xref: /openbmc/linux/mm/percpu.c (revision 70a59dd8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41  * flag should be passed.  All memcg-aware allocations are sharing one set
42  * of chunks and all unaccounted allocations and allocations performed
43  * by processes belonging to the root memory cgroup are using the second set.
44  *
45  * The allocator tries to allocate from the fullest chunk first. Each chunk
46  * is managed by a bitmap with metadata blocks.  The allocation map is updated
47  * on every allocation and free to reflect the current state while the boundary
48  * map is only updated on allocation.  Each metadata block contains
49  * information to help mitigate the need to iterate over large portions
50  * of the bitmap.  The reverse mapping from page to chunk is stored in
51  * the page's index.  Lastly, units are lazily backed and grow in unison.
52  *
53  * There is a unique conversion that goes on here between bytes and bits.
54  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
55  * tracks the number of pages it is responsible for in nr_pages.  Helper
56  * functions are used to convert from between the bytes, bits, and blocks.
57  * All hints are managed in bits unless explicitly stated.
58  *
59  * To use this allocator, arch code should do the following:
60  *
61  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62  *   regular address to percpu pointer and back if they need to be
63  *   different from the default
64  *
65  * - use pcpu_setup_first_chunk() during percpu area initialization to
66  *   setup the first chunk containing the kernel static percpu area
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/bitmap.h>
72 #include <linux/memblock.h>
73 #include <linux/err.h>
74 #include <linux/lcm.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
77 #include <linux/mm.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
90 
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
94 #include <asm/io.h>
95 
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
98 
99 #include "percpu-internal.h"
100 
101 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
102 #define PCPU_SLOT_BASE_SHIFT		5
103 /* chunks in slots below this are subject to being sidelined on failed alloc */
104 #define PCPU_SLOT_FAIL_THRESHOLD	3
105 
106 #define PCPU_EMPTY_POP_PAGES_LOW	2
107 #define PCPU_EMPTY_POP_PAGES_HIGH	4
108 
109 #ifdef CONFIG_SMP
110 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
111 #ifndef __addr_to_pcpu_ptr
112 #define __addr_to_pcpu_ptr(addr)					\
113 	(void __percpu *)((unsigned long)(addr) -			\
114 			  (unsigned long)pcpu_base_addr	+		\
115 			  (unsigned long)__per_cpu_start)
116 #endif
117 #ifndef __pcpu_ptr_to_addr
118 #define __pcpu_ptr_to_addr(ptr)						\
119 	(void __force *)((unsigned long)(ptr) +				\
120 			 (unsigned long)pcpu_base_addr -		\
121 			 (unsigned long)__per_cpu_start)
122 #endif
123 #else	/* CONFIG_SMP */
124 /* on UP, it's always identity mapped */
125 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
126 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
127 #endif	/* CONFIG_SMP */
128 
129 static int pcpu_unit_pages __ro_after_init;
130 static int pcpu_unit_size __ro_after_init;
131 static int pcpu_nr_units __ro_after_init;
132 static int pcpu_atom_size __ro_after_init;
133 int pcpu_nr_slots __ro_after_init;
134 static size_t pcpu_chunk_struct_size __ro_after_init;
135 
136 /* cpus with the lowest and highest unit addresses */
137 static unsigned int pcpu_low_unit_cpu __ro_after_init;
138 static unsigned int pcpu_high_unit_cpu __ro_after_init;
139 
140 /* the address of the first chunk which starts with the kernel static area */
141 void *pcpu_base_addr __ro_after_init;
142 EXPORT_SYMBOL_GPL(pcpu_base_addr);
143 
144 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
145 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
146 
147 /* group information, used for vm allocation */
148 static int pcpu_nr_groups __ro_after_init;
149 static const unsigned long *pcpu_group_offsets __ro_after_init;
150 static const size_t *pcpu_group_sizes __ro_after_init;
151 
152 /*
153  * The first chunk which always exists.  Note that unlike other
154  * chunks, this one can be allocated and mapped in several different
155  * ways and thus often doesn't live in the vmalloc area.
156  */
157 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
158 
159 /*
160  * Optional reserved chunk.  This chunk reserves part of the first
161  * chunk and serves it for reserved allocations.  When the reserved
162  * region doesn't exist, the following variable is NULL.
163  */
164 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
165 
166 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
167 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
168 
169 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
170 
171 /* chunks which need their map areas extended, protected by pcpu_lock */
172 static LIST_HEAD(pcpu_map_extend_chunks);
173 
174 /*
175  * The number of empty populated pages, protected by pcpu_lock.  The
176  * reserved chunk doesn't contribute to the count.
177  */
178 int pcpu_nr_empty_pop_pages;
179 
180 /*
181  * The number of populated pages in use by the allocator, protected by
182  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
183  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
184  * and increments/decrements this count by 1).
185  */
186 static unsigned long pcpu_nr_populated;
187 
188 /*
189  * Balance work is used to populate or destroy chunks asynchronously.  We
190  * try to keep the number of populated free pages between
191  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
192  * empty chunk.
193  */
194 static void pcpu_balance_workfn(struct work_struct *work);
195 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
196 static bool pcpu_async_enabled __read_mostly;
197 static bool pcpu_atomic_alloc_failed;
198 
199 static void pcpu_schedule_balance_work(void)
200 {
201 	if (pcpu_async_enabled)
202 		schedule_work(&pcpu_balance_work);
203 }
204 
205 /**
206  * pcpu_addr_in_chunk - check if the address is served from this chunk
207  * @chunk: chunk of interest
208  * @addr: percpu address
209  *
210  * RETURNS:
211  * True if the address is served from this chunk.
212  */
213 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
214 {
215 	void *start_addr, *end_addr;
216 
217 	if (!chunk)
218 		return false;
219 
220 	start_addr = chunk->base_addr + chunk->start_offset;
221 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
222 		   chunk->end_offset;
223 
224 	return addr >= start_addr && addr < end_addr;
225 }
226 
227 static int __pcpu_size_to_slot(int size)
228 {
229 	int highbit = fls(size);	/* size is in bytes */
230 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
231 }
232 
233 static int pcpu_size_to_slot(int size)
234 {
235 	if (size == pcpu_unit_size)
236 		return pcpu_nr_slots - 1;
237 	return __pcpu_size_to_slot(size);
238 }
239 
240 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
241 {
242 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
243 
244 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
245 	    chunk_md->contig_hint == 0)
246 		return 0;
247 
248 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
249 }
250 
251 /* set the pointer to a chunk in a page struct */
252 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
253 {
254 	page->index = (unsigned long)pcpu;
255 }
256 
257 /* obtain pointer to a chunk from a page struct */
258 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
259 {
260 	return (struct pcpu_chunk *)page->index;
261 }
262 
263 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
264 {
265 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
266 }
267 
268 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
269 {
270 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
271 }
272 
273 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
274 				     unsigned int cpu, int page_idx)
275 {
276 	return (unsigned long)chunk->base_addr +
277 	       pcpu_unit_page_offset(cpu, page_idx);
278 }
279 
280 /*
281  * The following are helper functions to help access bitmaps and convert
282  * between bitmap offsets to address offsets.
283  */
284 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
285 {
286 	return chunk->alloc_map +
287 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
288 }
289 
290 static unsigned long pcpu_off_to_block_index(int off)
291 {
292 	return off / PCPU_BITMAP_BLOCK_BITS;
293 }
294 
295 static unsigned long pcpu_off_to_block_off(int off)
296 {
297 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
298 }
299 
300 static unsigned long pcpu_block_off_to_off(int index, int off)
301 {
302 	return index * PCPU_BITMAP_BLOCK_BITS + off;
303 }
304 
305 /*
306  * pcpu_next_hint - determine which hint to use
307  * @block: block of interest
308  * @alloc_bits: size of allocation
309  *
310  * This determines if we should scan based on the scan_hint or first_free.
311  * In general, we want to scan from first_free to fulfill allocations by
312  * first fit.  However, if we know a scan_hint at position scan_hint_start
313  * cannot fulfill an allocation, we can begin scanning from there knowing
314  * the contig_hint will be our fallback.
315  */
316 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
317 {
318 	/*
319 	 * The three conditions below determine if we can skip past the
320 	 * scan_hint.  First, does the scan hint exist.  Second, is the
321 	 * contig_hint after the scan_hint (possibly not true iff
322 	 * contig_hint == scan_hint).  Third, is the allocation request
323 	 * larger than the scan_hint.
324 	 */
325 	if (block->scan_hint &&
326 	    block->contig_hint_start > block->scan_hint_start &&
327 	    alloc_bits > block->scan_hint)
328 		return block->scan_hint_start + block->scan_hint;
329 
330 	return block->first_free;
331 }
332 
333 /**
334  * pcpu_next_md_free_region - finds the next hint free area
335  * @chunk: chunk of interest
336  * @bit_off: chunk offset
337  * @bits: size of free area
338  *
339  * Helper function for pcpu_for_each_md_free_region.  It checks
340  * block->contig_hint and performs aggregation across blocks to find the
341  * next hint.  It modifies bit_off and bits in-place to be consumed in the
342  * loop.
343  */
344 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
345 				     int *bits)
346 {
347 	int i = pcpu_off_to_block_index(*bit_off);
348 	int block_off = pcpu_off_to_block_off(*bit_off);
349 	struct pcpu_block_md *block;
350 
351 	*bits = 0;
352 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
353 	     block++, i++) {
354 		/* handles contig area across blocks */
355 		if (*bits) {
356 			*bits += block->left_free;
357 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
358 				continue;
359 			return;
360 		}
361 
362 		/*
363 		 * This checks three things.  First is there a contig_hint to
364 		 * check.  Second, have we checked this hint before by
365 		 * comparing the block_off.  Third, is this the same as the
366 		 * right contig hint.  In the last case, it spills over into
367 		 * the next block and should be handled by the contig area
368 		 * across blocks code.
369 		 */
370 		*bits = block->contig_hint;
371 		if (*bits && block->contig_hint_start >= block_off &&
372 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
373 			*bit_off = pcpu_block_off_to_off(i,
374 					block->contig_hint_start);
375 			return;
376 		}
377 		/* reset to satisfy the second predicate above */
378 		block_off = 0;
379 
380 		*bits = block->right_free;
381 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
382 	}
383 }
384 
385 /**
386  * pcpu_next_fit_region - finds fit areas for a given allocation request
387  * @chunk: chunk of interest
388  * @alloc_bits: size of allocation
389  * @align: alignment of area (max PAGE_SIZE)
390  * @bit_off: chunk offset
391  * @bits: size of free area
392  *
393  * Finds the next free region that is viable for use with a given size and
394  * alignment.  This only returns if there is a valid area to be used for this
395  * allocation.  block->first_free is returned if the allocation request fits
396  * within the block to see if the request can be fulfilled prior to the contig
397  * hint.
398  */
399 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
400 				 int align, int *bit_off, int *bits)
401 {
402 	int i = pcpu_off_to_block_index(*bit_off);
403 	int block_off = pcpu_off_to_block_off(*bit_off);
404 	struct pcpu_block_md *block;
405 
406 	*bits = 0;
407 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
408 	     block++, i++) {
409 		/* handles contig area across blocks */
410 		if (*bits) {
411 			*bits += block->left_free;
412 			if (*bits >= alloc_bits)
413 				return;
414 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
415 				continue;
416 		}
417 
418 		/* check block->contig_hint */
419 		*bits = ALIGN(block->contig_hint_start, align) -
420 			block->contig_hint_start;
421 		/*
422 		 * This uses the block offset to determine if this has been
423 		 * checked in the prior iteration.
424 		 */
425 		if (block->contig_hint &&
426 		    block->contig_hint_start >= block_off &&
427 		    block->contig_hint >= *bits + alloc_bits) {
428 			int start = pcpu_next_hint(block, alloc_bits);
429 
430 			*bits += alloc_bits + block->contig_hint_start -
431 				 start;
432 			*bit_off = pcpu_block_off_to_off(i, start);
433 			return;
434 		}
435 		/* reset to satisfy the second predicate above */
436 		block_off = 0;
437 
438 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
439 				 align);
440 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
441 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
442 		if (*bits >= alloc_bits)
443 			return;
444 	}
445 
446 	/* no valid offsets were found - fail condition */
447 	*bit_off = pcpu_chunk_map_bits(chunk);
448 }
449 
450 /*
451  * Metadata free area iterators.  These perform aggregation of free areas
452  * based on the metadata blocks and return the offset @bit_off and size in
453  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
454  * a fit is found for the allocation request.
