1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT 41 * flag should be passed. All memcg-aware allocations are sharing one set 42 * of chunks and all unaccounted allocations and allocations performed 43 * by processes belonging to the root memory cgroup are using the second set. 44 * 45 * The allocator tries to allocate from the fullest chunk first. Each chunk 46 * is managed by a bitmap with metadata blocks. The allocation map is updated 47 * on every allocation and free to reflect the current state while the boundary 48 * map is only updated on allocation. Each metadata block contains 49 * information to help mitigate the need to iterate over large portions 50 * of the bitmap. The reverse mapping from page to chunk is stored in 51 * the page's index. Lastly, units are lazily backed and grow in unison. 52 * 53 * There is a unique conversion that goes on here between bytes and bits. 54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 55 * tracks the number of pages it is responsible for in nr_pages. Helper 56 * functions are used to convert from between the bytes, bits, and blocks. 57 * All hints are managed in bits unless explicitly stated. 58 * 59 * To use this allocator, arch code should do the following: 60 * 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 62 * regular address to percpu pointer and back if they need to be 63 * different from the default 64 * 65 * - use pcpu_setup_first_chunk() during percpu area initialization to 66 * setup the first chunk containing the kernel static percpu area 67 */ 68 69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71 #include <linux/bitmap.h> 72 #include <linux/cpumask.h> 73 #include <linux/memblock.h> 74 #include <linux/err.h> 75 #include <linux/lcm.h> 76 #include <linux/list.h> 77 #include <linux/log2.h> 78 #include <linux/mm.h> 79 #include <linux/module.h> 80 #include <linux/mutex.h> 81 #include <linux/percpu.h> 82 #include <linux/pfn.h> 83 #include <linux/slab.h> 84 #include <linux/spinlock.h> 85 #include <linux/vmalloc.h> 86 #include <linux/workqueue.h> 87 #include <linux/kmemleak.h> 88 #include <linux/sched.h> 89 #include <linux/sched/mm.h> 90 #include <linux/memcontrol.h> 91 92 #include <asm/cacheflush.h> 93 #include <asm/sections.h> 94 #include <asm/tlbflush.h> 95 #include <asm/io.h> 96 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/percpu.h> 99 100 #include "percpu-internal.h" 101 102 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 103 #define PCPU_SLOT_BASE_SHIFT 5 104 /* chunks in slots below this are subject to being sidelined on failed alloc */ 105 #define PCPU_SLOT_FAIL_THRESHOLD 3 106 107 #define PCPU_EMPTY_POP_PAGES_LOW 2 108 #define PCPU_EMPTY_POP_PAGES_HIGH 4 109 110 #ifdef CONFIG_SMP 111 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 112 #ifndef __addr_to_pcpu_ptr 113 #define __addr_to_pcpu_ptr(addr) \ 114 (void __percpu *)((unsigned long)(addr) - \ 115 (unsigned long)pcpu_base_addr + \ 116 (unsigned long)__per_cpu_start) 117 #endif 118 #ifndef __pcpu_ptr_to_addr 119 #define __pcpu_ptr_to_addr(ptr) \ 120 (void __force *)((unsigned long)(ptr) + \ 121 (unsigned long)pcpu_base_addr - \ 122 (unsigned long)__per_cpu_start) 123 #endif 124 #else /* CONFIG_SMP */ 125 /* on UP, it's always identity mapped */ 126 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 127 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 128 #endif /* CONFIG_SMP */ 129 130 static int pcpu_unit_pages __ro_after_init; 131 static int pcpu_unit_size __ro_after_init; 132 static int pcpu_nr_units __ro_after_init; 133 static int pcpu_atom_size __ro_after_init; 134 int pcpu_nr_slots __ro_after_init; 135 static size_t pcpu_chunk_struct_size __ro_after_init; 136 137 /* cpus with the lowest and highest unit addresses */ 138 static unsigned int pcpu_low_unit_cpu __ro_after_init; 139 static unsigned int pcpu_high_unit_cpu __ro_after_init; 140 141 /* the address of the first chunk which starts with the kernel static area */ 142 void *pcpu_base_addr __ro_after_init; 143 EXPORT_SYMBOL_GPL(pcpu_base_addr); 144 145 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 146 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 147 148 /* group information, used for vm allocation */ 149 static int pcpu_nr_groups __ro_after_init; 150 static const unsigned long *pcpu_group_offsets __ro_after_init; 151 static const size_t *pcpu_group_sizes __ro_after_init; 152 153 /* 154 * The first chunk which always exists. Note that unlike other 155 * chunks, this one can be allocated and mapped in several different 156 * ways and thus often doesn't live in the vmalloc area. 157 */ 158 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 159 160 /* 161 * Optional reserved chunk. This chunk reserves part of the first 162 * chunk and serves it for reserved allocations. When the reserved 163 * region doesn't exist, the following variable is NULL. 164 */ 165 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 166 167 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 168 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 169 170 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ 171 172 /* chunks which need their map areas extended, protected by pcpu_lock */ 173 static LIST_HEAD(pcpu_map_extend_chunks); 174 175 /* 176 * The number of empty populated pages, protected by pcpu_lock. The 177 * reserved chunk doesn't contribute to the count. 178 */ 179 int pcpu_nr_empty_pop_pages; 180 181 /* 182 * The number of populated pages in use by the allocator, protected by 183 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 184 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 185 * and increments/decrements this count by 1). 186 */ 187 static unsigned long pcpu_nr_populated; 188 189 /* 190 * Balance work is used to populate or destroy chunks asynchronously. We 191 * try to keep the number of populated free pages between 192 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 193 * empty chunk. 194 */ 195 static void pcpu_balance_workfn(struct work_struct *work); 196 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 197 static bool pcpu_async_enabled __read_mostly; 198 static bool pcpu_atomic_alloc_failed; 199 200 static void pcpu_schedule_balance_work(void) 201 { 202 if (pcpu_async_enabled) 203 schedule_work(&pcpu_balance_work); 204 } 205 206 /** 207 * pcpu_addr_in_chunk - check if the address is served from this chunk 208 * @chunk: chunk of interest 209 * @addr: percpu address 210 * 211 * RETURNS: 212 * True if the address is served from this chunk. 