while (0)
2300 
2301 	/* sanity checks */
2302 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2303 #ifdef CONFIG_SMP
2304 	PCPU_SETUP_BUG_ON(!ai->static_size);
2305 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2306 #endif
2307 	PCPU_SETUP_BUG_ON(!base_addr);
2308 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2309 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2310 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2311 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2312 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2313 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2314 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2315 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2316 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2317 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2318 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2319 
2320 	/* process group information and build config tables accordingly */
2321 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2322 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2323 	if (!group_offsets)
2324 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2325 		      alloc_size);
2326 
2327 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2328 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2329 	if (!group_sizes)
2330 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2331 		      alloc_size);
2332 
2333 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2334 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2335 	if (!unit_map)
2336 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2337 		      alloc_size);
2338 
2339 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2340 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2341 	if (!unit_off)
2342 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2343 		      alloc_size);
2344 
2345 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2346 		unit_map[cpu] = UINT_MAX;
2347 
2348 	pcpu_low_unit_cpu = NR_CPUS;
2349 	pcpu_high_unit_cpu = NR_CPUS;
2350 
2351 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2352 		const struct pcpu_group_info *gi = &ai->groups[group];
2353 
2354 		group_offsets[group] = gi->base_offset;
2355 		group_sizes[group] = gi->nr_units * ai->unit_size;
2356 
2357 		for (i = 0; i < gi->nr_units; i++) {
2358 			cpu = gi->cpu_map[i];
2359 			if (cpu == NR_CPUS)
2360 				continue;
2361 
2362 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2363 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2364 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2365 
2366 			unit_map[cpu] = unit + i;
2367 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2368 
2369 			/* determine low/high unit_cpu */
2370 			if (pcpu_low_unit_cpu == NR_CPUS ||
2371 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2372 				pcpu_low_unit_cpu = cpu;
2373 			if (pcpu_high_unit_cpu == NR_CPUS ||
2374 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2375 				pcpu_high_unit_cpu = cpu;
2376 		}
2377 	}
2378 	pcpu_nr_units = unit;
2379 
2380 	for_each_possible_cpu(cpu)
2381 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2382 
2383 	/* we're done parsing the input, undefine BUG macro and dump config */
2384 #undef PCPU_SETUP_BUG_ON
2385 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2386 
2387 	pcpu_nr_groups = ai->nr_groups;
2388 	pcpu_group_offsets = group_offsets;
2389 	pcpu_group_sizes = group_sizes;
2390 	pcpu_unit_map = unit_map;
2391 	pcpu_unit_offsets = unit_off;
2392 
2393 	/* determine basic parameters */
2394 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2395 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2396 	pcpu_atom_size = ai->atom_size;
2397 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2398 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2399 
2400 	pcpu_stats_save_ai(ai);
2401 
2402 	/*
2403 	 * Allocate chunk slots.  The additional last slot is for
2404 	 * empty chunks.
2405 	 */
2406 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2407 	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2408 				   SMP_CACHE_BYTES);
2409 	if (!pcpu_slot)
2410 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2411 		      pcpu_nr_slots * sizeof(pcpu_slot[0]));
2412 	for (i = 0; i < pcpu_nr_slots; i++)
2413 		INIT_LIST_HEAD(&pcpu_slot[i]);
2414 
2415 	/*
2416 	 * The end of the static region needs to be aligned with the
2417 	 * minimum allocation size as this offsets the reserved and
2418 	 * dynamic region.  The first chunk ends page aligned by
2419 	 * expanding the dynamic region, therefore the dynamic region
2420 	 * can be shrunk to compensate while still staying above the
2421 	 * configured sizes.
2422 	 */
2423 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2424 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2425 
2426 	/*
2427 	 * Initialize first chunk.
2428 	 * If the reserved_size is non-zero, this initializes the reserved
2429 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2430 	 * and the dynamic region is initialized here.  The first chunk,
2431 	 * pcpu_first_chunk, will always point to the chunk that serves
2432 	 * the dynamic region.