455  */
456 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
457 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
458 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
459 	     (bit_off) += (bits) + 1,					\
460 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
461 
462 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
463 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
464 				  &(bits));				      \
465 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
466 	     (bit_off) += (bits),					      \
467 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
468 				  &(bits)))
469 
470 /**
471  * pcpu_mem_zalloc - allocate memory
472  * @size: bytes to allocate
473  * @gfp: allocation flags
474  *
475  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
476  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
477  * This is to facilitate passing through whitelisted flags.  The
478  * returned memory is always zeroed.
479  *
480  * RETURNS:
481  * Pointer to the allocated area on success, NULL on failure.
482  */
483 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
484 {
485 	if (WARN_ON_ONCE(!slab_is_available()))
486 		return NULL;
487 
488 	if (size <= PAGE_SIZE)
489 		return kzalloc(size, gfp);
490 	else
491 		return __vmalloc(size, gfp | __GFP_ZERO);
492 }
493 
494 /**
495  * pcpu_mem_free - free memory
496  * @ptr: memory to free
497  *
498  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
499  */
500 static void pcpu_mem_free(void *ptr)
501 {
502 	kvfree(ptr);
503 }
504 
505 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
506 			      bool move_front)
507 {
508 	if (chunk != pcpu_reserved_chunk) {
509 		struct list_head *pcpu_slot;
510 
511 		pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
512 		if (move_front)
513 			list_move(&chunk->list, &pcpu_slot[slot]);
514 		else
515 			list_move_tail(&chunk->list, &pcpu_slot[slot]);
516 	}
517 }
518 
519 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
520 {
521 	__pcpu_chunk_move(chunk, slot, true);
522 }
523 
524 /**
525  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
526  * @chunk: chunk of interest
527  * @oslot: the previous slot it was on
528  *
529  * This function is called after an allocation or free changed @chunk.
530  * New slot according to the changed state is determined and @chunk is
531  * moved to the slot.  Note that the reserved chunk is never put on
532  * chunk slots.
533  *
534  * CONTEXT:
535  * pcpu_lock.
536  */
537 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
538 {
539 	int nslot = pcpu_chunk_slot(chunk);
540 
541 	if (oslot != nslot)
542 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
543 }
544 
545 /*
546  * pcpu_update_empty_pages - update empty page counters
547  * @chunk: chunk of interest
548  * @nr: nr of empty pages
549  *
550  * This is used to keep track of the empty pages now based on the premise
551  * a md_block covers a page.  The hint update functions recognize if a block
552  * is made full or broken to calculate deltas for keeping track of free pages.
553  */
554 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
555 {
556 	chunk->nr_empty_pop_pages += nr;
557 	if (chunk != pcpu_reserved_chunk)
558 		pcpu_nr_empty_pop_pages += nr;
559 }
560 
561 /*
562  * pcpu_region_overlap - determines if two regions overlap
563  * @a: start of first region, inclusive
564  * @b: end of first region, exclusive
565  * @x: start of second region, inclusive
566  * @y: end of second region, exclusive
567  *
568  * This is used to determine if the hint region [a, b) overlaps with the
569  * allocated region [x, y).
570  */
571 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
572 {
573 	return (a < y) && (x < b);
574 }
575 
576 /**
577  * pcpu_block_update - updates a block given a free area
578  * @block: block of interest
579  * @start: start offset in block
580  * @end: end offset in block
581  *
582  * Updates a block given a known free area.  The region [start, end) is
583  * expected to be the entirety of the free area within a block.  Chooses
584  * the best starting offset if the contig hints are equal.
585  */
586 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
587 {
588 	int contig = end - start;
589 
590 	block->first_free = min(block->first_free, start);
591 	if (start == 0)
592 		block->left_free = contig;
593 
594 	if (end == block->nr_bits)
595 		block->right_free = contig;
596 
597 	if (contig > block->contig_hint) {
598 		/* promote the old contig_hint to be the new scan_hint */
599 		if (start > block->contig_hint_start) {
600 			if (block->contig_hint > block->scan_hint) {
601 				block->scan_hint_start =
602 					block->contig_hint_start;
603 				block->scan_hint = block->contig_hint;
604 			} else if (start < block->scan_hint_start) {
605 				/*
606 				 * The old contig_hint == scan_hint.  But, the
607 				 * new contig is larger so hold the invariant
608 				 * scan_hint_start < contig_hint_start.
609 				 */
610 				block->scan_hint = 0;
611 			}
612 		} else {
613 			block->scan_hint = 0;
614 		}
615 		block->contig_hint_start = start;
616 		block->contig_hint = contig;
617 	} else if (contig == block->contig_hint) {
618 		if (block->contig_hint_start &&
619 		    (!start ||
620 		     __ffs(start) > __ffs(block->contig_hint_start))) {
621 			/* start has a better alignment so use it */
622 			block->contig_hint_start = start;
623 			if (start < block->scan_hint_start &&
624 			    block->contig_hint > block->scan_hint)
625 				block->scan_hint = 0;
626 		} else if (start > block->scan_hint_start ||
627 			   block->contig_hint > block->scan_hint) {
628 			/*
629 			 * Knowing contig == contig_hint, update the scan_hint
630 			 * if it is farther than or larger than the current
631 			 * scan_hint.
632 			 */
633 			block->scan_hint_start = start;
634 			block->scan_hint = contig;
635 		}
636 	} else {
637 		/*
638 		 * The region is smaller than the contig_hint.  So only update
639 		 * the scan_hint if it is larger than or equal and farther than
640 		 * the current scan_hint.
641 		 */
642 		if ((start < block->contig_hint_start &&
643 		     (contig > block->scan_hint ||
644 		      (contig == block->scan_hint &&
645 		       start > block->scan_hint_start)))) {
646 			block->scan_hint_start = start;
647 			block->scan_hint = contig;
648 		}
649 	}
650 }
651 
652 /*
653  * pcpu_block_update_scan - update a block given a free area from a scan
654  * @chunk: chunk of interest
655  * @bit_off: chunk offset
656  * @bits: size of free area
657  *
658  * Finding the final allocation spot first goes through pcpu_find_block_fit()
659  * to find a block that can hold the allocation and then pcpu_alloc_area()
660  * where a scan is used.  When allocations require specific alignments,
661  * we can inadvertently create holes which will not be seen in the alloc
662  * or free paths.
663  *
664  * This takes a given free area hole and updates a block as it may change the
665  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
666  * from alignment.
667  */
668 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
669 				   int bits)
670 {
671 	int s_off = pcpu_off_to_block_off(bit_off);
672 	int e_off = s_off + bits;
673 	int s_index, l_bit;
674 	struct pcpu_block_md *block;
675 
676 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
677 		return;
678 
679 	s_index = pcpu_off_to_block_index(bit_off);
680 	block = chunk->md_blocks + s_index;
681 
682 	/* scan backwards in case of alignment skipping free bits */
683 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
684 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
685 
686 	pcpu_block_update(block, s_off, e_off);
687 }
688 
689 /**
690  * pcpu_chunk_refresh_hint - updates metadata about a chunk
691  * @chunk: chunk of interest
692  * @full_scan: if we should scan from the beginning
693  *
694  * Iterates over the metadata blocks to find the largest contig area.
695  * A full scan can be avoided on the allocation path as this is triggered
696  * if we broke the contig_hint.  In doing so, the scan_hint will be before
697  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
698  * be prevented on freeing as we want to find the largest area possibly
699  * spanning blocks.
700  */
701 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
702 {
703 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
704 	int bit_off, bits;
705 
706 	/* promote scan_hint to contig_hint */
707 	if (!full_scan && chunk_md->scan_hint) {
708 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
709 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
710 		chunk_md->contig_hint = chunk_md->scan_hint;
711 		chunk_md->scan_hint = 0;
712 	} else {
713 		bit_off = chunk_md->first_free;
714 		chunk_md->contig_hint = 0;
715 	}
716 
717 	bits = 0;
718 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
719 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
720 }
721 
722 /**
723  * pcpu_block_refresh_hint
724  * @chunk: chunk of interest
725  * @index: index of the metadata block
726  *
727  * Scans over the block beginning at first_free and updates the block
728  * metadata accordingly.
729  */
730 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
731 {
732 	struct pcpu_block_md *block = chunk->md_blocks + index;
733 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
734 	unsigned int rs, re, start;	/* region start, region end */
735 
736 	/* promote scan_hint to contig_hint */
737 	if (block->scan_hint) {
738 		start = block->scan_hint_start + block->scan_hint;
739 		block->contig_hint_start = block->scan_hint_start;
740 		block->contig_hint = block->scan_hint;
741 		block->scan_hint = 0;
742 	} else {
743 		start = block->first_free;
744 		block->contig_hint = 0;
745 	}
746 
747 	block->right_free = 0;
748 
749 	/* iterate over free areas and update the contig hints */
750 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
751 				     PCPU_BITMAP_BLOCK_BITS)
752 		pcpu_block_update(block, rs, re);
753 }
754 
755 /**
756  * pcpu_block_update_hint_alloc - update hint on allocation path
757  * @chunk: chunk of interest
758  * @bit_off: chunk offset
759  * @bits: size of request
760  *
761  * Updates metadata for the allocation path.  The metadata only has to be
762  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
763  * scans are required if the block's contig hint is broken.
764  */
765 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
766 					 int bits)
767 {
768 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
769 	int nr_empty_pages = 0;
770 	struct pcpu_block_md *s_block, *e_block, *block;
771 	int s_index, e_index;	/* block indexes of the freed allocation */
772 	int s_off, e_off;	/* block offsets of the freed allocation */
773 
774 	/*
775 	 * Calculate per block offsets.
776 	 * The calculation uses an inclusive range, but the resulting offsets
777 	 * are [start, end).  e_index always points to the last block in the
778 	 * range.
779 	 */
780 	s_index = pcpu_off_to_block_index(bit_off);
781 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
782 	s_off = pcpu_off_to_block_off(bit_off);
783 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
784 
785 	s_block = chunk->md_blocks + s_index;
786 	e_block = chunk->md_blocks + e_index;
787 
788 	/*
789 	 * Update s_block.
790 	 * block->first_free must be updated if the allocation takes its place.
791 	 * If the allocation breaks the contig_hint, a scan is required to
792 	 * restore this hint.
793 	 */
794 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
795 		nr_empty_pages++;
796 
797 	if (s_off == s_block->first_free)
798 		s_block->first_free = find_next_zero_bit(
799 					pcpu_index_alloc_map(chunk, s_index),
800 					PCPU_BITMAP_BLOCK_BITS,
801 					s_off + bits);
802 
803 	if (pcpu_region_overlap(s_block->scan_hint_start,
804 				s_block->scan_hint_start + s_block->scan_hint,
805 				s_off,
806 				s_off + bits))
807 		s_block->scan_hint = 0;
808 
809 	if (pcpu_region_overlap(s_block->contig_hint_start,
810 				s_block->contig_hint_start +
811 				s_block->contig_hint,
812 				s_off,
813 				s_off + bits)) {
814 		/* block contig hint is broken - scan to fix it */
815 		if (!s_off)
816 			s_block->left_free = 0;
817 		pcpu_block_refresh_hint(chunk, s_index);
818 	} else {
819 		/* update left and right contig manually */
820 		s_block->left_free = min(s_block->left_free, s_off);
821 		if (s_index == e_index)
822 			s_block->right_free = min_t(int, s_block->right_free,
823 					PCPU_BITMAP_BLOCK_BITS - e_off);
824 		else
825 			s_block->right_free = 0;
826 	}
827 
828 	/*
829 	 * Update e_block.
830 	 */
831 	if (s_index != e_index) {
832 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
833 			nr_empty_pages++;
834 
835 		/*
836 		 * When the allocation is across blocks, the end is along
837 		 * the left part of the e_block.