213 */ 214 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 215 { 216 void *start_addr, *end_addr; 217 218 if (!chunk) 219 return false; 220 221 start_addr = chunk->base_addr + chunk->start_offset; 222 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 223 chunk->end_offset; 224 225 return addr >= start_addr && addr < end_addr; 226 } 227 228 static int __pcpu_size_to_slot(int size) 229 { 230 int highbit = fls(size); /* size is in bytes */ 231 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 232 } 233 234 static int pcpu_size_to_slot(int size) 235 { 236 if (size == pcpu_unit_size) 237 return pcpu_nr_slots - 1; 238 return __pcpu_size_to_slot(size); 239 } 240 241 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 242 { 243 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 244 245 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 246 chunk_md->contig_hint == 0) 247 return 0; 248 249 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 250 } 251 252 /* set the pointer to a chunk in a page struct */ 253 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 254 { 255 page->index = (unsigned long)pcpu; 256 } 257 258 /* obtain pointer to a chunk from a page struct */ 259 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 260 { 261 return (struct pcpu_chunk *)page->index; 262 } 263 264 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 265 { 266 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 267 } 268 269 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 270 { 271 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 272 } 273 274 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 275 unsigned int cpu, int page_idx) 276 { 277 return (unsigned long)chunk->base_addr + 278 pcpu_unit_page_offset(cpu, page_idx); 279 } 280 281 /* 282 * The following are helper functions to help access bitmaps and convert 283 * between bitmap offsets to address offsets. 284 */ 285 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 286 { 287 return chunk->alloc_map + 288 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 289 } 290 291 static unsigned long pcpu_off_to_block_index(int off) 292 { 293 return off / PCPU_BITMAP_BLOCK_BITS; 294 } 295 296 static unsigned long pcpu_off_to_block_off(int off) 297 { 298 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 299 } 300 301 static unsigned long pcpu_block_off_to_off(int index, int off) 302 { 303 return index * PCPU_BITMAP_BLOCK_BITS + off; 304 } 305 306 /* 307 * pcpu_next_hint - determine which hint to use 308 * @block: block of interest 309 * @alloc_bits: size of allocation 310 * 311 * This determines if we should scan based on the scan_hint or first_free. 312 * In general, we want to scan from first_free to fulfill allocations by 313 * first fit. However, if we know a scan_hint at position scan_hint_start 314 * cannot fulfill an allocation, we can begin scanning from there knowing 315 * the contig_hint will be our fallback. 316 */ 317 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 318 { 319 /* 320 * The three conditions below determine if we can skip past the 321 * scan_hint. First, does the scan hint exist. Second, is the 322 * contig_hint after the scan_hint (possibly not true iff 323 * contig_hint == scan_hint). Third, is the allocation request 324 * larger than the scan_hint. 325 */ 326 if (block->scan_hint && 327 block->contig_hint_start > block->scan_hint_start && 328 alloc_bits > block->scan_hint) 329 return block->scan_hint_start + block->scan_hint; 330 331 return block->first_free; 332 } 333 334 /** 335 * pcpu_next_md_free_region - finds the next hint free area 336 * @chunk: chunk of interest 337 * @bit_off: chunk offset 338 * @bits: size of free area 339 * 340 * Helper function for pcpu_for_each_md_free_region. It checks 341 * block->contig_hint and performs aggregation across blocks to find the 342 * next hint. It modifies bit_off and bits in-place to be consumed in the 343 * loop. 344 */ 345 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 346 int *bits) 347 { 348 int i = pcpu_off_to_block_index(*bit_off); 349 int block_off = pcpu_off_to_block_off(*bit_off); 350 struct pcpu_block_md *block; 351 352 *bits = 0; 353 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 354 block++, i++) { 355 /* handles contig area across blocks */ 356 if (*bits) { 357 *bits += block->left_free; 358 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 359 continue; 360 return; 361 } 362 363 /* 364 * This checks three things. First is there a contig_hint to 365 * check. Second, have we checked this hint before by 366 * comparing the block_off. Third, is this the same as the 367 * right contig hint. In the last case, it spills over into 368 * the next block and should be handled by the contig area 369 * across blocks code. 370 */ 371 *bits = block->contig_hint; 372 if (*bits && block->contig_hint_start >= block_off && 373 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 374 *bit_off = pcpu_block_off_to_off(i, 375 block->contig_hint_start); 376 return; 377 } 378 /* reset to satisfy the second predicate above */ 379 block_off = 0; 380 381 *bits = block->right_free; 382 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 383 } 384 } 385 386 /** 387 * pcpu_next_fit_region - finds fit areas for a given allocation request 388 * @chunk: chunk of interest 389 * @alloc_bits: size of allocation 390 * @align: alignment of area (max PAGE_SIZE) 391 * @bit_off: chunk offset 392 * @bits: size of free area 393 * 394 * Finds the next free region that is viable for use with a given size and 395 * alignment. This only returns if there is a valid area to be used for this 396 * allocation. block->first_free is returned if the allocation request fits 397 * within the block to see if the request can be fulfilled prior to the contig 398 * hint. 399 */ 400 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 401 int align, int *bit_off, int *bits) 402 { 403 int i = pcpu_off_to_block_index(*bit_off); 404 int block_off = pcpu_off_to_block_off(*bit_off); 405 struct pcpu_block_md *block; 406 407 *bits = 0; 408 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 409 block++, i++) { 410 /* handles contig area across blocks */ 411 if (*bits) { 412 *bits += block->left_free; 413 if (*bits >= alloc_bits) 414 return; 415 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 416 continue; 417 } 418 419 /* check block->contig_hint */ 420 *bits = ALIGN(block->contig_hint_start, align) - 421 block->contig_hint_start; 422 /* 423 * This uses the block offset to determine if this has been 424 * checked in the prior iteration. 