2433 	 */
2434 	tmp_addr = (unsigned long)base_addr + static_size;
2435 	map_size = ai->reserved_size ?: dyn_size;
2436 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2437 
2438 	/* init dynamic chunk if necessary */
2439 	if (ai->reserved_size) {
2440 		pcpu_reserved_chunk = chunk;
2441 
2442 		tmp_addr = (unsigned long)base_addr + static_size +
2443 			   ai->reserved_size;
2444 		map_size = dyn_size;
2445 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2446 	}
2447 
2448 	/* link the first chunk in */
2449 	pcpu_first_chunk = chunk;
2450 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2451 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2452 
2453 	/* include all regions of the first chunk */
2454 	pcpu_nr_populated += PFN_DOWN(size_sum);
2455 
2456 	pcpu_stats_chunk_alloc();
2457 	trace_percpu_create_chunk(base_addr);
2458 
2459 	/* we're done */
2460 	pcpu_base_addr = base_addr;
2461 	return 0;
2462 }
2463 
2464 #ifdef CONFIG_SMP
2465 
2466 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2467 	[PCPU_FC_AUTO]	= "auto",
2468 	[PCPU_FC_EMBED]	= "embed",
2469 	[PCPU_FC_PAGE]	= "page",
2470 };
2471 
2472 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2473 
2474 static int __init percpu_alloc_setup(char *str)
2475 {
2476 	if (!str)
2477 		return -EINVAL;
2478 
2479 	if (0)
2480 		/* nada */;
2481 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2482 	else if (!strcmp(str, "embed"))
2483 		pcpu_chosen_fc = PCPU_FC_EMBED;
2484 #endif
2485 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486 	else if (!strcmp(str, "page"))
2487 		pcpu_chosen_fc = PCPU_FC_PAGE;
2488 #endif
2489 	else
2490 		pr_warn("unknown allocator %s specified\n", str);
2491 
2492 	return 0;
2493 }
2494 early_param("percpu_alloc", percpu_alloc_setup);
2495 
2496 /*
2497  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2498  * Build it if needed by the arch config or the generic setup is going
2499  * to be used.
2500  */
2501 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2502 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2503 #define BUILD_EMBED_FIRST_CHUNK
2504 #endif
2505 
2506 /* build pcpu_page_first_chunk() iff needed by the arch config */
2507 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2508 #define BUILD_PAGE_FIRST_CHUNK
2509 #endif
2510 
2511 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2512 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2513 /**
2514  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2515  * @reserved_size: the size of reserved percpu area in bytes
2516  * @dyn_size: minimum free size for dynamic allocation in bytes
2517  * @atom_size: allocation atom size
2518  * @cpu_distance_fn: callback to determine distance between cpus, optional
2519  *
2520  * This function determines grouping of units, their mappings to cpus
2521  * and other parameters considering needed percpu size, allocation
2522  * atom size and distances between CPUs.
2523  *
2524  * Groups are always multiples of atom size and CPUs which are of
2525  * LOCAL_DISTANCE both ways are grouped together and share space for
2526  * units in the same group.  The returned configuration is guaranteed
2527  * to have CPUs on different nodes on different groups and >=75% usage
2528  * of allocated virtual address space.
2529  *
2530  * RETURNS:
2531  * On success, pointer to the new allocation_info is returned.  On
2532  * failure, ERR_PTR value is returned.
2533  */
2534 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2535 				size_t reserved_size, size_t dyn_size,
2536 				size_t atom_size,
2537 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2538 {
2539 	static int group_map[NR_CPUS] __initdata;
2540 	static int group_cnt[NR_CPUS] __initdata;
2541 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2542 	int nr_groups = 1, nr_units = 0;
2543 	size_t size_sum, min_unit_size, alloc_size;
2544 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2545 	int last_allocs, group, unit;
2546 	unsigned int cpu, tcpu;
2547 	struct pcpu_alloc_info *ai;
2548 	unsigned int *cpu_map;
2549 
2550 	/* this function may be called multiple times */
2551 	memset(group_map, 0, sizeof(group_map));
2552 	memset(group_cnt, 0, sizeof(group_cnt));
2553 
2554 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2555 	size_sum = PFN_ALIGN(static_size + reserved_size +
2556 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2557 	dyn_size = size_sum - static_size - reserved_size;
2558 
2559 	/*
2560 	 * Determine min_unit_size, alloc_size and max_upa such that
2561 	 * alloc_size is multiple of atom_size and is the smallest
2562 	 * which can accommodate 4k aligned segments which are equal to
2563 	 * or larger than min_unit_size.