838 		 */
839 		e_block->first_free = find_next_zero_bit(
840 				pcpu_index_alloc_map(chunk, e_index),
841 				PCPU_BITMAP_BLOCK_BITS, e_off);
842 
843 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
844 			/* reset the block */
845 			e_block++;
846 		} else {
847 			if (e_off > e_block->scan_hint_start)
848 				e_block->scan_hint = 0;
849 
850 			e_block->left_free = 0;
851 			if (e_off > e_block->contig_hint_start) {
852 				/* contig hint is broken - scan to fix it */
853 				pcpu_block_refresh_hint(chunk, e_index);
854 			} else {
855 				e_block->right_free =
856 					min_t(int, e_block->right_free,
857 					      PCPU_BITMAP_BLOCK_BITS - e_off);
858 			}
859 		}
860 
861 		/* update in-between md_blocks */
862 		nr_empty_pages += (e_index - s_index - 1);
863 		for (block = s_block + 1; block < e_block; block++) {
864 			block->scan_hint = 0;
865 			block->contig_hint = 0;
866 			block->left_free = 0;
867 			block->right_free = 0;
868 		}
869 	}
870 
871 	if (nr_empty_pages)
872 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
873 
874 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
875 				chunk_md->scan_hint_start +
876 				chunk_md->scan_hint,
877 				bit_off,
878 				bit_off + bits))
879 		chunk_md->scan_hint = 0;
880 
881 	/*
882 	 * The only time a full chunk scan is required is if the chunk
883 	 * contig hint is broken.  Otherwise, it means a smaller space
884 	 * was used and therefore the chunk contig hint is still correct.
885 	 */
886 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
887 				chunk_md->contig_hint_start +
888 				chunk_md->contig_hint,
889 				bit_off,
890 				bit_off + bits))
891 		pcpu_chunk_refresh_hint(chunk, false);
892 }
893 
894 /**
895  * pcpu_block_update_hint_free - updates the block hints on the free path
896  * @chunk: chunk of interest
897  * @bit_off: chunk offset
898  * @bits: size of request
899  *
900  * Updates metadata for the allocation path.  This avoids a blind block
901  * refresh by making use of the block contig hints.  If this fails, it scans
902  * forward and backward to determine the extent of the free area.  This is
903  * capped at the boundary of blocks.
904  *
905  * A chunk update is triggered if a page becomes free, a block becomes free,
906  * or the free spans across blocks.  This tradeoff is to minimize iterating
907  * over the block metadata to update chunk_md->contig_hint.
908  * chunk_md->contig_hint may be off by up to a page, but it will never be more
909  * than the available space.  If the contig hint is contained in one block, it
910  * will be accurate.
911  */
912 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
913 					int bits)
914 {
915 	int nr_empty_pages = 0;
916 	struct pcpu_block_md *s_block, *e_block, *block;
917 	int s_index, e_index;	/* block indexes of the freed allocation */
918 	int s_off, e_off;	/* block offsets of the freed allocation */
919 	int start, end;		/* start and end of the whole free area */
920 
921 	/*
922 	 * Calculate per block offsets.
923 	 * The calculation uses an inclusive range, but the resulting offsets
924 	 * are [start, end).  e_index always points to the last block in the
925 	 * range.
926 	 */
927 	s_index = pcpu_off_to_block_index(bit_off);
928 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
929 	s_off = pcpu_off_to_block_off(bit_off);
930 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
931 
932 	s_block = chunk->md_blocks + s_index;
933 	e_block = chunk->md_blocks + e_index;
934 
935 	/*
936 	 * Check if the freed area aligns with the block->contig_hint.
937 	 * If it does, then the scan to find the beginning/end of the
938 	 * larger free area can be avoided.
939 	 *
940 	 * start and end refer to beginning and end of the free area
941 	 * within each their respective blocks.  This is not necessarily
942 	 * the entire free area as it may span blocks past the beginning
943 	 * or end of the block.
944 	 */
945 	start = s_off;
946 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
947 		start = s_block->contig_hint_start;
948 	} else {
949 		/*
950 		 * Scan backwards to find the extent of the free area.
951 		 * find_last_bit returns the starting bit, so if the start bit
952 		 * is returned, that means there was no last bit and the
953 		 * remainder of the chunk is free.
954 		 */
955 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
956 					  start);
957 		start = (start == l_bit) ? 0 : l_bit + 1;
958 	}
959 
960 	end = e_off;
961 	if (e_off == e_block->contig_hint_start)
962 		end = e_block->contig_hint_start + e_block->contig_hint;
963 	else
964 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
965 				    PCPU_BITMAP_BLOCK_BITS, end);
966 
967 	/* update s_block */
968 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
969 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
970 		nr_empty_pages++;
971 	pcpu_block_update(s_block, start, e_off);
972 
973 	/* freeing in the same block */
974 	if (s_index != e_index) {
975 		/* update e_block */
976 		if (end == PCPU_BITMAP_BLOCK_BITS)
977 			nr_empty_pages++;
978 		pcpu_block_update(e_block, 0, end);
979 
980 		/* reset md_blocks in the middle */
981 		nr_empty_pages += (e_index - s_index - 1);
982 		for (block = s_block + 1; block < e_block; block++) {
983 			block->first_free = 0;
984 			block->scan_hint = 0;
985 			block->contig_hint_start = 0;
986 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
987 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
988 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
989 		}
990 	}
991 
992 	if (nr_empty_pages)
993 		pcpu_update_empty_pages(chunk, nr_empty_pages);
994 
995 	/*
996 	 * Refresh chunk metadata when the free makes a block free or spans
997 	 * across blocks.  The contig_hint may be off by up to a page, but if
998 	 * the contig_hint is contained in a block, it will be accurate with
999 	 * the else condition below.
1000 	 */
1001 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1002 		pcpu_chunk_refresh_hint(chunk, true);
1003 	else
1004 		pcpu_block_update(&chunk->chunk_md,
1005 				  pcpu_block_off_to_off(s_index, start),
1006 				  end);
1007 }
1008 
1009 /**
1010  * pcpu_is_populated - determines if the region is populated
1011  * @chunk: chunk of interest
1012  * @bit_off: chunk offset
1013  * @bits: size of area
1014  * @next_off: return value for the next offset to start searching
1015  *
1016  * For atomic allocations, check if the backing pages are populated.
1017  *
1018  * RETURNS:
1019  * Bool if the backing pages are populated.
1020  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1021  */
1022 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1023 			      int *next_off)
1024 {
1025 	unsigned int page_start, page_end, rs, re;
1026 
1027 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1028 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1029 
1030 	rs = page_start;
1031 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1032 	if (rs >= page_end)
1033 		return true;
1034 
1035 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1036 	return false;
1037 }
1038 
1039 /**
1040  * pcpu_find_block_fit - finds the block index to start searching
1041  * @chunk: chunk of interest
1042  * @alloc_bits: size of request in allocation units
1043  * @align: alignment of area (max PAGE_SIZE bytes)
1044  * @pop_only: use populated regions only
1045  *
1046  * Given a chunk and an allocation spec, find the offset to begin searching
1047  * for a free region.  This iterates over the bitmap metadata blocks to
1048  * find an offset that will be guaranteed to fit the requirements.  It is
1049  * not quite first fit as if the allocation does not fit in the contig hint
1050  * of a block or chunk, it is skipped.  This errs on the side of caution
1051  * to prevent excess iteration.  Poor alignment can cause the allocator to
1052  * skip over blocks and chunks that have valid free areas.
1053  *
1054  * RETURNS:
1055  * The offset in the bitmap to begin searching.
1056  * -1 if no offset is found.
1057  */
1058 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1059 			       size_t align, bool pop_only)
1060 {
1061 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1062 	int bit_off, bits, next_off;
1063 
1064 	/*
1065 	 * Check to see if the allocation can fit in the chunk's contig hint.
1066 	 * This is an optimization to prevent scanning by assuming if it
1067 	 * cannot fit in the global hint, there is memory pressure and creating
1068 	 * a new chunk would happen soon.
1069 	 */
1070 	bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1071 		  chunk_md->contig_hint_start;
1072 	if (bit_off + alloc_bits > chunk_md->contig_hint)
1073 		return -1;
1074 
1075 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1076 	bits = 0;
1077 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1078 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1079 						   &next_off))
1080 			break;
1081 
1082 		bit_off = next_off;
1083 		bits = 0;
1084 	}
1085 
1086 	if (bit_off == pcpu_chunk_map_bits(chunk))
1087 		return -1;
1088 
1089 	return bit_off;
1090 }
1091 
1092 /*
1093  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1094  * @map: the address to base the search on
1095  * @size: the bitmap size in bits
1096  * @start: the bitnumber to start searching at
1097  * @nr: the number of zeroed bits we're looking for
1098  * @align_mask: alignment mask for zero area
1099  * @largest_off: offset of the largest area skipped
1100  * @largest_bits: size of the largest area skipped
1101  *
1102  * The @align_mask should be one less than a power of 2.
1103  *
1104  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1105  * the largest area that was skipped.  This is imperfect, but in general is
1106  * good enough.  The largest remembered region is the largest failed region
1107  * seen.  This does not include anything we possibly skipped due to alignment.
1108  * pcpu_block_update_scan() does scan backwards to try and recover what was
1109  * lost to alignment.  While this can cause scanning to miss earlier possible
1110  * free areas, smaller allocations will eventually fill those holes.
1111  */
1112 static unsigned long pcpu_find_zero_area(unsigned long *map,
1113 					 unsigned long size,
1114 					 unsigned long start,
1115 					 unsigned long nr,
1116 					 unsigned long align_mask,
1117 					 unsigned long *largest_off,
1118 					 unsigned long *largest_bits)
1119 {
1120 	unsigned long index, end, i, area_off, area_bits;
1121 again:
1122 	index = find_next_zero_bit(map, size, start);
1123 
1124 	/* Align allocation */
1125 	index = __ALIGN_MASK(index, align_mask);
1126 	area_off = index;
1127 
1128 	end = index + nr;
1129 	if (end > size)
1130 		return end;
1131 	i = find_next_bit(map, end, index);
1132 	if (i < end) {
1133 		area_bits = i - area_off;
1134 		/* remember largest unused area with best alignment */
1135 		if (area_bits > *largest_bits ||
1136 		    (area_bits == *largest_bits && *largest_off &&
1137 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1138 			*largest_off = area_off;
1139 			*largest_bits = area_bits;
1140 		}
1141 
1142 		start = i + 1;
1143 		goto again;
1144 	}
1145 	return index;
1146 }
1147 
1148 /**
1149  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1150  * @chunk: chunk of interest
1151  * @alloc_bits: size of request in allocation units
1152  * @align: alignment of area (max PAGE_SIZE)
1153  * @start: bit_off to start searching
1154  *
1155  * This function takes in a @start offset to begin searching to fit an
1156  * allocation of @alloc_bits with alignment @align.  It needs to scan
1157  * the allocation map because if it fits within the block's contig hint,
1158  * @start will be block->first_free. This is an attempt to fill the
1159  * allocation prior to breaking the contig hint.  The allocation and
1160  * boundary maps are updated accordingly if it confirms a valid
1161  * free area.
1162  *
1163  * RETURNS:
1164  * Allocated addr offset in @chunk on success.
1165  * -1 if no matching area is found.
1166  */
1167 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1168 			   size_t align, int start)
1169 {
1170 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1171 	size_t align_mask = (align) ? (align - 1) : 0;
1172 	unsigned long area_off = 0, area_bits = 0;
1173 	int bit_off, end, oslot;
1174 
1175 	lockdep_assert_held(&pcpu_lock);
1176 
1177 	oslot = pcpu_chunk_slot(chunk);
1178 
1179 	/*
1180 	 * Search to find a fit.
1181 	 */
1182 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1183 		    pcpu_chunk_map_bits(chunk));
1184 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1185 				      align_mask, &area_off, &area_bits);
1186 	if (bit_off >= end)
1187 		return -1;
1188 
1189 	if (area_bits)
1190 		pcpu_block_update_scan(chunk, area_off, area_bits);
1191 
1192 	/* update alloc map */
1193 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1194 
1195 	/* update boundary map */
1196 	set_bit(bit_off, chunk->bound_map);
1197 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1198 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1199 
1200 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1201 
1202 	/* update first free bit */
1203 	if (bit_off == chunk_md->first_free)
1204 		chunk_md->first_free = find_next_zero_bit(
1205 					chunk->alloc_map,
1206 					pcpu_chunk_map_bits(chunk),
1207 					bit_off + alloc_bits);
1208 
1209 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1210 
1211 	pcpu_chunk_relocate(chunk, oslot);
1212 
1213 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1214 }
1215 
1216 /**
1217  * pcpu_free_area - frees the corresponding offset
1218  * @chunk: chunk of interest
1219  * @off: addr offset into chunk
1220  *
1221  * This function determines the size of an allocation to free using
1222  * the boundary bitmap and clears the allocation map.
1223  *
1224  * RETURNS:
1225  * Number of freed bytes.