425 */ 426 if (block->contig_hint && 427 block->contig_hint_start >= block_off && 428 block->contig_hint >= *bits + alloc_bits) { 429 int start = pcpu_next_hint(block, alloc_bits); 430 431 *bits += alloc_bits + block->contig_hint_start - 432 start; 433 *bit_off = pcpu_block_off_to_off(i, start); 434 return; 435 } 436 /* reset to satisfy the second predicate above */ 437 block_off = 0; 438 439 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 440 align); 441 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 442 *bit_off = pcpu_block_off_to_off(i, *bit_off); 443 if (*bits >= alloc_bits) 444 return; 445 } 446 447 /* no valid offsets were found - fail condition */ 448 *bit_off = pcpu_chunk_map_bits(chunk); 449 } 450 451 /* 452 * Metadata free area iterators. These perform aggregation of free areas 453 * based on the metadata blocks and return the offset @bit_off and size in 454 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 455 * a fit is found for the allocation request. 456 */ 457 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 458 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 459 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 460 (bit_off) += (bits) + 1, \ 461 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 462 463 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 464 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 465 &(bits)); \ 466 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 467 (bit_off) += (bits), \ 468 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 469 &(bits))) 470 471 /** 472 * pcpu_mem_zalloc - allocate memory 473 * @size: bytes to allocate 474 * @gfp: allocation flags 475 * 476 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 477 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 478 * This is to facilitate passing through whitelisted flags. The 479 * returned memory is always zeroed. 480 * 481 * RETURNS: 482 * Pointer to the allocated area on success, NULL on failure. 483 */ 484 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 485 { 486 if (WARN_ON_ONCE(!slab_is_available())) 487 return NULL; 488 489 if (size <= PAGE_SIZE) 490 return kzalloc(size, gfp); 491 else 492 return __vmalloc(size, gfp | __GFP_ZERO); 493 } 494 495 /** 496 * pcpu_mem_free - free memory 497 * @ptr: memory to free 498 * 499 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 500 */ 501 static void pcpu_mem_free(void *ptr) 502 { 503 kvfree(ptr); 504 } 505 506 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 507 bool move_front) 508 { 509 if (chunk != pcpu_reserved_chunk) { 510 struct list_head *pcpu_slot; 511 512 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk)); 513 if (move_front) 514 list_move(&chunk->list, &pcpu_slot[slot]); 515 else 516 list_move_tail(&chunk->list, &pcpu_slot[slot]); 517 } 518 } 519 520 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 521 { 522 __pcpu_chunk_move(chunk, slot, true); 523 } 524 525 /** 526 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 527 * @chunk: chunk of interest 528 * @oslot: the previous slot it was on 529 * 530 * This function is called after an allocation or free changed @chunk. 531 * New slot according to the changed state is determined and @chunk is 532 * moved to the slot. Note that the reserved chunk is never put on 533 * chunk slots. 534 * 535 * CONTEXT: 536 * pcpu_lock. 537 */ 538 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 539 { 540 int nslot = pcpu_chunk_slot(chunk); 541 542 if (oslot != nslot) 543 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 544 } 545 546 /* 547 * pcpu_update_empty_pages - update empty page counters 548 * @chunk: chunk of interest 549 * @nr: nr of empty pages 550 * 551 * This is used to keep track of the empty pages now based on the premise 552 * a md_block covers a page. The hint update functions recognize if a block 553 * is made full or broken to calculate deltas for keeping track of free pages. 554 */ 555 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 556 { 557 chunk->nr_empty_pop_pages += nr; 558 if (chunk != pcpu_reserved_chunk) 559 pcpu_nr_empty_pop_pages += nr; 560 } 561 562 /* 563 * pcpu_region_overlap - determines if two regions overlap 564 * @a: start of first region, inclusive 565 * @b: end of first region, exclusive 566 * @x: start of second region, inclusive 567 * @y: end of second region, exclusive 568 * 569 * This is used to determine if the hint region [a, b) overlaps with the 570 * allocated region [x, y). 571 */ 572 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 573 { 574 return (a < y) && (x < b); 575 } 576 577 /** 578 * pcpu_block_update - updates a block given a free area 579 * @block: block of interest 580 * @start: start offset in block 581 * @end: end offset in block 582 * 583 * Updates a block given a known free area. The region [start, end) is 584 * expected to be the entirety of the free area within a block. Chooses 585 * the best starting offset if the contig hints are equal. 586 */ 587 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 588 { 589 int contig = end - start; 590 591 block->first_free = min(block->first_free, start); 592 if (start == 0) 593 block->left_free = contig; 594 595 if (end == block->nr_bits) 596 block->right_free = contig; 597 598 if (contig > block->contig_hint) { 599 /* promote the old contig_hint to be the new scan_hint */ 600 if (start > block->contig_hint_start) { 601 if (block->contig_hint > block->scan_hint) { 602 block->scan_hint_start = 603 block->contig_hint_start; 604 block->scan_hint = block->contig_hint; 605 } else if (start < block->scan_hint_start) { 606 /* 607 * The old contig_hint == scan_hint. But, the 608 * new contig is larger so hold the invariant 609 * scan_hint_start < contig_hint_start. 