2564 	 */
2565 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2566 
2567 	/* determine the maximum # of units that can fit in an allocation */
2568 	alloc_size = roundup(min_unit_size, atom_size);
2569 	upa = alloc_size / min_unit_size;
2570 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2571 		upa--;
2572 	max_upa = upa;
2573 
2574 	/* group cpus according to their proximity */
2575 	for_each_possible_cpu(cpu) {
2576 		group = 0;
2577 	next_group:
2578 		for_each_possible_cpu(tcpu) {
2579 			if (cpu == tcpu)
2580 				break;
2581 			if (group_map[tcpu] == group && cpu_distance_fn &&
2582 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2583 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2584 				group++;
2585 				nr_groups = max(nr_groups, group + 1);
2586 				goto next_group;
2587 			}
2588 		}
2589 		group_map[cpu] = group;
2590 		group_cnt[group]++;
2591 	}
2592 
2593 	/*
2594 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2595 	 * Expand the unit_size until we use >= 75% of the units allocated.
2596 	 * Related to atom_size, which could be much larger than the unit_size.
2597 	 */
2598 	last_allocs = INT_MAX;
2599 	for (upa = max_upa; upa; upa--) {
2600 		int allocs = 0, wasted = 0;
2601 
2602 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2603 			continue;
2604 
2605 		for (group = 0; group < nr_groups; group++) {
2606 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2607 			allocs += this_allocs;
2608 			wasted += this_allocs * upa - group_cnt[group];
2609 		}
2610 
2611 		/*
2612 		 * Don't accept if wastage is over 1/3.  The
2613 		 * greater-than comparison ensures upa==1 always
2614 		 * passes the following check.
2615 		 */
2616 		if (wasted > num_possible_cpus() / 3)
2617 			continue;
2618 
2619 		/* and then don't consume more memory */
2620 		if (allocs > last_allocs)
2621 			break;
2622 		last_allocs = allocs;
2623 		best_upa = upa;
2624 	}
2625 	upa = best_upa;
2626 
2627 	/* allocate and fill alloc_info */
2628 	for (group = 0; group < nr_groups; group++)
2629 		nr_units += roundup(group_cnt[group], upa);
2630 
2631 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2632 	if (!ai)
2633 		return ERR_PTR(-ENOMEM);
2634 	cpu_map = ai->groups[0].cpu_map;
2635 
2636 	for (group = 0; group < nr_groups; group++) {
2637 		ai->groups[group].cpu_map = cpu_map;
2638 		cpu_map += roundup(group_cnt[group], upa);
2639 	}
2640 
2641 	ai->static_size = static_size;
2642 	ai->reserved_size = reserved_size;
2643 	ai->dyn_size = dyn_size;
2644 	ai->unit_size = alloc_size / upa;
2645 	ai->atom_size = atom_size;
2646 	ai->alloc_size = alloc_size;
2647 
2648 	for (group = 0, unit = 0; group < nr_groups; group++) {
2649 		struct pcpu_group_info *gi = &ai->groups[group];
2650 
2651 		/*
2652 		 * Initialize base_offset as if all groups are located
2653 		 * back-to-back.  The caller should update this to
2654 		 * reflect actual allocation.
2655 		 */
2656 		gi->base_offset = unit * ai->unit_size;
2657 
2658 		for_each_possible_cpu(cpu)
2659 			if (group_map[cpu] == group)
2660 				gi->cpu_map[gi->nr_units++] = cpu;
2661 		gi->nr_units = roundup(gi->nr_units, upa);
2662 		unit += gi->nr_units;
2663 	}
2664 	BUG_ON(unit != nr_units);
2665 
2666 	return ai;
2667 }
2668 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2669 
2670 #if defined(BUILD_EMBED_FIRST_CHUNK)
2671 /**
2672  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2673  * @reserved_size: the size of reserved percpu area in bytes
2674  * @dyn_size: minimum free size for dynamic allocation in bytes
2675  * @atom_size: allocation atom size
2676  * @cpu_distance_fn: callback to determine distance between cpus, optional
2677  * @alloc_fn: function to allocate percpu page
2678  * @free_fn: function to free percpu page
2679  *
2680  * This is a helper to ease setting up embedded first percpu chunk and
2681  * can be called where pcpu_setup_first_chunk() is expected.