1226  */
1227 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1228 {
1229 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1230 	int bit_off, bits, end, oslot, freed;
1231 
1232 	lockdep_assert_held(&pcpu_lock);
1233 	pcpu_stats_area_dealloc(chunk);
1234 
1235 	oslot = pcpu_chunk_slot(chunk);
1236 
1237 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1238 
1239 	/* find end index */
1240 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1241 			    bit_off + 1);
1242 	bits = end - bit_off;
1243 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1244 
1245 	freed = bits * PCPU_MIN_ALLOC_SIZE;
1246 
1247 	/* update metadata */
1248 	chunk->free_bytes += freed;
1249 
1250 	/* update first free bit */
1251 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1252 
1253 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1254 
1255 	pcpu_chunk_relocate(chunk, oslot);
1256 
1257 	return freed;
1258 }
1259 
1260 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1261 {
1262 	block->scan_hint = 0;
1263 	block->contig_hint = nr_bits;
1264 	block->left_free = nr_bits;
1265 	block->right_free = nr_bits;
1266 	block->first_free = 0;
1267 	block->nr_bits = nr_bits;
1268 }
1269 
1270 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1271 {
1272 	struct pcpu_block_md *md_block;
1273 
1274 	/* init the chunk's block */
1275 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1276 
1277 	for (md_block = chunk->md_blocks;
1278 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1279 	     md_block++)
1280 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1281 }
1282 
1283 /**
1284  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1285  * @tmp_addr: the start of the region served
1286  * @map_size: size of the region served
1287  *
1288  * This is responsible for creating the chunks that serve the first chunk.  The
1289  * base_addr is page aligned down of @tmp_addr while the region end is page
1290  * aligned up.  Offsets are kept track of to determine the region served. All
1291  * this is done to appease the bitmap allocator in avoiding partial blocks.
1292  *
1293  * RETURNS:
1294  * Chunk serving the region at @tmp_addr of @map_size.
1295  */
1296 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1297 							 int map_size)
1298 {
1299 	struct pcpu_chunk *chunk;
1300 	unsigned long aligned_addr, lcm_align;
1301 	int start_offset, offset_bits, region_size, region_bits;
1302 	size_t alloc_size;
1303 
1304 	/* region calculations */
1305 	aligned_addr = tmp_addr & PAGE_MASK;
1306 
1307 	start_offset = tmp_addr - aligned_addr;
1308 
1309 	/*
1310 	 * Align the end of the region with the LCM of PAGE_SIZE and
1311 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1312 	 * the other.
1313 	 */
1314 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1315 	region_size = ALIGN(start_offset + map_size, lcm_align);
1316 
1317 	/* allocate chunk */
1318 	alloc_size = sizeof(struct pcpu_chunk) +
1319 		BITS_TO_LONGS(region_size >> PAGE_SHIFT) * sizeof(unsigned long);
1320 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1321 	if (!chunk)
1322 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1323 		      alloc_size);
1324 
1325 	INIT_LIST_HEAD(&chunk->list);
1326 
1327 	chunk->base_addr = (void *)aligned_addr;
1328 	chunk->start_offset = start_offset;
1329 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1330 
1331 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1332 	region_bits = pcpu_chunk_map_bits(chunk);
1333 
1334 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1335 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1336 	if (!chunk->alloc_map)
1337 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1338 		      alloc_size);
1339 
1340 	alloc_size =
1341 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1342 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1343 	if (!chunk->bound_map)
1344 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1345 		      alloc_size);
1346 
1347 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1348 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1349 	if (!chunk->md_blocks)
1350 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1351 		      alloc_size);
1352 
1353 #ifdef CONFIG_MEMCG_KMEM
1354 	/* first chunk isn't memcg-aware */
1355 	chunk->obj_cgroups = NULL;
1356 #endif
1357 	pcpu_init_md_blocks(chunk);
1358 
1359 	/* manage populated page bitmap */
1360 	chunk->immutable = true;
1361 	bitmap_fill(chunk->populated, chunk->nr_pages);
1362 	chunk->nr_populated = chunk->nr_pages;
1363 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1364 
1365 	chunk->free_bytes = map_size;
1366 
1367 	if (chunk->start_offset) {
1368 		/* hide the beginning of the bitmap */
1369 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1370 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1371 		set_bit(0, chunk->bound_map);
1372 		set_bit(offset_bits, chunk->bound_map);
1373 
1374 		chunk->chunk_md.first_free = offset_bits;
1375 
1376 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1377 	}
1378 
1379 	if (chunk->end_offset) {
1380 		/* hide the end of the bitmap */
1381 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1382 		bitmap_set(chunk->alloc_map,
1383 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1384 			   offset_bits);
1385 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1386 			chunk->bound_map);
1387 		set_bit(region_bits, chunk->bound_map);
1388 
1389 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1390 					     - offset_bits, offset_bits);
1391 	}
1392 
1393 	return chunk;
1394 }
1395 
1396 static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
1397 {
1398 	struct pcpu_chunk *chunk;
1399 	int region_bits;
1400 
1401 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1402 	if (!chunk)
1403 		return NULL;
1404 
1405 	INIT_LIST_HEAD(&chunk->list);
1406 	chunk->nr_pages = pcpu_unit_pages;
1407 	region_bits = pcpu_chunk_map_bits(chunk);
1408 
1409 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1410 					   sizeof(chunk->alloc_map[0]), gfp);
1411 	if (!chunk->alloc_map)
1412 		goto alloc_map_fail;
1413 
1414 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1415 					   sizeof(chunk->bound_map[0]), gfp);
1416 	if (!chunk->bound_map)
1417 		goto bound_map_fail;
1418 
1419 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1420 					   sizeof(chunk->md_blocks[0]), gfp);
1421 	if (!chunk->md_blocks)
1422 		goto md_blocks_fail;
1423 
1424 #ifdef CONFIG_MEMCG_KMEM
1425 	if (pcpu_is_memcg_chunk(type)) {
1426 		chunk->obj_cgroups =
1427 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1428 					sizeof(struct obj_cgroup *), gfp);
1429 		if (!chunk->obj_cgroups)
1430 			goto objcg_fail;
1431 	}
1432 #endif
1433 
1434 	pcpu_init_md_blocks(chunk);
1435 
1436 	/* init metadata */
1437 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1438 
1439 	return chunk;
1440 
1441 #ifdef CONFIG_MEMCG_KMEM
1442 objcg_fail:
1443 	pcpu_mem_free(chunk->md_blocks);
1444 #endif
1445 md_blocks_fail:
1446 	pcpu_mem_free(chunk->bound_map);
1447 bound_map_fail:
1448 	pcpu_mem_free(chunk->alloc_map);
1449 alloc_map_fail:
1450 	pcpu_mem_free(chunk);
1451 
1452 	return NULL;
1453 }
1454 
1455 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1456 {
1457 	if (!chunk)
1458 		return;
1459 #ifdef CONFIG_MEMCG_KMEM
1460 	pcpu_mem_free(chunk->obj_cgroups);
1461 #endif
1462 	pcpu_mem_free(chunk->md_blocks);
1463 	pcpu_mem_free(chunk->bound_map);
1464 	pcpu_mem_free(chunk->alloc_map);
1465 	pcpu_mem_free(chunk);
1466 }
1467 
1468 /**
1469  * pcpu_chunk_populated - post-population bookkeeping
1470  * @chunk: pcpu_chunk which got populated
1471  * @page_start: the start page
1472  * @page_end: the end page
1473  *
1474  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1475  * the bookkeeping information accordingly.  Must be called after each
1476  * successful population.
1477  *
1478  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1479  * is to serve an allocation in that area.
1480  */
1481 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1482 				 int page_end)
1483 {
1484 	int nr = page_end - page_start;
1485 
1486 	lockdep_assert_held(&pcpu_lock);
1487 
1488 	bitmap_set(chunk->populated, page_start, nr);
1489 	chunk->nr_populated += nr;
1490 	pcpu_nr_populated += nr;
1491 
1492 	pcpu_update_empty_pages(chunk, nr);
1493 }
1494 
1495 /**
1496  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1497  * @chunk: pcpu_chunk which got depopulated
1498  * @page_start: the start page
1499  * @page_end: the end page
1500  *
1501  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1502  * Update the bookkeeping information accordingly.  Must be called after
1503  * each successful depopulation.
1504  */
1505 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1506 				   int page_start, int page_end)
1507 {
1508 	int nr = page_end - page_start;
1509 
1510 	lockdep_assert_held(&pcpu_lock);
1511 
1512 	bitmap_clear(chunk->populated, page_start, nr);
1513 	chunk->nr_populated -= nr;
1514 	pcpu_nr_populated -= nr;
1515 
1516 	pcpu_update_empty_pages(chunk, -nr);
1517 }
1518 
1519 /*
1520  * Chunk management implementation.
1521  *
1522  * To allow different implementations, chunk alloc/free and
1523  * [de]population are implemented in a separate file which is pulled
1524  * into this file and compiled together.  The following functions
1525  * should be implemented.
1526  *
1527  * pcpu_populate_chunk		- populate the specified range of a chunk
1528  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1529  * pcpu_create_chunk		- create a new chunk
1530  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1531  * pcpu_addr_to_page		- translate address to physical address
1532  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1533  */
1534 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1535 			       int page_start, int page_end, gfp_t gfp);
1536 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1537 				  int page_start, int page_end);
1538 static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
1539 					    gfp_t gfp);
1540 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1541 static struct page *pcpu_addr_to_page(void *addr);
1542 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1543 
1544 #ifdef CONFIG_NEED_PER_CPU_KM
1545 #include "percpu-km.c"
1546 #else
1547 #include "percpu-vm.c"
1548 #endif
1549 
1550 /**
1551  * pcpu_chunk_addr_search - determine chunk containing specified address
1552  * @addr: address for which the chunk needs to be determined.
1553  *
1554  * This is an internal function that handles all but static allocations.
1555  * Static percpu address values should never be passed into the allocator.
1556  *
1557  * RETURNS:
1558  * The address of the found chunk.
1559  */
1560 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1561 {
1562 	/* is it in the dynamic region (first chunk)? */
1563 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1564 		return pcpu_first_chunk;
1565 
1566 	/* is it in the reserved region? */
1567 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1568 		return pcpu_reserved_chunk;
1569 
1570 	/*
1571 	 * The address is relative to unit0 which might be unused and
1572 	 * thus unmapped.  Offset the address to the unit space of the
1573 	 * current processor before looking it up in the vmalloc
1574 	 * space.  Note that any possible cpu id can be used here, so
1575 	 * there's no need to worry about preemption or cpu hotplug.
1576 	 */
1577 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1578 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1579 }
1580 
1581 #ifdef CONFIG_MEMCG_KMEM
1582 static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1583 						     struct obj_cgroup **objcgp)
1584 {
1585 	struct obj_cgroup *objcg;
1586 
1587 	if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1588 		return PCPU_CHUNK_ROOT;
1589 
1590 	objcg = get_obj_cgroup_from_current();
1591 	if (!objcg)
1592 		return PCPU_CHUNK_ROOT;
1593 
1594 	if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1595 		obj_cgroup_put(objcg);
1596 		return PCPU_FAIL_ALLOC;
1597 	}
1598 
1599 	*objcgp = objcg;
1600 	return PCPU_CHUNK_MEMCG;
1601 }
1602 
1603 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1604 				       struct pcpu_chunk *chunk, int off,
1605 				       size_t size)
1606 {
1607 	if (!objcg)
1608 		return;
1609 
1610 	if (chunk) {
1611 		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1612 
1613 		rcu_read_lock();
1614 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1615 				size * num_possible_cpus());
1616 		rcu_read_unlock();
1617 	} else {
1618 		obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1619 		obj_cgroup_put(objcg);
1620 	}
1621 }
1622 
1623 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1624 {
1625 	struct obj_cgroup *objcg;
1626 
1627 	if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
1628 		return;
1629 
1630 	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1631 	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1632 
1633 	obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1634 
1635 	rcu_read_lock();
1636 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1637 			-(size * num_possible_cpus()));
1638 	rcu_read_unlock();
1639 
1640 	obj_cgroup_put(objcg);
1641 }
1642 
1643 #else /* CONFIG_MEMCG_KMEM */
1644 static enum pcpu_chunk_type
1645 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1646 {
1647 	return PCPU_CHUNK_ROOT;
1648 }
1649 
1650 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1651 				       struct pcpu_chunk *chunk, int off,
1652 				       size_t size)
1653 {
1654 }
1655 
1656 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1657 {
1658 }
1659 #endif /* CONFIG_MEMCG_KMEM */
1660 
1661 /**
1662  * pcpu_alloc - the percpu allocator
1663  * @size: size of area to allocate in bytes
1664  * @align: alignment of area (max PAGE_SIZE)
1665  * @reserved: allocate from the reserved chunk if available
1666  * @gfp: allocation flags
1667  *
1668  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1669  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1670  * then no warning will be triggered on invalid or failed allocation
1671  * requests.