610 */ 611 block->scan_hint = 0; 612 } 613 } else { 614 block->scan_hint = 0; 615 } 616 block->contig_hint_start = start; 617 block->contig_hint = contig; 618 } else if (contig == block->contig_hint) { 619 if (block->contig_hint_start && 620 (!start || 621 __ffs(start) > __ffs(block->contig_hint_start))) { 622 /* start has a better alignment so use it */ 623 block->contig_hint_start = start; 624 if (start < block->scan_hint_start && 625 block->contig_hint > block->scan_hint) 626 block->scan_hint = 0; 627 } else if (start > block->scan_hint_start || 628 block->contig_hint > block->scan_hint) { 629 /* 630 * Knowing contig == contig_hint, update the scan_hint 631 * if it is farther than or larger than the current 632 * scan_hint. 633 */ 634 block->scan_hint_start = start; 635 block->scan_hint = contig; 636 } 637 } else { 638 /* 639 * The region is smaller than the contig_hint. So only update 640 * the scan_hint if it is larger than or equal and farther than 641 * the current scan_hint. 642 */ 643 if ((start < block->contig_hint_start && 644 (contig > block->scan_hint || 645 (contig == block->scan_hint && 646 start > block->scan_hint_start)))) { 647 block->scan_hint_start = start; 648 block->scan_hint = contig; 649 } 650 } 651 } 652 653 /* 654 * pcpu_block_update_scan - update a block given a free area from a scan 655 * @chunk: chunk of interest 656 * @bit_off: chunk offset 657 * @bits: size of free area 658 * 659 * Finding the final allocation spot first goes through pcpu_find_block_fit() 660 * to find a block that can hold the allocation and then pcpu_alloc_area() 661 * where a scan is used. When allocations require specific alignments, 662 * we can inadvertently create holes which will not be seen in the alloc 663 * or free paths. 664 * 665 * This takes a given free area hole and updates a block as it may change the 666 * scan_hint. We need to scan backwards to ensure we don't miss free bits 667 * from alignment. 668 */ 669 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 670 int bits) 671 { 672 int s_off = pcpu_off_to_block_off(bit_off); 673 int e_off = s_off + bits; 674 int s_index, l_bit; 675 struct pcpu_block_md *block; 676 677 if (e_off > PCPU_BITMAP_BLOCK_BITS) 678 return; 679 680 s_index = pcpu_off_to_block_index(bit_off); 681 block = chunk->md_blocks + s_index; 682 683 /* scan backwards in case of alignment skipping free bits */ 684 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 685 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 686 687 pcpu_block_update(block, s_off, e_off); 688 } 689 690 /** 691 * pcpu_chunk_refresh_hint - updates metadata about a chunk 692 * @chunk: chunk of interest 693 * @full_scan: if we should scan from the beginning 694 * 695 * Iterates over the metadata blocks to find the largest contig area. 696 * A full scan can be avoided on the allocation path as this is triggered 697 * if we broke the contig_hint. In doing so, the scan_hint will be before 698 * the contig_hint or after if the scan_hint == contig_hint. This cannot 699 * be prevented on freeing as we want to find the largest area possibly 700 * spanning blocks. 701 */ 702 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 703 { 704 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 705 int bit_off, bits; 706 707 /* promote scan_hint to contig_hint */ 708 if (!full_scan && chunk_md->scan_hint) { 709 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 710 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 711 chunk_md->contig_hint = chunk_md->scan_hint; 712 chunk_md->scan_hint = 0; 713 } else { 714 bit_off = chunk_md->first_free; 715 chunk_md->contig_hint = 0; 716 } 717 718 bits = 0; 719 pcpu_for_each_md_free_region(chunk, bit_off, bits) 720 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 721 } 722 723 /** 724 * pcpu_block_refresh_hint 725 * @chunk: chunk of interest 726 * @index: index of the metadata block 727 * 728 * Scans over the block beginning at first_free and updates the block 729 * metadata accordingly. 730 */ 731 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 732 { 733 struct pcpu_block_md *block = chunk->md_blocks + index; 734 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 735 unsigned int rs, re, start; /* region start, region end */ 736 737 /* promote scan_hint to contig_hint */ 738 if (block->scan_hint) { 739 start = block->scan_hint_start + block->scan_hint; 740 block->contig_hint_start = block->scan_hint_start; 741 block->contig_hint = block->scan_hint; 742 block->scan_hint = 0; 743 } else { 744 start = block->first_free; 745 block->contig_hint = 0; 746 } 747 748 block->right_free = 0; 749 750 /* iterate over free areas and update the contig hints */ 751 bitmap_for_each_clear_region(alloc_map, rs, re, start, 752 PCPU_BITMAP_BLOCK_BITS) 753 pcpu_block_update(block, rs, re); 754 } 755 756 /** 757 * pcpu_block_update_hint_alloc - update hint on allocation path 758 * @chunk: chunk of interest 759 * @bit_off: chunk offset 760 * @bits: size of request 761 * 762 * Updates metadata for the allocation path. The metadata only has to be 763 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 764 * scans are required if the block's contig hint is broken. 765 */ 766 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 767 int bits) 768 { 769 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 770 int nr_empty_pages = 0; 771 struct pcpu_block_md *s_block, *e_block, *block; 772 int s_index, e_index; /* block indexes of the freed allocation */ 773 int s_off, e_off; /* block offsets of the freed allocation */ 774 775 /* 776 * Calculate per block offsets. 777 * The calculation uses an inclusive range, but the resulting offsets 778 * are [start, end). e_index always points to the last block in the 779 * range. 780 */ 781 s_index = pcpu_off_to_block_index(bit_off); 782 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 783 s_off = pcpu_off_to_block_off(bit_off); 784 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 785 786 s_block = chunk->md_blocks + s_index; 787 e_block = chunk->md_blocks + e_index; 788 789 /* 790 * Update s_block. 791 * block->first_free must be updated if the allocation takes its place. 