2682  *
2683  * If this function is used to setup the first chunk, it is allocated
2684  * by calling @alloc_fn and used as-is without being mapped into
2685  * vmalloc area.  Allocations are always whole multiples of @atom_size
2686  * aligned to @atom_size.
2687  *
2688  * This enables the first chunk to piggy back on the linear physical
2689  * mapping which often uses larger page size.  Please note that this
2690  * can result in very sparse cpu->unit mapping on NUMA machines thus
2691  * requiring large vmalloc address space.  Don't use this allocator if
2692  * vmalloc space is not orders of magnitude larger than distances
2693  * between node memory addresses (ie. 32bit NUMA machines).
2694  *
2695  * @dyn_size specifies the minimum dynamic area size.
2696  *
2697  * If the needed size is smaller than the minimum or specified unit
2698  * size, the leftover is returned using @free_fn.
2699  *
2700  * RETURNS:
2701  * 0 on success, -errno on failure.
2702  */
2703 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2704 				  size_t atom_size,
2705 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2706 				  pcpu_fc_alloc_fn_t alloc_fn,
2707 				  pcpu_fc_free_fn_t free_fn)
2708 {
2709 	void *base = (void *)ULONG_MAX;
2710 	void **areas = NULL;
2711 	struct pcpu_alloc_info *ai;
2712 	size_t size_sum, areas_size;
2713 	unsigned long max_distance;
2714 	int group, i, highest_group, rc;
2715 
2716 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2717 				   cpu_distance_fn);
2718 	if (IS_ERR(ai))
2719 		return PTR_ERR(ai);
2720 
2721 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2722 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2723 
2724 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2725 	if (!areas) {
2726 		rc = -ENOMEM;
2727 		goto out_free;
2728 	}
2729 
2730 	/* allocate, copy and determine base address & max_distance */
2731 	highest_group = 0;
2732 	for (group = 0; group < ai->nr_groups; group++) {
2733 		struct pcpu_group_info *gi = &ai->groups[group];
2734 		unsigned int cpu = NR_CPUS;
2735 		void *ptr;
2736 
2737 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2738 			cpu = gi->cpu_map[i];
2739 		BUG_ON(cpu == NR_CPUS);
2740 
2741 		/* allocate space for the whole group */
2742 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2743 		if (!ptr) {
2744 			rc = -ENOMEM;
2745 			goto out_free_areas;
2746 		}
2747 		/* kmemleak tracks the percpu allocations separately */
2748 		kmemleak_free(ptr);
2749 		areas[group] = ptr;
2750 
2751 		base = min(ptr, base);
2752 		if (ptr > areas[highest_group])
2753 			highest_group = group;
2754 	}
2755 	max_distance = areas[highest_group] - base;
2756 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2757 
2758 	/* warn if maximum distance is further than 75% of vmalloc space */
2759 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2760 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2761 				max_distance, VMALLOC_TOTAL);
2762 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2763 		/* and fail if we have fallback */
2764 		rc = -EINVAL;
2765 		goto out_free_areas;
2766 #endif
2767 	}
2768 
2769 	/*
2770 	 * Copy data and free unused parts.  This should happen after all
2771 	 * allocations are complete; otherwise, we may end up with
2772 	 * overlapping groups.