1672  *
1673  * RETURNS:
1674  * Percpu pointer to the allocated area on success, NULL on failure.
1675  */
1676 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1677 				 gfp_t gfp)
1678 {
1679 	gfp_t pcpu_gfp;
1680 	bool is_atomic;
1681 	bool do_warn;
1682 	enum pcpu_chunk_type type;
1683 	struct list_head *pcpu_slot;
1684 	struct obj_cgroup *objcg = NULL;
1685 	static int warn_limit = 10;
1686 	struct pcpu_chunk *chunk, *next;
1687 	const char *err;
1688 	int slot, off, cpu, ret;
1689 	unsigned long flags;
1690 	void __percpu *ptr;
1691 	size_t bits, bit_align;
1692 
1693 	gfp = current_gfp_context(gfp);
1694 	/* whitelisted flags that can be passed to the backing allocators */
1695 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1696 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1697 	do_warn = !(gfp & __GFP_NOWARN);
1698 
1699 	/*
1700 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1701 	 * therefore alignment must be a minimum of that many bytes.
1702 	 * An allocation may have internal fragmentation from rounding up
1703 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1704 	 */
1705 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1706 		align = PCPU_MIN_ALLOC_SIZE;
1707 
1708 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1709 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1710 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1711 
1712 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1713 		     !is_power_of_2(align))) {
1714 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1715 		     size, align);
1716 		return NULL;
1717 	}
1718 
1719 	type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
1720 	if (unlikely(type == PCPU_FAIL_ALLOC))
1721 		return NULL;
1722 	pcpu_slot = pcpu_chunk_list(type);
1723 
1724 	if (!is_atomic) {
1725 		/*
1726 		 * pcpu_balance_workfn() allocates memory under this mutex,
1727 		 * and it may wait for memory reclaim. Allow current task
1728 		 * to become OOM victim, in case of memory pressure.
1729 		 */
1730 		if (gfp & __GFP_NOFAIL) {
1731 			mutex_lock(&pcpu_alloc_mutex);
1732 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1733 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1734 			return NULL;
1735 		}
1736 	}
1737 
1738 	spin_lock_irqsave(&pcpu_lock, flags);
1739 
1740 	/* serve reserved allocations from the reserved chunk if available */
1741 	if (reserved && pcpu_reserved_chunk) {
1742 		chunk = pcpu_reserved_chunk;
1743 
1744 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1745 		if (off < 0) {
1746 			err = "alloc from reserved chunk failed";
1747 			goto fail_unlock;
1748 		}
1749 
1750 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1751 		if (off >= 0)
1752 			goto area_found;
1753 
1754 		err = "alloc from reserved chunk failed";
1755 		goto fail_unlock;
1756 	}
1757 
1758 restart:
1759 	/* search through normal chunks */
1760 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1761 		list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1762 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1763 						  is_atomic);
1764 			if (off < 0) {
1765 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1766 					pcpu_chunk_move(chunk, 0);
1767 				continue;
1768 			}
1769 
1770 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1771 			if (off >= 0)
1772 				goto area_found;
1773 
1774 		}
1775 	}
1776 
1777 	spin_unlock_irqrestore(&pcpu_lock, flags);
1778 
1779 	/*
1780 	 * No space left.  Create a new chunk.  We don't want multiple
1781 	 * tasks to create chunks simultaneously.  Serialize and create iff
1782 	 * there's still no empty chunk after grabbing the mutex.
1783 	 */
1784 	if (is_atomic) {
1785 		err = "atomic alloc failed, no space left";
1786 		goto fail;
1787 	}
1788 
1789 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1790 		chunk = pcpu_create_chunk(type, pcpu_gfp);
1791 		if (!chunk) {
1792 			err = "failed to allocate new chunk";
1793 			goto fail;
1794 		}
1795 
1796 		spin_lock_irqsave(&pcpu_lock, flags);
1797 		pcpu_chunk_relocate(chunk, -1);
1798 	} else {
1799 		spin_lock_irqsave(&pcpu_lock, flags);
1800 	}
1801 
1802 	goto restart;
1803 
1804 area_found:
1805 	pcpu_stats_area_alloc(chunk, size);
1806 	spin_unlock_irqrestore(&pcpu_lock, flags);
1807 
1808 	/* populate if not all pages are already there */
1809 	if (!is_atomic) {
1810 		unsigned int page_start, page_end, rs, re;
1811 
1812 		page_start = PFN_DOWN(off);
1813 		page_end = PFN_UP(off + size);
1814 
1815 		bitmap_for_each_clear_region(chunk->populated, rs, re,
1816 					     page_start, page_end) {
1817 			WARN_ON(chunk->immutable);
1818 
1819 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1820 
1821 			spin_lock_irqsave(&pcpu_lock, flags);
1822 			if (ret) {
1823 				pcpu_free_area(chunk, off);
1824 				err = "failed to populate";
1825 				goto fail_unlock;
1826 			}
1827 			pcpu_chunk_populated(chunk, rs, re);
1828 			spin_unlock_irqrestore(&pcpu_lock, flags);
1829 		}
1830 
1831 		mutex_unlock(&pcpu_alloc_mutex);
1832 	}
1833 
1834 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1835 		pcpu_schedule_balance_work();
1836 
1837 	/* clear the areas and return address relative to base address */
1838 	for_each_possible_cpu(cpu)
1839 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1840 
1841 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1842 	kmemleak_alloc_percpu(ptr, size, gfp);
1843 
1844 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1845 			chunk->base_addr, off, ptr);
1846 
1847 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1848 
1849 	return ptr;
1850 
1851 fail_unlock:
1852 	spin_unlock_irqrestore(&pcpu_lock, flags);
1853 fail:
1854 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1855 
1856 	if (!is_atomic && do_warn && warn_limit) {
1857 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1858 			size, align, is_atomic, err);
1859 		dump_stack();
1860 		if (!--warn_limit)
1861 			pr_info("limit reached, disable warning\n");
1862 	}
1863 	if (is_atomic) {
1864 		/* see the flag handling in pcpu_blance_workfn() */
1865 		pcpu_atomic_alloc_failed = true;
1866 		pcpu_schedule_balance_work();
1867 	} else {
1868 		mutex_unlock(&pcpu_alloc_mutex);
1869 	}
1870 
1871 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1872 
1873 	return NULL;
1874 }
1875 
1876 /**
1877  * __alloc_percpu_gfp - allocate dynamic percpu area
1878  * @size: size of area to allocate in bytes
1879  * @align: alignment of area (max PAGE_SIZE)
1880  * @gfp: allocation flags
1881  *
1882  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1883  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1884  * be called from any context but is a lot more likely to fail. If @gfp
1885  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1886  * allocation requests.
1887  *
1888  * RETURNS:
1889  * Percpu pointer to the allocated area on success, NULL on failure.
1890  */
1891 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1892 {
1893 	return pcpu_alloc(size, align, false, gfp);
1894 }
1895 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1896 
1897 /**
1898  * __alloc_percpu - allocate dynamic percpu area
1899  * @size: size of area to allocate in bytes
1900  * @align: alignment of area (max PAGE_SIZE)
1901  *
1902  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1903  */
1904 void __percpu *__alloc_percpu(size_t size, size_t align)
1905 {
1906 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1907 }
1908 EXPORT_SYMBOL_GPL(__alloc_percpu);
1909 
1910 /**
1911  * __alloc_reserved_percpu - allocate reserved percpu area
1912  * @size: size of area to allocate in bytes
1913  * @align: alignment of area (max PAGE_SIZE)
1914  *
1915  * Allocate zero-filled percpu area of @size bytes aligned at @align
1916  * from reserved percpu area if arch has set it up; otherwise,
1917  * allocation is served from the same dynamic area.  Might sleep.
1918  * Might trigger writeouts.
1919  *
1920  * CONTEXT:
1921  * Does GFP_KERNEL allocation.
1922  *
1923  * RETURNS:
1924  * Percpu pointer to the allocated area on success, NULL on failure.
1925  */
1926 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1927 {
1928 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1929 }
1930 
1931 /**
1932  * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
1933  * @type: chunk type
1934  *
1935  * Reclaim all fully free chunks except for the first one.  This is also
1936  * responsible for maintaining the pool of empty populated pages.  However,
1937  * it is possible that this is called when physical memory is scarce causing
1938  * OOM killer to be triggered.  We should avoid doing so until an actual
1939  * allocation causes the failure as it is possible that requests can be
1940  * serviced from already backed regions.
1941  */
1942 static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
1943 {
1944 	/* gfp flags passed to underlying allocators */
1945 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1946 	LIST_HEAD(to_free);
1947 	struct list_head *pcpu_slot = pcpu_chunk_list(type);
1948 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1949 	struct pcpu_chunk *chunk, *next;
1950 	int slot, nr_to_pop, ret;
1951 
1952 	/*
1953 	 * There's no reason to keep around multiple unused chunks and VM
1954 	 * areas can be scarce.  Destroy all free chunks except for one.
1955 	 */
1956 	mutex_lock(&pcpu_alloc_mutex);
1957 	spin_lock_irq(&pcpu_lock);
1958 
1959 	list_for_each_entry_safe(chunk, next, free_head, list) {
1960 		WARN_ON(chunk->immutable);
1961 
1962 		/* spare the first one */
1963 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1964 			continue;
1965 
1966 		list_move(&chunk->list, &to_free);
1967 	}
1968 
1969 	spin_unlock_irq(&pcpu_lock);
1970 
1971 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1972 		unsigned int rs, re;
1973 
1974 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1975 					   chunk->nr_pages) {
1976 			pcpu_depopulate_chunk(chunk, rs, re);
1977 			spin_lock_irq(&pcpu_lock);
1978 			pcpu_chunk_depopulated(chunk, rs, re);
1979 			spin_unlock_irq(&pcpu_lock);
1980 		}
1981 		pcpu_destroy_chunk(chunk);
1982 		cond_resched();
1983 	}
1984 
1985 	/*
1986 	 * Ensure there are certain number of free populated pages for
1987 	 * atomic allocs.  Fill up from the most packed so that atomic
1988 	 * allocs don't increase fragmentation.  If atomic allocation
1989 	 * failed previously, always populate the maximum amount.  This
1990 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1991 	 * failing indefinitely; however, large atomic allocs are not
1992 	 * something we support properly and can be highly unreliable and
1993 	 * inefficient.
1994 	 */
1995 retry_pop:
1996 	if (pcpu_atomic_alloc_failed) {
1997 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1998 		/* best effort anyway, don't worry about synchronization */
1999 		pcpu_atomic_alloc_failed = false;
2000 	} else {
2001 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2002 				  pcpu_nr_empty_pop_pages,
2003 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2004 	}
2005 
2006 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
2007 		unsigned int nr_unpop = 0, rs, re;
2008 
2009 		if (!nr_to_pop)
2010 			break;
2011 
2012 		spin_lock_irq(&pcpu_lock);
2013 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
2014 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2015 			if (nr_unpop)
2016 				break;
2017 		}
2018 		spin_unlock_irq(&pcpu_lock);
2019 
2020 		if (!nr_unpop)
2021 			continue;
2022 
2023 		/* @chunk can't go away while pcpu_alloc_mutex is held */
2024 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2025 					     chunk->nr_pages) {
2026 			int nr = min_t(int, re - rs, nr_to_pop);
2027 
2028 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2029 			if (!ret) {
2030 				nr_to_pop -= nr;
2031 				spin_lock_irq(&pcpu_lock);
2032 				pcpu_chunk_populated(chunk, rs, rs + nr);
2033 				spin_unlock_irq(&pcpu_lock);
2034 			} else {
2035 				nr_to_pop = 0;
2036 			}
2037 
2038 			if (!nr_to_pop)
2039 				break;
2040 		}
2041 	}
2042 
2043 	if (nr_to_pop) {
2044 		/* ran out of chunks to populate, create a new one and retry */
2045 		chunk = pcpu_create_chunk(type, gfp);
2046 		if (chunk) {
2047 			spin_lock_irq(&pcpu_lock);
2048 			pcpu_chunk_relocate(chunk, -1);
2049 			spin_unlock_irq(&pcpu_lock);
2050 			goto retry_pop;
2051 		}
2052 	}
2053 
2054 	mutex_unlock(&pcpu_alloc_mutex);
2055 }
2056 
2057 /**
2058  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2059  * @work: unused
2060  *
2061  * Call __pcpu_balance_workfn() for each chunk type.