792 * If the allocation breaks the contig_hint, a scan is required to 793 * restore this hint. 794 */ 795 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 796 nr_empty_pages++; 797 798 if (s_off == s_block->first_free) 799 s_block->first_free = find_next_zero_bit( 800 pcpu_index_alloc_map(chunk, s_index), 801 PCPU_BITMAP_BLOCK_BITS, 802 s_off + bits); 803 804 if (pcpu_region_overlap(s_block->scan_hint_start, 805 s_block->scan_hint_start + s_block->scan_hint, 806 s_off, 807 s_off + bits)) 808 s_block->scan_hint = 0; 809 810 if (pcpu_region_overlap(s_block->contig_hint_start, 811 s_block->contig_hint_start + 812 s_block->contig_hint, 813 s_off, 814 s_off + bits)) { 815 /* block contig hint is broken - scan to fix it */ 816 if (!s_off) 817 s_block->left_free = 0; 818 pcpu_block_refresh_hint(chunk, s_index); 819 } else { 820 /* update left and right contig manually */ 821 s_block->left_free = min(s_block->left_free, s_off); 822 if (s_index == e_index) 823 s_block->right_free = min_t(int, s_block->right_free, 824 PCPU_BITMAP_BLOCK_BITS - e_off); 825 else 826 s_block->right_free = 0; 827 } 828 829 /* 830 * Update e_block. 831 */ 832 if (s_index != e_index) { 833 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 834 nr_empty_pages++; 835 836 /* 837 * When the allocation is across blocks, the end is along 838 * the left part of the e_block. 839 */ 840 e_block->first_free = find_next_zero_bit( 841 pcpu_index_alloc_map(chunk, e_index), 842 PCPU_BITMAP_BLOCK_BITS, e_off); 843 844 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 845 /* reset the block */ 846 e_block++; 847 } else { 848 if (e_off > e_block->scan_hint_start) 849 e_block->scan_hint = 0; 850 851 e_block->left_free = 0; 852 if (e_off > e_block->contig_hint_start) { 853 /* contig hint is broken - scan to fix it */ 854 pcpu_block_refresh_hint(chunk, e_index); 855 } else { 856 e_block->right_free = 857 min_t(int, e_block->right_free, 858 PCPU_BITMAP_BLOCK_BITS - e_off); 859 } 860 } 861 862 /* update in-between md_blocks */ 863 nr_empty_pages += (e_index - s_index - 1); 864 for (block = s_block + 1; block < e_block; block++) { 865 block->scan_hint = 0; 866 block->contig_hint = 0; 867 block->left_free = 0; 868 block->right_free = 0; 869 } 870 } 871 872 if (nr_empty_pages) 873 pcpu_update_empty_pages(chunk, -nr_empty_pages); 874 875 if (pcpu_region_overlap(chunk_md->scan_hint_start, 876 chunk_md->scan_hint_start + 877 chunk_md->scan_hint, 878 bit_off, 879 bit_off + bits)) 880 chunk_md->scan_hint = 0; 881 882 /* 883 * The only time a full chunk scan is required is if the chunk 884 * contig hint is broken. Otherwise, it means a smaller space 885 * was used and therefore the chunk contig hint is still correct. 886 */ 887 if (pcpu_region_overlap(chunk_md->contig_hint_start, 888 chunk_md->contig_hint_start + 889 chunk_md->contig_hint, 890 bit_off, 891 bit_off + bits)) 892 pcpu_chunk_refresh_hint(chunk, false); 893 } 894 895 /** 896 * pcpu_block_update_hint_free - updates the block hints on the free path 897 * @chunk: chunk of interest 898 * @bit_off: chunk offset 899 * @bits: size of request 900 * 901 * Updates metadata for the allocation path. This avoids a blind block 902 * refresh by making use of the block contig hints. If this fails, it scans 903 * forward and backward to determine the extent of the free area. This is 904 * capped at the boundary of blocks. 905 * 906 * A chunk update is triggered if a page becomes free, a block becomes free, 907 * or the free spans across blocks. This tradeoff is to minimize iterating 908 * over the block metadata to update chunk_md->contig_hint. 909 * chunk_md->contig_hint may be off by up to a page, but it will never be more 910 * than the available space. If the contig hint is contained in one block, it 911 * will be accurate. 912 */ 913 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 914 int bits) 915 { 916 int nr_empty_pages = 0; 917 struct pcpu_block_md *s_block, *e_block, *block; 918 int s_index, e_index; /* block indexes of the freed allocation */ 919 int s_off, e_off; /* block offsets of the freed allocation */ 920 int start, end; /* start and end of the whole free area */ 921 922 /* 923 * Calculate per block offsets. 924 * The calculation uses an inclusive range, but the resulting offsets 925 * are [start, end). e_index always points to the last block in the 926 * range. 927 */ 928 s_index = pcpu_off_to_block_index(bit_off); 929 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 930 s_off = pcpu_off_to_block_off(bit_off); 931 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 932 933 s_block = chunk->md_blocks + s_index; 934 e_block = chunk->md_blocks + e_index; 935 936 /* 937 * Check if the freed area aligns with the block->contig_hint. 938 * If it does, then the scan to find the beginning/end of the 939 * larger free area can be avoided. 940 * 941 * start and end refer to beginning and end of the free area 942 * within each their respective blocks. This is not necessarily 943 * the entire free area as it may span blocks past the beginning 944 * or end of the block. 945 */ 946 start = s_off; 947 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 948 start = s_block->contig_hint_start; 949 } else { 950 /* 951 * Scan backwards to find the extent of the free area. 952 * find_last_bit returns the starting bit, so if the start bit 953 * is returned, that means there was no last bit and the 954 * remainder of the chunk is free. 955 */ 956 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 957 start); 958 start = (start == l_bit) ? 0 : l_bit + 1; 959 } 960 961 end = e_off; 962 if (e_off == e_block->contig_hint_start) 963 end = e_block->contig_hint_start + e_block->contig_hint; 964 else 965 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 966 PCPU_BITMAP_BLOCK_BITS, end); 967 968 /* update s_block */ 969 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 970 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 971 nr_empty_pages++; 972 pcpu_block_update(s_block, start, e_off); 973 974 /* freeing in the same block */ 975 if (s_index != e_index) { 976 /* update e_block */ 977 if (end == PCPU_BITMAP_BLOCK_BITS) 978 nr_empty_pages++; 979 pcpu_block_update(e_block, 0, end); 980 981 /* reset md_blocks in the middle */ 982 nr_empty_pages += (e_index - s_index - 1); 983 for (block = s_block + 1; block < e_block; block++) { 984 block->first_free = 0; 985 block->scan_hint = 0; 986 block->contig_hint_start = 0; 987 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 988 block->left_free = PCPU_BITMAP_BLOCK_BITS; 989 block->right_free = PCPU_BITMAP_BLOCK_BITS; 990 } 991 } 992 993 if (nr_empty_pages) 994 pcpu_update_empty_pages(chunk, nr_empty_pages); 995 996 /* 997 * Refresh chunk metadata when the free makes a block free or spans 998 * across blocks. The contig_hint may be off by up to a page, but if 999 * the contig_hint is contained in a block, it will be accurate with 1000 * the else condition below. 