2773 	 */
2774 	for (group = 0; group < ai->nr_groups; group++) {
2775 		struct pcpu_group_info *gi = &ai->groups[group];
2776 		void *ptr = areas[group];
2777 
2778 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2779 			if (gi->cpu_map[i] == NR_CPUS) {
2780 				/* unused unit, free whole */
2781 				free_fn(ptr, ai->unit_size);
2782 				continue;
2783 			}
2784 			/* copy and return the unused part */
2785 			memcpy(ptr, __per_cpu_load, ai->static_size);
2786 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2787 		}
2788 	}
2789 
2790 	/* base address is now known, determine group base offsets */
2791 	for (group = 0; group < ai->nr_groups; group++) {
2792 		ai->groups[group].base_offset = areas[group] - base;
2793 	}
2794 
2795 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2796 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2797 		ai->dyn_size, ai->unit_size);
2798 
2799 	rc = pcpu_setup_first_chunk(ai, base);
2800 	goto out_free;
2801 
2802 out_free_areas:
2803 	for (group = 0; group < ai->nr_groups; group++)
2804 		if (areas[group])
2805 			free_fn(areas[group],
2806 				ai->groups[group].nr_units * ai->unit_size);
2807 out_free:
2808 	pcpu_free_alloc_info(ai);
2809 	if (areas)
2810 		memblock_free_early(__pa(areas), areas_size);
2811 	return rc;
2812 }
2813 #endif /* BUILD_EMBED_FIRST_CHUNK */
2814 
2815 #ifdef BUILD_PAGE_FIRST_CHUNK
2816 /**
2817  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2818  * @reserved_size: the size of reserved percpu area in bytes
2819  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2820  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2821  * @populate_pte_fn: function to populate pte
2822  *
2823  * This is a helper to ease setting up page-remapped first percpu
2824  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2825  *
2826  * This is the basic allocator.  Static percpu area is allocated
2827  * page-by-page into vmalloc area.
2828  *
2829  * RETURNS:
2830  * 0 on success, -errno on failure.
2831  */
2832 int __init pcpu_page_first_chunk(size_t reserved_size,
2833 				 pcpu_fc_alloc_fn_t alloc_fn,
2834 				 pcpu_fc_free_fn_t free_fn,
2835 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2836 {
2837 	static struct vm_struct vm;
2838 	struct pcpu_alloc_info *ai;
2839 	char psize_str[16];
2840 	int unit_pages;
2841 	size_t pages_size;
2842 	struct page **pages;
2843 	int unit, i, j, rc;
2844 	int upa;
2845 	int nr_g0_units;
2846 
2847 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2848 
2849 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2850 	if (IS_ERR(ai))
2851 		return PTR_ERR(ai);
2852 	BUG_ON(ai->nr_groups != 1);
2853 	upa = ai->alloc_size/ai->unit_size;
2854 	nr_g0_units = roundup(num_possible_cpus(), upa);
2855 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2856 		pcpu_free_alloc_info(ai);
2857 		return -EINVAL;
2858 	}
2859 
2860 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2861 
2862 	/* unaligned allocations can't be freed, round up to page size */
2863 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2864 			       sizeof(pages[0]));
2865 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2866 	if (!pages)
2867 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2868 		      pages_size);
2869 
2870 	/* allocate pages */
2871 	j = 0;
2872 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2873 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2874 		for (i = 0; i < unit_pages; i++) {
2875 			void *ptr;
2876 
2877 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2878 			if (!ptr) {
2879 				pr_warn("failed to allocate %s page for cpu%u\n",
2880 						psize_str, cpu);
2881 				goto enomem;
2882 			}
2883 			/* kmemleak tracks the percpu allocations separately */
2884 			kmemleak_free(ptr);
2885 			pages[j++] = virt_to_page(ptr);
2886 		}
2887 	}
2888 
2889 	/* allocate vm area, map the pages and copy static data */
2890 	vm.flags = VM_ALLOC;
2891 	vm.size = num_possible_cpus() * ai->unit_size;
2892 	vm_area_register_early(&vm, PAGE_SIZE);
2893 
2894 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2895 		unsigned long unit_addr =
2896 			(unsigned long)vm.addr + unit * ai->unit_size;
2897 
2898 		for (i = 0; i < unit_pages; i++)
2899 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2900 
2901 		/* pte already populated, the following shouldn't fail */
2902 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2903 				      unit_pages);
2904 		if (rc < 0)
2905 			panic("failed to map percpu area, err=%d\n", rc);
2906 
2907 		/*
2908 		 * FIXME: Archs with virtual cache should flush local
2909 		 * cache for the linear mapping here - something
2910 		 * equivalent to flush_cache_vmap() on the local cpu.
2911 		 * flush_cache_vmap() can't be used as most supporting
2912 		 * data structures are not set up yet.