2062  */
2063 static void pcpu_balance_workfn(struct work_struct *work)
2064 {
2065 	enum pcpu_chunk_type type;
2066 
2067 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2068 		__pcpu_balance_workfn(type);
2069 }
2070 
2071 /**
2072  * free_percpu - free percpu area
2073  * @ptr: pointer to area to free
2074  *
2075  * Free percpu area @ptr.
2076  *
2077  * CONTEXT:
2078  * Can be called from atomic context.
2079  */
2080 void free_percpu(void __percpu *ptr)
2081 {
2082 	void *addr;
2083 	struct pcpu_chunk *chunk;
2084 	unsigned long flags;
2085 	int size, off;
2086 	bool need_balance = false;
2087 	struct list_head *pcpu_slot;
2088 
2089 	if (!ptr)
2090 		return;
2091 
2092 	kmemleak_free_percpu(ptr);
2093 
2094 	addr = __pcpu_ptr_to_addr(ptr);
2095 
2096 	spin_lock_irqsave(&pcpu_lock, flags);
2097 
2098 	chunk = pcpu_chunk_addr_search(addr);
2099 	off = addr - chunk->base_addr;
2100 
2101 	size = pcpu_free_area(chunk, off);
2102 
2103 	pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
2104 
2105 	pcpu_memcg_free_hook(chunk, off, size);
2106 
2107 	/* if there are more than one fully free chunks, wake up grim reaper */
2108 	if (chunk->free_bytes == pcpu_unit_size) {
2109 		struct pcpu_chunk *pos;
2110 
2111 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
2112 			if (pos != chunk) {
2113 				need_balance = true;
2114 				break;
2115 			}
2116 	}
2117 
2118 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2119 
2120 	spin_unlock_irqrestore(&pcpu_lock, flags);
2121 
2122 	if (need_balance)
2123 		pcpu_schedule_balance_work();
2124 }
2125 EXPORT_SYMBOL_GPL(free_percpu);
2126 
2127 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2128 {
2129 #ifdef CONFIG_SMP
2130 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2131 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2132 	unsigned int cpu;
2133 
2134 	for_each_possible_cpu(cpu) {
2135 		void *start = per_cpu_ptr(base, cpu);
2136 		void *va = (void *)addr;
2137 
2138 		if (va >= start && va < start + static_size) {
2139 			if (can_addr) {
2140 				*can_addr = (unsigned long) (va - start);
2141 				*can_addr += (unsigned long)
2142 					per_cpu_ptr(base, get_boot_cpu_id());
2143 			}
2144 			return true;
2145 		}
2146 	}
2147 #endif
2148 	/* on UP, can't distinguish from other static vars, always false */
2149 	return false;
2150 }
2151 
2152 /**
2153  * is_kernel_percpu_address - test whether address is from static percpu area
2154  * @addr: address to test
2155  *
2156  * Test whether @addr belongs to in-kernel static percpu area.  Module
2157  * static percpu areas are not considered.  For those, use
2158  * is_module_percpu_address().
2159  *
2160  * RETURNS:
2161  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2162  */
2163 bool is_kernel_percpu_address(unsigned long addr)
2164 {
2165 	return __is_kernel_percpu_address(addr, NULL);
2166 }
2167 
2168 /**
2169  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2170  * @addr: the address to be converted to physical address
2171  *
2172  * Given @addr which is dereferenceable address obtained via one of
2173  * percpu access macros, this function translates it into its physical
2174  * address.  The caller is responsible for ensuring @addr stays valid
2175  * until this function finishes.
2176  *
2177  * percpu allocator has special setup for the first chunk, which currently
2178  * supports either embedding in linear address space or vmalloc mapping,
2179  * and, from the second one, the backing allocator (currently either vm or
2180  * km) provides translation.
2181  *
2182  * The addr can be translated simply without checking if it falls into the
2183  * first chunk. But the current code reflects better how percpu allocator
2184  * actually works, and the verification can discover both bugs in percpu
2185  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2186  * code.
2187  *
2188  * RETURNS:
2189  * The physical address for @addr.
2190  */
2191 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2192 {
2193 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2194 	bool in_first_chunk = false;
2195 	unsigned long first_low, first_high;
2196 	unsigned int cpu;
2197 
2198 	/*
2199 	 * The following test on unit_low/high isn't strictly
2200 	 * necessary but will speed up lookups of addresses which
2201 	 * aren't in the first chunk.
2202 	 *
2203 	 * The address check is against full chunk sizes.  pcpu_base_addr
2204 	 * points to the beginning of the first chunk including the
2205 	 * static region.  Assumes good intent as the first chunk may
2206 	 * not be full (ie. < pcpu_unit_pages in size).
2207 	 */
2208 	first_low = (unsigned long)pcpu_base_addr +
2209 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2210 	first_high = (unsigned long)pcpu_base_addr +
2211 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2212 	if ((unsigned long)addr >= first_low &&
2213 	    (unsigned long)addr < first_high) {
2214 		for_each_possible_cpu(cpu) {
2215 			void *start = per_cpu_ptr(base, cpu);
2216 
2217 			if (addr >= start && addr < start + pcpu_unit_size) {
2218 				in_first_chunk = true;
2219 				break;
2220 			}
2221 		}
2222 	}
2223 
2224 	if (in_first_chunk) {
2225 		if (!is_vmalloc_addr(addr))
2226 			return __pa(addr);
2227 		else
2228 			return page_to_phys(vmalloc_to_page(addr)) +
2229 			       offset_in_page(addr);
2230 	} else
2231 		return page_to_phys(pcpu_addr_to_page(addr)) +
2232 		       offset_in_page(addr);
2233 }
2234 
2235 /**
2236  * pcpu_alloc_alloc_info - allocate percpu allocation info
2237  * @nr_groups: the number of groups
2238  * @nr_units: the number of units
2239  *
2240  * Allocate ai which is large enough for @nr_groups groups containing
2241  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2242  * cpu_map array which is long enough for @nr_units and filled with
2243  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2244  * pointer of other groups.
2245  *
2246  * RETURNS:
2247  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2248  * failure.
2249  */
2250 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2251 						      int nr_units)
2252 {
2253 	struct pcpu_alloc_info *ai;
2254 	size_t base_size, ai_size;
2255 	void *ptr;
2256 	int unit;
2257 
2258 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2259 			  __alignof__(ai->groups[0].cpu_map[0]));
2260 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2261 
2262 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2263 	if (!ptr)
2264 		return NULL;
2265 	ai = ptr;
2266 	ptr += base_size;
2267 
2268 	ai->groups[0].cpu_map = ptr;
2269 
2270 	for (unit = 0; unit < nr_units; unit++)
2271 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2272 
2273 	ai->nr_groups = nr_groups;
2274 	ai->__ai_size = PFN_ALIGN(ai_size);
2275 
2276 	return ai;
2277 }
2278 
2279 /**
2280  * pcpu_free_alloc_info - free percpu allocation info
2281  * @ai: pcpu_alloc_info to free
2282  *
2283  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2284  */
2285 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2286 {
2287 	memblock_free_early(__pa(ai), ai->__ai_size);
2288 }
2289 
2290 /**
2291  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2292  * @lvl: loglevel
2293  * @ai: allocation info to dump
2294  *
2295  * Print out information about @ai using loglevel @lvl.
2296  */
2297 static void pcpu_dump_alloc_info(const char *lvl,
2298 				 const struct pcpu_alloc_info *ai)
2299 {
2300 	int group_width = 1, cpu_width = 1, width;
2301 	char empty_str[] = "--------";
2302 	int alloc = 0, alloc_end = 0;
2303 	int group, v;
2304 	int upa, apl;	/* units per alloc, allocs per line */
2305 
2306 	v = ai->nr_groups;
2307 	while (v /= 10)
2308 		group_width++;
2309 
2310 	v = num_possible_cpus();
2311 	while (v /= 10)
2312 		cpu_width++;
2313 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2314 
2315 	upa = ai->alloc_size / ai->unit_size;
2316 	width = upa * (cpu_width + 1) + group_width + 3;
2317 	apl = rounddown_pow_of_two(max(60 / width, 1));
2318 
2319 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2320 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2321 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2322 
2323 	for (group = 0; group < ai->nr_groups; group++) {
2324 		const struct pcpu_group_info *gi = &ai->groups[group];
2325 		int unit = 0, unit_end = 0;
2326 
2327 		BUG_ON(gi->nr_units % upa);
2328 		for (alloc_end += gi->nr_units / upa;
2329 		     alloc < alloc_end; alloc++) {
2330 			if (!(alloc % apl)) {
2331 				pr_cont("\n");
2332 				printk("%spcpu-alloc: ", lvl);
2333 			}
2334 			pr_cont("[%0*d] ", group_width, group);
2335 
2336 			for (unit_end += upa; unit < unit_end; unit++)
2337 				if (gi->cpu_map[unit] != NR_CPUS)
2338 					pr_cont("%0*d ",
2339 						cpu_width, gi->cpu_map[unit]);
2340 				else
2341 					pr_cont("%s ", empty_str);
2342 		}
2343 	}
2344 	pr_cont("\n");
2345 }
2346 
2347 /**
2348  * pcpu_setup_first_chunk - initialize the first percpu chunk
2349  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2350  * @base_addr: mapped address
2351  *
2352  * Initialize the first percpu chunk which contains the kernel static
2353  * percpu area.  This function is to be called from arch percpu area
2354  * setup path.
2355  *
2356  * @ai contains all information necessary to initialize the first
2357  * chunk and prime the dynamic percpu allocator.
2358  *
2359  * @ai->static_size is the size of static percpu area.
2360  *
2361  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2362  * reserve after the static area in the first chunk.  This reserves
2363  * the first chunk such that it's available only through reserved
2364  * percpu allocation.  This is primarily used to serve module percpu
2365  * static areas on architectures where the addressing model has
2366  * limited offset range for symbol relocations to guarantee module
2367  * percpu symbols fall inside the relocatable range.
2368  *
2369  * @ai->dyn_size determines the number of bytes available for dynamic
2370  * allocation in the first chunk.  The area between @ai->static_size +
2371  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2372  *
2373  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2374  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2375  * @ai->dyn_size.
2376  *
2377  * @ai->atom_size is the allocation atom size and used as alignment
2378  * for vm areas.
2379  *
2380  * @ai->alloc_size is the allocation size and always multiple of
2381  * @ai->atom_size.  This is larger than @ai->atom_size if
2382  * @ai->unit_size is larger than @ai->atom_size.
2383  *
2384  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2385  * percpu areas.  Units which should be colocated are put into the
2386  * same group.  Dynamic VM areas will be allocated according to these
2387  * groupings.  If @ai->nr_groups is zero, a single group containing
2388  * all units is assumed.
2389  *
2390  * The caller should have mapped the first chunk at @base_addr and
2391  * copied static data to each unit.
2392  *
2393  * The first chunk will always contain a static and a dynamic region.
2394  * However, the static region is not managed by any chunk.  If the first
2395  * chunk also contains a reserved region, it is served by two chunks -
2396  * one for the reserved region and one for the dynamic region.  They
2397  * share the same vm, but use offset regions in the area allocation map.
2398  * The chunk serving the dynamic region is circulated in the chunk slots
2399  * and available for dynamic allocation like any other chunk.