1001 */ 1002 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 1003 pcpu_chunk_refresh_hint(chunk, true); 1004 else 1005 pcpu_block_update(&chunk->chunk_md, 1006 pcpu_block_off_to_off(s_index, start), 1007 end); 1008 } 1009 1010 /** 1011 * pcpu_is_populated - determines if the region is populated 1012 * @chunk: chunk of interest 1013 * @bit_off: chunk offset 1014 * @bits: size of area 1015 * @next_off: return value for the next offset to start searching 1016 * 1017 * For atomic allocations, check if the backing pages are populated. 1018 * 1019 * RETURNS: 1020 * Bool if the backing pages are populated. 1021 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1022 */ 1023 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1024 int *next_off) 1025 { 1026 unsigned int page_start, page_end, rs, re; 1027 1028 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1029 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1030 1031 rs = page_start; 1032 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); 1033 if (rs >= page_end) 1034 return true; 1035 1036 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1037 return false; 1038 } 1039 1040 /** 1041 * pcpu_find_block_fit - finds the block index to start searching 1042 * @chunk: chunk of interest 1043 * @alloc_bits: size of request in allocation units 1044 * @align: alignment of area (max PAGE_SIZE bytes) 1045 * @pop_only: use populated regions only 1046 * 1047 * Given a chunk and an allocation spec, find the offset to begin searching 1048 * for a free region. This iterates over the bitmap metadata blocks to 1049 * find an offset that will be guaranteed to fit the requirements. It is 1050 * not quite first fit as if the allocation does not fit in the contig hint 1051 * of a block or chunk, it is skipped. This errs on the side of caution 1052 * to prevent excess iteration. Poor alignment can cause the allocator to 1053 * skip over blocks and chunks that have valid free areas. 1054 * 1055 * RETURNS: 1056 * The offset in the bitmap to begin searching. 1057 * -1 if no offset is found. 1058 */ 1059 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1060 size_t align, bool pop_only) 1061 { 1062 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1063 int bit_off, bits, next_off; 1064 1065 /* 1066 * Check to see if the allocation can fit in the chunk's contig hint. 1067 * This is an optimization to prevent scanning by assuming if it 1068 * cannot fit in the global hint, there is memory pressure and creating 1069 * a new chunk would happen soon. 1070 */ 1071 bit_off = ALIGN(chunk_md->contig_hint_start, align) - 1072 chunk_md->contig_hint_start; 1073 if (bit_off + alloc_bits > chunk_md->contig_hint) 1074 return -1; 1075 1076 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1077 bits = 0; 1078 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1079 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1080 &next_off)) 1081 break; 1082 1083 bit_off = next_off; 1084 bits = 0; 1085 } 1086 1087 if (bit_off == pcpu_chunk_map_bits(chunk)) 1088 return -1; 1089 1090 return bit_off; 1091 } 1092 1093 /* 1094 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1095 * @map: the address to base the search on 1096 * @size: the bitmap size in bits 1097 * @start: the bitnumber to start searching at 1098 * @nr: the number of zeroed bits we're looking for 1099 * @align_mask: alignment mask for zero area 1100 * @largest_off: offset of the largest area skipped 1101 * @largest_bits: size of the largest area skipped 1102 * 1103 * The @align_mask should be one less than a power of 2. 1104 * 1105 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1106 * the largest area that was skipped. This is imperfect, but in general is 1107 * good enough. The largest remembered region is the largest failed region 1108 * seen. This does not include anything we possibly skipped due to alignment. 1109 * pcpu_block_update_scan() does scan backwards to try and recover what was 1110 * lost to alignment. While this can cause scanning to miss earlier possible 1111 * free areas, smaller allocations will eventually fill those holes. 1112 */ 1113 static unsigned long pcpu_find_zero_area(unsigned long *map, 1114 unsigned long size, 1115 unsigned long start, 1116 unsigned long nr, 1117 unsigned long align_mask, 1118 unsigned long *largest_off, 1119 unsigned long *largest_bits) 1120 { 1121 unsigned long index, end, i, area_off, area_bits; 1122 again: 1123 index = find_next_zero_bit(map, size, start); 1124 1125 /* Align allocation */ 1126 index = __ALIGN_MASK(index, align_mask); 1127 area_off = index; 1128 1129 end = index + nr; 1130 if (end > size) 1131 return end; 1132 i = find_next_bit(map, end, index); 1133 if (i < end) { 1134 area_bits = i - area_off; 1135 /* remember largest unused area with best alignment */ 1136 if (area_bits > *largest_bits || 1137 (area_bits == *largest_bits && *largest_off && 1138 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1139 *largest_off = area_off; 1140 *largest_bits = area_bits; 1141 } 1142 1143 start = i + 1; 1144 goto again; 1145 } 1146 return index; 1147 } 1148 1149 /** 1150 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1151 * @chunk: chunk of interest 1152 * @alloc_bits: size of request in allocation units 1153 * @align: alignment of area (max PAGE_SIZE) 1154 * @start: bit_off to start searching 1155 * 1156 * This function takes in a @start offset to begin searching to fit an 1157 * allocation of @alloc_bits with alignment @align. It needs to scan 1158 * the allocation map because if it fits within the block's contig hint, 1159 * @start will be block->first_free. This is an attempt to fill the 1160 * allocation prior to breaking the contig hint. The allocation and 1161 * boundary maps are updated accordingly if it confirms a valid 1162 * free area. 1163 * 1164 * RETURNS: 1165 * Allocated addr offset in @chunk on success. 1166 * -1 if no matching area is found. 