2913 		 */
2914 
2915 		/* copy static data */
2916 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2917 	}
2918 
2919 	/* we're ready, commit */
2920 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2921 		unit_pages, psize_str, ai->static_size,
2922 		ai->reserved_size, ai->dyn_size);
2923 
2924 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2925 	goto out_free_ar;
2926 
2927 enomem:
2928 	while (--j >= 0)
2929 		free_fn(page_address(pages[j]), PAGE_SIZE);
2930 	rc = -ENOMEM;
2931 out_free_ar:
2932 	memblock_free_early(__pa(pages), pages_size);
2933 	pcpu_free_alloc_info(ai);
2934 	return rc;
2935 }
2936 #endif /* BUILD_PAGE_FIRST_CHUNK */
2937 
2938 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2939 /*
2940  * Generic SMP percpu area setup.
2941  *
2942  * The embedding helper is used because its behavior closely resembles
2943  * the original non-dynamic generic percpu area setup.  This is
2944  * important because many archs have addressing restrictions and might
2945  * fail if the percpu area is located far away from the previous
2946  * location.  As an added bonus, in non-NUMA cases, embedding is
2947  * generally a good idea TLB-wise because percpu area can piggy back
2948  * on the physical linear memory mapping which uses large page
2949  * mappings on applicable archs.
2950  */
2951 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2952 EXPORT_SYMBOL(__per_cpu_offset);
2953 
2954 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2955 				       size_t align)
2956 {
2957 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2958 }
2959 
2960 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2961 {
2962 	memblock_free_early(__pa(ptr), size);
2963 }
2964 
2965 void __init setup_per_cpu_areas(void)
2966 {
2967 	unsigned long delta;
2968 	unsigned int cpu;
2969 	int rc;
2970 
2971 	/*
2972 	 * Always reserve area for module percpu variables.  That's
2973 	 * what the legacy allocator did.
2974 	 */
2975 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2976 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2977 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2978 	if (rc < 0)
2979 		panic("Failed to initialize percpu areas.");
2980 
2981 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2982 	for_each_possible_cpu(cpu)
2983 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2984 }
2985 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2986 
2987 #else	/* CONFIG_SMP */
2988 
2989 /*
2990  * UP percpu area setup.
2991  *
2992  * UP always uses km-based percpu allocator with identity mapping.
2993  * Static percpu variables are indistinguishable from the usual static
2994  * variables and don't require any special preparation.
2995  */
2996 void __init setup_per_cpu_areas(void)
2997 {
2998 	const size_t unit_size =
2999 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3000 					 PERCPU_DYNAMIC_RESERVE));
3001 	struct pcpu_alloc_info *ai;
3002 	void *fc;
3003 
3004 	ai = pcpu_alloc_alloc_info(1, 1);
3005 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3006 	if (!ai || !fc)
3007 		panic("Failed to allocate memory for percpu areas.");
3008 	/* kmemleak tracks the percpu allocations separately */
3009 	kmemleak_free(fc);
3010 
3011 	ai->dyn_size = unit_size;
3012 	ai->unit_size = unit_size;
3013 	ai->atom_size = unit_size;
3014 	ai->alloc_size = unit_size;
3015 	ai->groups[0].nr_units = 1;
3016 	ai->groups[0].cpu_map[0] = 0;
3017 
3018 	if (pcpu_setup_first_chunk(ai, fc) < 0)
3019 		panic("Failed to initialize percpu areas.");
3020 	pcpu_free_alloc_info(ai);
3021 }
3022 
3023 #endif	/* CONFIG_SMP */
3024 
3025 /*
3026  * pcpu_nr_pages - calculate total number of populated backing pages
3027  *
3028  * This reflects the number of pages populated to back chunks.  Metadata is
3029  * excluded in the number exposed in meminfo as the number of backing pages
3030  * scales with the number of cpus and can quickly outweigh the memory used for
3031  * metadata.  It also keeps this calculation nice and simple.
3032  *
3033  * RETURNS:
3034  * Total number of populated backing pages in use by the allocator.
3035  */
3036 unsigned long pcpu_nr_pages(void)
3037 {
3038 	return pcpu_nr_populated * pcpu_nr_units;
3039 }
3040 
3041 /*
3042  * Percpu allocator is initialized early during boot when neither slab or
3043  * workqueue is available.  Plug async management until everything is up
3044  * and running.
3045  */
3046 static int __init percpu_enable_async(void)
3047 {
3048 	pcpu_async_enabled = true;
3049 	return 0;
3050 }
3051 subsys_initcall(percpu_enable_async);
3052