2400  */
2401 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2402 				   void *base_addr)
2403 {
2404 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2405 	size_t static_size, dyn_size;
2406 	struct pcpu_chunk *chunk;
2407 	unsigned long *group_offsets;
2408 	size_t *group_sizes;
2409 	unsigned long *unit_off;
2410 	unsigned int cpu;
2411 	int *unit_map;
2412 	int group, unit, i;
2413 	int map_size;
2414 	unsigned long tmp_addr;
2415 	size_t alloc_size;
2416 	enum pcpu_chunk_type type;
2417 
2418 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2419 	if (unlikely(cond)) {						\
2420 		pr_emerg("failed to initialize, %s\n", #cond);		\
2421 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2422 			 cpumask_pr_args(cpu_possible_mask));		\
2423 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2424 		BUG();							\
2425 	}								\
2426 } while (0)
2427 
2428 	/* sanity checks */
2429 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2430 #ifdef CONFIG_SMP
2431 	PCPU_SETUP_BUG_ON(!ai->static_size);
2432 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2433 #endif
2434 	PCPU_SETUP_BUG_ON(!base_addr);
2435 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2436 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2437 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2438 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2439 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2440 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2441 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2442 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2443 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2444 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2445 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2446 
2447 	/* process group information and build config tables accordingly */
2448 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2449 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2450 	if (!group_offsets)
2451 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2452 		      alloc_size);
2453 
2454 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2455 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2456 	if (!group_sizes)
2457 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2458 		      alloc_size);
2459 
2460 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2461 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2462 	if (!unit_map)
2463 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2464 		      alloc_size);
2465 
2466 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2467 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2468 	if (!unit_off)
2469 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2470 		      alloc_size);
2471 
2472 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2473 		unit_map[cpu] = UINT_MAX;
2474 
2475 	pcpu_low_unit_cpu = NR_CPUS;
2476 	pcpu_high_unit_cpu = NR_CPUS;
2477 
2478 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2479 		const struct pcpu_group_info *gi = &ai->groups[group];
2480 
2481 		group_offsets[group] = gi->base_offset;
2482 		group_sizes[group] = gi->nr_units * ai->unit_size;
2483 
2484 		for (i = 0; i < gi->nr_units; i++) {
2485 			cpu = gi->cpu_map[i];
2486 			if (cpu == NR_CPUS)
2487 				continue;
2488 
2489 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2490 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2491 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2492 
2493 			unit_map[cpu] = unit + i;
2494 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2495 
2496 			/* determine low/high unit_cpu */
2497 			if (pcpu_low_unit_cpu == NR_CPUS ||
2498 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2499 				pcpu_low_unit_cpu = cpu;
2500 			if (pcpu_high_unit_cpu == NR_CPUS ||
2501 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2502 				pcpu_high_unit_cpu = cpu;
2503 		}
2504 	}
2505 	pcpu_nr_units = unit;
2506 
2507 	for_each_possible_cpu(cpu)
2508 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2509 
2510 	/* we're done parsing the input, undefine BUG macro and dump config */
2511 #undef PCPU_SETUP_BUG_ON
2512 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2513 
2514 	pcpu_nr_groups = ai->nr_groups;
2515 	pcpu_group_offsets = group_offsets;
2516 	pcpu_group_sizes = group_sizes;
2517 	pcpu_unit_map = unit_map;
2518 	pcpu_unit_offsets = unit_off;
2519 
2520 	/* determine basic parameters */
2521 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2522 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2523 	pcpu_atom_size = ai->atom_size;
2524 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2525 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2526 
2527 	pcpu_stats_save_ai(ai);
2528 
2529 	/*
2530 	 * Allocate chunk slots.  The additional last slot is for
2531 	 * empty chunks.
2532 	 */
2533 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2534 	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2535 					  sizeof(pcpu_chunk_lists[0]) *
2536 					  PCPU_NR_CHUNK_TYPES,
2537 					  SMP_CACHE_BYTES);
2538 	if (!pcpu_chunk_lists)
2539 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2540 		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
2541 		      PCPU_NR_CHUNK_TYPES);
2542 
2543 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2544 		for (i = 0; i < pcpu_nr_slots; i++)
2545 			INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
2546 
2547 	/*
2548 	 * The end of the static region needs to be aligned with the
2549 	 * minimum allocation size as this offsets the reserved and
2550 	 * dynamic region.  The first chunk ends page aligned by
2551 	 * expanding the dynamic region, therefore the dynamic region
2552 	 * can be shrunk to compensate while still staying above the
2553 	 * configured sizes.
2554 	 */
2555 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2556 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2557 
2558 	/*
2559 	 * Initialize first chunk.
2560 	 * If the reserved_size is non-zero, this initializes the reserved
2561 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2562 	 * and the dynamic region is initialized here.  The first chunk,
2563 	 * pcpu_first_chunk, will always point to the chunk that serves
2564 	 * the dynamic region.
2565 	 */
2566 	tmp_addr = (unsigned long)base_addr + static_size;
2567 	map_size = ai->reserved_size ?: dyn_size;
2568 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2569 
2570 	/* init dynamic chunk if necessary */
2571 	if (ai->reserved_size) {
2572 		pcpu_reserved_chunk = chunk;
2573 
2574 		tmp_addr = (unsigned long)base_addr + static_size +
2575 			   ai->reserved_size;
2576 		map_size = dyn_size;
2577 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2578 	}
2579 
2580 	/* link the first chunk in */
2581 	pcpu_first_chunk = chunk;
2582 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2583 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2584 
2585 	/* include all regions of the first chunk */
2586 	pcpu_nr_populated += PFN_DOWN(size_sum);
2587 
2588 	pcpu_stats_chunk_alloc();
2589 	trace_percpu_create_chunk(base_addr);
2590 
2591 	/* we're done */
2592 	pcpu_base_addr = base_addr;
2593 }
2594 
2595 #ifdef CONFIG_SMP
2596 
2597 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2598 	[PCPU_FC_AUTO]	= "auto",
2599 	[PCPU_FC_EMBED]	= "embed",
2600 	[PCPU_FC_PAGE]	= "page",
2601 };
2602 
2603 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2604 
2605 static int __init percpu_alloc_setup(char *str)
2606 {
2607 	if (!str)
2608 		return -EINVAL;
2609 
2610 	if (0)
2611 		/* nada */;
2612 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2613 	else if (!strcmp(str, "embed"))
2614 		pcpu_chosen_fc = PCPU_FC_EMBED;
2615 #endif
2616 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2617 	else if (!strcmp(str, "page"))
2618 		pcpu_chosen_fc = PCPU_FC_PAGE;
2619 #endif
2620 	else
2621 		pr_warn("unknown allocator %s specified\n", str);
2622 
2623 	return 0;
2624 }
2625 early_param("percpu_alloc", percpu_alloc_setup);
2626 
2627 /*
2628  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2629  * Build it if needed by the arch config or the generic setup is going
2630  * to be used.
2631  */
2632 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2633 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2634 #define BUILD_EMBED_FIRST_CHUNK
2635 #endif
2636 
2637 /* build pcpu_page_first_chunk() iff needed by the arch config */
2638 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2639 #define BUILD_PAGE_FIRST_CHUNK
2640 #endif
2641 
2642 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2643 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2644 /**
2645  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2646  * @reserved_size: the size of reserved percpu area in bytes
2647  * @dyn_size: minimum free size for dynamic allocation in bytes
2648  * @atom_size: allocation atom size
2649  * @cpu_distance_fn: callback to determine distance between cpus, optional
2650  *
2651  * This function determines grouping of units, their mappings to cpus
2652  * and other parameters considering needed percpu size, allocation
2653  * atom size and distances between CPUs.
2654  *
2655  * Groups are always multiples of atom size and CPUs which are of
2656  * LOCAL_DISTANCE both ways are grouped together and share space for
2657  * units in the same group.  The returned configuration is guaranteed
2658  * to have CPUs on different nodes on different groups and >=75% usage
2659  * of allocated virtual address space.
2660  *
2661  * RETURNS:
2662  * On success, pointer to the new allocation_info is returned.  On
2663  * failure, ERR_PTR value is returned.
2664  */
2665 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2666 				size_t reserved_size, size_t dyn_size,
2667 				size_t atom_size,
2668 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2669 {
2670 	static int group_map[NR_CPUS] __initdata;
2671 	static int group_cnt[NR_CPUS] __initdata;
2672 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2673 	int nr_groups = 1, nr_units = 0;
2674 	size_t size_sum, min_unit_size, alloc_size;
2675 	int upa, max_upa, best_upa;	/* units_per_alloc */
2676 	int last_allocs, group, unit;
2677 	unsigned int cpu, tcpu;
2678 	struct pcpu_alloc_info *ai;
2679 	unsigned int *cpu_map;
2680 
2681 	/* this function may be called multiple times */
2682 	memset(group_map, 0, sizeof(group_map));
2683 	memset(group_cnt, 0, sizeof(group_cnt));
2684 
2685 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2686 	size_sum = PFN_ALIGN(static_size + reserved_size +
2687 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2688 	dyn_size = size_sum - static_size - reserved_size;
2689 
2690 	/*
2691 	 * Determine min_unit_size, alloc_size and max_upa such that
2692 	 * alloc_size is multiple of atom_size and is the smallest
2693 	 * which can accommodate 4k aligned segments which are equal to
2694 	 * or larger than min_unit_size.
2695 	 */
2696 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2697 
2698 	/* determine the maximum # of units that can fit in an allocation */
2699 	alloc_size = roundup(min_unit_size, atom_size);
2700 	upa = alloc_size / min_unit_size;
2701 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2702 		upa--;
2703 	max_upa = upa;
2704 
2705 	/* group cpus according to their proximity */
2706 	for_each_possible_cpu(cpu) {
2707 		group = 0;
2708 	next_group:
2709 		for_each_possible_cpu(tcpu) {
2710 			if (cpu == tcpu)
2711 				break;
2712 			if (group_map[tcpu] == group && cpu_distance_fn &&
2713 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2714 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2715 				group++;
2716 				nr_groups = max(nr_groups, group + 1);
2717 				goto next_group;
2718 			}
2719 		}
2720 		group_map[cpu] = group;
2721 		group_cnt[group]++;
2722 	}
2723 
2724 	/*
2725 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2726 	 * Expand the unit_size until we use >= 75% of the units allocated.
2727 	 * Related to atom_size, which could be much larger than the unit_size.
2728 	 */
2729 	last_allocs = INT_MAX;
2730 	for (upa = max_upa; upa; upa--) {
2731 		int allocs = 0, wasted = 0;
2732 
2733 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2734 			continue;
2735 
2736 		for (group = 0; group < nr_groups; group++) {
2737 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2738 			allocs += this_allocs;
2739 			wasted += this_allocs * upa - group_cnt[group];
2740 		}
2741 
2742 		/*
2743 		 * Don't accept if wastage is over 1/3.  The
2744 		 * greater-than comparison ensures upa==1 always
2745 		 * passes the following check.
2746 		 */
2747 		if (wasted > num_possible_cpus() / 3)
2748 			continue;
2749 
2750 		/* and then don't consume more memory */
2751 		if (allocs > last_allocs)
2752 			break;
2753 		last_allocs = allocs;
2754 		best_upa = upa;
2755 	}
2756 	upa = best_upa;
2757 
2758 	/* allocate and fill alloc_info */
2759 	for (group = 0; group < nr_groups; group++)
2760 		nr_units += roundup(group_cnt[group], upa);
2761 
2762 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2763 	if (!ai)
2764 		return ERR_PTR(-ENOMEM);
2765 	cpu_map = ai->groups[0].cpu_map;
2766 
2767 	for (group = 0; group < nr_groups; group++) {
2768 		ai->groups[group].cpu_map = cpu_map;
2769 		cpu_map += roundup(group_cnt[group], upa);
2770 	}
2771 
2772 	ai->static_size = static_size;
2773 	ai->reserved_size = reserved_size;
2774 	ai->dyn_size = dyn_size;
2775 	ai->unit_size = alloc_size / upa;
2776 	ai->atom_size = atom_size;
2777 	ai->alloc_size = alloc_size;
2778 
2779 	for (group = 0, unit = 0; group < nr_groups; group++) {
2780 		struct pcpu_group_info *gi = &ai->groups[group];
2781 
2782 		/*
2783 		 * Initialize base_offset as if all groups are located
2784 		 * back-to-back.  The caller should update this to
2785 		 * reflect actual allocation.
2786 		 */
2787 		gi->base_offset = unit * ai->unit_size;
2788 
2789 		for_each_possible_cpu(cpu)
2790 			if (group_map[cpu] == group)
2791 				gi->cpu_map[gi->nr_units++] = cpu;
2792 		gi->nr_units = roundup(gi->nr_units, upa);
2793 		unit += gi->nr_units;
2794 	}
2795 	BUG_ON(unit != nr_units);
2796 
2797 	return ai;
2798 }
2799 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2800 
2801 #if defined(BUILD_EMBED_FIRST_CHUNK)
2802 /**
2803  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2804  * @reserved_size: the size of reserved percpu area in bytes
2805  * @dyn_size: minimum free size for dynamic allocation in bytes
2806  * @atom_size: allocation atom size
2807  * @cpu_distance_fn: callback to determine distance between cpus, optional
2808  * @alloc_fn: function to allocate percpu page
2809  * @free_fn: function to free percpu page
2810  *
2811  * This is a helper to ease setting up embedded first percpu chunk and
2812  * can be called where pcpu_setup_first_chunk() is expected.