1167 */ 1168 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1169 size_t align, int start) 1170 { 1171 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1172 size_t align_mask = (align) ? (align - 1) : 0; 1173 unsigned long area_off = 0, area_bits = 0; 1174 int bit_off, end, oslot; 1175 1176 lockdep_assert_held(&pcpu_lock); 1177 1178 oslot = pcpu_chunk_slot(chunk); 1179 1180 /* 1181 * Search to find a fit. 1182 */ 1183 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1184 pcpu_chunk_map_bits(chunk)); 1185 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1186 align_mask, &area_off, &area_bits); 1187 if (bit_off >= end) 1188 return -1; 1189 1190 if (area_bits) 1191 pcpu_block_update_scan(chunk, area_off, area_bits); 1192 1193 /* update alloc map */ 1194 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1195 1196 /* update boundary map */ 1197 set_bit(bit_off, chunk->bound_map); 1198 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1199 set_bit(bit_off + alloc_bits, chunk->bound_map); 1200 1201 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1202 1203 /* update first free bit */ 1204 if (bit_off == chunk_md->first_free) 1205 chunk_md->first_free = find_next_zero_bit( 1206 chunk->alloc_map, 1207 pcpu_chunk_map_bits(chunk), 1208 bit_off + alloc_bits); 1209 1210 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1211 1212 pcpu_chunk_relocate(chunk, oslot); 1213 1214 return bit_off * PCPU_MIN_ALLOC_SIZE; 1215 } 1216 1217 /** 1218 * pcpu_free_area - frees the corresponding offset 1219 * @chunk: chunk of interest 1220 * @off: addr offset into chunk 1221 * 1222 * This function determines the size of an allocation to free using 1223 * the boundary bitmap and clears the allocation map. 1224 * 1225 * RETURNS: 1226 * Number of freed bytes. 1227 */ 1228 static int pcpu_free_area(struct pcpu_chunk *chunk, int off) 1229 { 1230 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1231 int bit_off, bits, end, oslot, freed; 1232 1233 lockdep_assert_held(&pcpu_lock); 1234 pcpu_stats_area_dealloc(chunk); 1235 1236 oslot = pcpu_chunk_slot(chunk); 1237 1238 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1239 1240 /* find end index */ 1241 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1242 bit_off + 1); 1243 bits = end - bit_off; 1244 bitmap_clear(chunk->alloc_map, bit_off, bits); 1245 1246 freed = bits * PCPU_MIN_ALLOC_SIZE; 1247 1248 /* update metadata */ 1249 chunk->free_bytes += freed; 1250 1251 /* update first free bit */ 1252 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1253 1254 pcpu_block_update_hint_free(chunk, bit_off, bits); 1255 1256 pcpu_chunk_relocate(chunk, oslot); 1257 1258 return freed; 1259 } 1260 1261 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1262 { 1263 block->scan_hint = 0; 1264 block->contig_hint = nr_bits; 1265 block->left_free = nr_bits; 1266 block->right_free = nr_bits; 1267 block->first_free = 0; 1268 block->nr_bits = nr_bits; 1269 } 1270 1271 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1272 { 1273 struct pcpu_block_md *md_block; 1274 1275 /* init the chunk's block */ 1276 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1277 1278 for (md_block = chunk->md_blocks; 1279 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1280 md_block++) 1281 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1282 } 1283 1284 /** 1285 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1286 * @tmp_addr: the start of the region served 1287 * @map_size: size of the region served 1288 * 1289 * This is responsible for creating the chunks that serve the first chunk. The 1290 * base_addr is page aligned down of @tmp_addr while the region end is page 1291 * aligned up. Offsets are kept track of to determine the region served. All 1292 * this is done to appease the bitmap allocator in avoiding partial blocks. 1293 * 1294 * RETURNS: 1295 * Chunk serving the region at @tmp_addr of @map_size. 1296 */ 1297 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1298 int map_size) 1299 { 1300 struct pcpu_chunk *chunk; 1301 unsigned long aligned_addr, lcm_align; 1302 int start_offset, offset_bits, region_size, region_bits; 1303 size_t alloc_size; 1304 1305 /* region calculations */ 1306 aligned_addr = tmp_addr & PAGE_MASK; 1307 1308 start_offset = tmp_addr - aligned_addr; 1309 1310 /* 1311 * Align the end of the region with the LCM of PAGE_SIZE and 1312 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1313 * the other. 1314 */ 1315 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1316 region_size = ALIGN(start_offset + map_size, lcm_align); 1317 1318 /* allocate chunk */ 1319 alloc_size = struct_size(chunk, populated, 1320 BITS_TO_LONGS(region_size >> PAGE_SHIFT)); 1321 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1322 if (!chunk) 1323 panic("%s: Failed to allocate %zu bytes\n", __func__, 1324 alloc_size); 1325 1326 INIT_LIST_HEAD(&chunk->list); 1327 1328 chunk->base_addr = (void *)aligned_addr; 1329 chunk->start_offset = start_offset; 1330 chunk->end_offset = region_size - chunk->start_offset - map_size; 1331 1332 chunk->nr_pages = region_size >> PAGE_SHIFT; 1333 region_bits = pcpu_chunk_map_bits(chunk); 1334 1335 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1336 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1337 if (!chunk->alloc_map) 1338 panic("%s: Failed to allocate %zu bytes\n", __func__, 1339 alloc_size); 1340 1341 alloc_size = 1342 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1343 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1344 if (!chunk->bound_map) 1345 panic("%s: Failed to allocate %zu bytes\n", __func__, 1346 alloc_size); 1347 1348 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1349 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1350 if (!chunk->md_blocks) 1351 panic("%s: Failed to allocate %zu bytes\n", __func__, 1352 alloc_size); 1353 1354 #ifdef CONFIG_MEMCG_KMEM 1355 /* first chunk isn't memcg-aware */ 1356 chunk->obj_cgroups = NULL; 1357 #endif 1358 pcpu_init_md_blocks(chunk); 1359 1360 /* manage populated page bitmap */ 1361 chunk->immutable = true; 1362 bitmap_fill(chunk->populated, chunk->nr_pages); 1363 chunk->nr_populated = chunk->nr_pages; 1364 chunk->nr_empty_pop_pages = chunk->nr_pages; 1365 1366 chunk->free_bytes = map_size; 1367 1368 if (chunk->start_offset) { 1369 /* hide the beginning of the bitmap */ 1370 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1371 bitmap_set(chunk->alloc_map, 0, offset_bits); 1372 set_bit(0, chunk->bound_map); 1373 set_bit(offset_bits, chunk->bound_map); 1374 1375 chunk->chunk_md.first_free = offset_bits; 1376 1377 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1378 } 1379 1380 if (chunk->end_offset) { 1381 /* hide the end of the bitmap */ 1382 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1383 bitmap_set(chunk->alloc_map, 1384 pcpu_chunk_map_bits(chunk) - offset_bits, 