2813  *
2814  * If this function is used to setup the first chunk, it is allocated
2815  * by calling @alloc_fn and used as-is without being mapped into
2816  * vmalloc area.  Allocations are always whole multiples of @atom_size
2817  * aligned to @atom_size.
2818  *
2819  * This enables the first chunk to piggy back on the linear physical
2820  * mapping which often uses larger page size.  Please note that this
2821  * can result in very sparse cpu->unit mapping on NUMA machines thus
2822  * requiring large vmalloc address space.  Don't use this allocator if
2823  * vmalloc space is not orders of magnitude larger than distances
2824  * between node memory addresses (ie. 32bit NUMA machines).
2825  *
2826  * @dyn_size specifies the minimum dynamic area size.
2827  *
2828  * If the needed size is smaller than the minimum or specified unit
2829  * size, the leftover is returned using @free_fn.
2830  *
2831  * RETURNS:
2832  * 0 on success, -errno on failure.
2833  */
2834 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2835 				  size_t atom_size,
2836 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2837 				  pcpu_fc_alloc_fn_t alloc_fn,
2838 				  pcpu_fc_free_fn_t free_fn)
2839 {
2840 	void *base = (void *)ULONG_MAX;
2841 	void **areas = NULL;
2842 	struct pcpu_alloc_info *ai;
2843 	size_t size_sum, areas_size;
2844 	unsigned long max_distance;
2845 	int group, i, highest_group, rc = 0;
2846 
2847 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2848 				   cpu_distance_fn);
2849 	if (IS_ERR(ai))
2850 		return PTR_ERR(ai);
2851 
2852 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2853 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2854 
2855 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2856 	if (!areas) {
2857 		rc = -ENOMEM;
2858 		goto out_free;
2859 	}
2860 
2861 	/* allocate, copy and determine base address & max_distance */
2862 	highest_group = 0;
2863 	for (group = 0; group < ai->nr_groups; group++) {
2864 		struct pcpu_group_info *gi = &ai->groups[group];
2865 		unsigned int cpu = NR_CPUS;
2866 		void *ptr;
2867 
2868 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2869 			cpu = gi->cpu_map[i];
2870 		BUG_ON(cpu == NR_CPUS);
2871 
2872 		/* allocate space for the whole group */
2873 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2874 		if (!ptr) {
2875 			rc = -ENOMEM;
2876 			goto out_free_areas;
2877 		}
2878 		/* kmemleak tracks the percpu allocations separately */
2879 		kmemleak_free(ptr);
2880 		areas[group] = ptr;
2881 
2882 		base = min(ptr, base);
2883 		if (ptr > areas[highest_group])
2884 			highest_group = group;
2885 	}
2886 	max_distance = areas[highest_group] - base;
2887 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2888 
2889 	/* warn if maximum distance is further than 75% of vmalloc space */
2890 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2891 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2892 				max_distance, VMALLOC_TOTAL);
2893 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2894 		/* and fail if we have fallback */
2895 		rc = -EINVAL;
2896 		goto out_free_areas;
2897 #endif
2898 	}
2899 
2900 	/*
2901 	 * Copy data and free unused parts.  This should happen after all
2902 	 * allocations are complete; otherwise, we may end up with
2903 	 * overlapping groups.
2904 	 */
2905 	for (group = 0; group < ai->nr_groups; group++) {
2906 		struct pcpu_group_info *gi = &ai->groups[group];
2907 		void *ptr = areas[group];
2908 
2909 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2910 			if (gi->cpu_map[i] == NR_CPUS) {
2911 				/* unused unit, free whole */
2912 				free_fn(ptr, ai->unit_size);
2913 				continue;
2914 			}
2915 			/* copy and return the unused part */
2916 			memcpy(ptr, __per_cpu_load, ai->static_size);
2917 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2918 		}
2919 	}
2920 
2921 	/* base address is now known, determine group base offsets */
2922 	for (group = 0; group < ai->nr_groups; group++) {
2923 		ai->groups[group].base_offset = areas[group] - base;
2924 	}
2925 
2926 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2927 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2928 		ai->dyn_size, ai->unit_size);
2929 
2930 	pcpu_setup_first_chunk(ai, base);
2931 	goto out_free;
2932 
2933 out_free_areas:
2934 	for (group = 0; group < ai->nr_groups; group++)
2935 		if (areas[group])
2936 			free_fn(areas[group],
2937 				ai->groups[group].nr_units * ai->unit_size);
2938 out_free:
2939 	pcpu_free_alloc_info(ai);
2940 	if (areas)
2941 		memblock_free_early(__pa(areas), areas_size);
2942 	return rc;
2943 }
2944 #endif /* BUILD_EMBED_FIRST_CHUNK */
2945 
2946 #ifdef BUILD_PAGE_FIRST_CHUNK
2947 /**
2948  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2949  * @reserved_size: the size of reserved percpu area in bytes
2950  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2951  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2952  * @populate_pte_fn: function to populate pte
2953  *
2954  * This is a helper to ease setting up page-remapped first percpu
2955  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2956  *
2957  * This is the basic allocator.  Static percpu area is allocated
2958  * page-by-page into vmalloc area.
2959  *
2960  * RETURNS:
2961  * 0 on success, -errno on failure.
2962  */
2963 int __init pcpu_page_first_chunk(size_t reserved_size,
2964 				 pcpu_fc_alloc_fn_t alloc_fn,
2965 				 pcpu_fc_free_fn_t free_fn,
2966 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2967 {
2968 	static struct vm_struct vm;
2969 	struct pcpu_alloc_info *ai;
2970 	char psize_str[16];
2971 	int unit_pages;
2972 	size_t pages_size;
2973 	struct page **pages;
2974 	int unit, i, j, rc = 0;
2975 	int upa;
2976 	int nr_g0_units;
2977 
2978 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2979 
2980 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2981 	if (IS_ERR(ai))
2982 		return PTR_ERR(ai);
2983 	BUG_ON(ai->nr_groups != 1);
2984 	upa = ai->alloc_size/ai->unit_size;
2985 	nr_g0_units = roundup(num_possible_cpus(), upa);
2986 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2987 		pcpu_free_alloc_info(ai);
2988 		return -EINVAL;
2989 	}
2990 
2991 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2992 
2993 	/* unaligned allocations can't be freed, round up to page size */
2994 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2995 			       sizeof(pages[0]));
2996 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2997 	if (!pages)
2998 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2999 		      pages_size);
3000 
3001 	/* allocate pages */
3002 	j = 0;
3003 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3004 		unsigned int cpu = ai->groups[0].cpu_map[unit];
3005 		for (i = 0; i < unit_pages; i++) {
3006 			void *ptr;
3007 
3008 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3009 			if (!ptr) {
3010 				pr_warn("failed to allocate %s page for cpu%u\n",
3011 						psize_str, cpu);
3012 				goto enomem;
3013 			}
3014 			/* kmemleak tracks the percpu allocations separately */
3015 			kmemleak_free(ptr);
3016 			pages[j++] = virt_to_page(ptr);
3017 		}
3018 	}
3019 
3020 	/* allocate vm area, map the pages and copy static data */
3021 	vm.flags = VM_ALLOC;
3022 	vm.size = num_possible_cpus() * ai->unit_size;
3023 	vm_area_register_early(&vm, PAGE_SIZE);
3024 
3025 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3026 		unsigned long unit_addr =
3027 			(unsigned long)vm.addr + unit * ai->unit_size;
3028 
3029 		for (i = 0; i < unit_pages; i++)
3030 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3031 
3032 		/* pte already populated, the following shouldn't fail */
3033 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3034 				      unit_pages);
3035 		if (rc < 0)
3036 			panic("failed to map percpu area, err=%d\n", rc);
3037 
3038 		/*
3039 		 * FIXME: Archs with virtual cache should flush local
3040 		 * cache for the linear mapping here - something
3041 		 * equivalent to flush_cache_vmap() on the local cpu.
3042 		 * flush_cache_vmap() can't be used as most supporting
3043 		 * data structures are not set up yet.
3044 		 */
3045 
3046 		/* copy static data */
3047 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3048 	}
3049 
3050 	/* we're ready, commit */
3051 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3052 		unit_pages, psize_str, ai->static_size,
3053 		ai->reserved_size, ai->dyn_size);
3054 
3055 	pcpu_setup_first_chunk(ai, vm.addr);
3056 	goto out_free_ar;
3057 
3058 enomem:
3059 	while (--j >= 0)
3060 		free_fn(page_address(pages[j]), PAGE_SIZE);
3061 	rc = -ENOMEM;
3062 out_free_ar:
3063 	memblock_free_early(__pa(pages), pages_size);
3064 	pcpu_free_alloc_info(ai);
3065 	return rc;
3066 }
3067 #endif /* BUILD_PAGE_FIRST_CHUNK */
3068 
3069 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3070 /*
3071  * Generic SMP percpu area setup.
3072  *
3073  * The embedding helper is used because its behavior closely resembles
3074  * the original non-dynamic generic percpu area setup.  This is
3075  * important because many archs have addressing restrictions and might
3076  * fail if the percpu area is located far away from the previous
3077  * location.  As an added bonus, in non-NUMA cases, embedding is
3078  * generally a good idea TLB-wise because percpu area can piggy back
3079  * on the physical linear memory mapping which uses large page
3080  * mappings on applicable archs.
3081  */
3082 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3083 EXPORT_SYMBOL(__per_cpu_offset);
3084 
3085 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3086 				       size_t align)
3087 {
3088 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3089 }
3090 
3091 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3092 {
3093 	memblock_free_early(__pa(ptr), size);
3094 }
3095 
3096 void __init setup_per_cpu_areas(void)
3097 {
3098 	unsigned long delta;
3099 	unsigned int cpu;
3100 	int rc;
3101 
3102 	/*
3103 	 * Always reserve area for module percpu variables.  That's
3104 	 * what the legacy allocator did.
3105 	 */
3106 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3107 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3108 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3109 	if (rc < 0)
3110 		panic("Failed to initialize percpu areas.");
3111 
3112 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3113 	for_each_possible_cpu(cpu)
3114 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3115 }
3116 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3117 
3118 #else	/* CONFIG_SMP */
3119 
3120 /*
3121  * UP percpu area setup.
3122  *
3123  * UP always uses km-based percpu allocator with identity mapping.
3124  * Static percpu variables are indistinguishable from the usual static
3125  * variables and don't require any special preparation.
3126  */
3127 void __init setup_per_cpu_areas(void)
3128 {
3129 	const size_t unit_size =
3130 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3131 					 PERCPU_DYNAMIC_RESERVE));
3132 	struct pcpu_alloc_info *ai;
3133 	void *fc;
3134 
3135 	ai = pcpu_alloc_alloc_info(1, 1);
3136 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3137 	if (!ai || !fc)
3138 		panic("Failed to allocate memory for percpu areas.");
3139 	/* kmemleak tracks the percpu allocations separately */
3140 	kmemleak_free(fc);
3141 
3142 	ai->dyn_size = unit_size;
3143 	ai->unit_size = unit_size;
3144 	ai->atom_size = unit_size;
3145 	ai->alloc_size = unit_size;
3146 	ai->groups[0].nr_units = 1;
3147 	ai->groups[0].cpu_map[0] = 0;
3148 
3149 	pcpu_setup_first_chunk(ai, fc);
3150 	pcpu_free_alloc_info(ai);
3151 }
3152 
3153 #endif	/* CONFIG_SMP */
3154 
3155 /*
3156  * pcpu_nr_pages - calculate total number of populated backing pages
3157  *
3158  * This reflects the number of pages populated to back chunks.  Metadata is
3159  * excluded in the number exposed in meminfo as the number of backing pages
3160  * scales with the number of cpus and can quickly outweigh the memory used for
3161  * metadata.  It also keeps this calculation nice and simple.
3162  *
3163  * RETURNS:
3164  * Total number of populated backing pages in use by the allocator.
3165  */
3166 unsigned long pcpu_nr_pages(void)
3167 {
3168 	return pcpu_nr_populated * pcpu_nr_units;
3169 }
3170 
3171 /*
3172  * Percpu allocator is initialized early during boot when neither slab or
3173  * workqueue is available.  Plug async management until everything is up
3174  * and running.
3175  */
3176 static int __init percpu_enable_async(void)
3177 {
3178 	pcpu_async_enabled = true;
3179 	return 0;
3180 }
3181 subsys_initcall(percpu_enable_async);
3182