1385 offset_bits); 1386 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1387 chunk->bound_map); 1388 set_bit(region_bits, chunk->bound_map); 1389 1390 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1391 - offset_bits, offset_bits); 1392 } 1393 1394 return chunk; 1395 } 1396 1397 static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp) 1398 { 1399 struct pcpu_chunk *chunk; 1400 int region_bits; 1401 1402 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1403 if (!chunk) 1404 return NULL; 1405 1406 INIT_LIST_HEAD(&chunk->list); 1407 chunk->nr_pages = pcpu_unit_pages; 1408 region_bits = pcpu_chunk_map_bits(chunk); 1409 1410 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1411 sizeof(chunk->alloc_map[0]), gfp); 1412 if (!chunk->alloc_map) 1413 goto alloc_map_fail; 1414 1415 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1416 sizeof(chunk->bound_map[0]), gfp); 1417 if (!chunk->bound_map) 1418 goto bound_map_fail; 1419 1420 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1421 sizeof(chunk->md_blocks[0]), gfp); 1422 if (!chunk->md_blocks) 1423 goto md_blocks_fail; 1424 1425 #ifdef CONFIG_MEMCG_KMEM 1426 if (pcpu_is_memcg_chunk(type)) { 1427 chunk->obj_cgroups = 1428 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * 1429 sizeof(struct obj_cgroup *), gfp); 1430 if (!chunk->obj_cgroups) 1431 goto objcg_fail; 1432 } 1433 #endif 1434 1435 pcpu_init_md_blocks(chunk); 1436 1437 /* init metadata */ 1438 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1439 1440 return chunk; 1441 1442 #ifdef CONFIG_MEMCG_KMEM 1443 objcg_fail: 1444 pcpu_mem_free(chunk->md_blocks); 1445 #endif 1446 md_blocks_fail: 1447 pcpu_mem_free(chunk->bound_map); 1448 bound_map_fail: 1449 pcpu_mem_free(chunk->alloc_map); 1450 alloc_map_fail: 1451 pcpu_mem_free(chunk); 1452 1453 return NULL; 1454 } 1455 1456 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1457 { 1458 if (!chunk) 1459 return; 1460 #ifdef CONFIG_MEMCG_KMEM 1461 pcpu_mem_free(chunk->obj_cgroups); 1462 #endif 1463 pcpu_mem_free(chunk->md_blocks); 1464 pcpu_mem_free(chunk->bound_map); 1465 pcpu_mem_free(chunk->alloc_map); 1466 pcpu_mem_free(chunk); 1467 } 1468 1469 /** 1470 * pcpu_chunk_populated - post-population bookkeeping 1471 * @chunk: pcpu_chunk which got populated 1472 * @page_start: the start page 1473 * @page_end: the end page 1474 * 1475 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1476 * the bookkeeping information accordingly. Must be called after each 1477 * successful population. 1478 * 1479 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1480 * is to serve an allocation in that area. 1481 */ 1482 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1483 int page_end) 1484 { 1485 int nr = page_end - page_start; 1486 1487 lockdep_assert_held(&pcpu_lock); 1488 1489 bitmap_set(chunk->populated, page_start, nr); 1490 chunk->nr_populated += nr; 1491 pcpu_nr_populated += nr; 1492 1493 pcpu_update_empty_pages(chunk, nr); 1494 } 1495 1496 /** 1497 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1498 * @chunk: pcpu_chunk which got depopulated 1499 * @page_start: the start page 1500 * @page_end: the end page 1501 * 1502 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1503 * Update the bookkeeping information accordingly. Must be called after 1504 * each successful depopulation. 1505 */ 1506 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1507 int page_start, int page_end) 1508 { 1509 int nr = page_end - page_start; 1510 1511 lockdep_assert_held(&pcpu_lock); 1512 1513 bitmap_clear(chunk->populated, page_start, nr); 1514 chunk->nr_populated -= nr; 1515 pcpu_nr_populated -= nr; 1516 1517 pcpu_update_empty_pages(chunk, -nr); 1518 } 1519 1520 /* 1521 * Chunk management implementation. 1522 * 1523 * To allow different implementations, chunk alloc/free and 1524 * [de]population are implemented in a separate file which is pulled 1525 * into this file and compiled together. The following functions 1526 * should be implemented. 1527 * 1528 * pcpu_populate_chunk - populate the specified range of a chunk 1529 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1530 * pcpu_create_chunk - create a new chunk 1531 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1532 * pcpu_addr_to_page - translate address to physical address 1533 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1534 */ 1535 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1536 int page_start, int page_end, gfp_t gfp); 1537 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1538 int page_start, int page_end); 1539 static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type, 1540 gfp_t gfp); 1541 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1542 static struct page *pcpu_addr_to_page(void *addr); 1543 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1544 1545 #ifdef CONFIG_NEED_PER_CPU_KM 1546 #include "percpu-km.c" 1547 #else 1548 #include "percpu-vm.c" 1549 #endif 1550 1551 /** 1552 * pcpu_chunk_addr_search - determine chunk containing specified address 1553 * @addr: address for which the chunk needs to be determined. 1554 * 1555 * This is an internal function that handles all but static allocations. 1556 * Static percpu address values should never be passed into the allocator. 1557 * 1558 * RETURNS: 1559 * The address of the found chunk. 1560 */ 1561 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1562 { 1563 /* is it in the dynamic region (first chunk)? */ 1564 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1565 return pcpu_first_chunk; 1566 1567 /* is it in the reserved region? */ 1568 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1569 return pcpu_reserved_chunk; 1570 1571 /* 1572 * The address is relative to unit0 which might be unused and 1573 * thus unmapped. Offset the address to the unit space of the 1574 * current processor before looking it up in the vmalloc 1575 * space. Note that any possible cpu id can be used here, so 1576 * there's no need to worry about preemption or cpu hotplug. 1577 */ 1578 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1579 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1580 } 1581 1582 #ifdef CONFIG_MEMCG_KMEM 1583 static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, 1584 struct obj_cgroup **objcgp) 1585 { 1586 struct obj_cgroup *objcg; 1587 1588 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT)) 1589 return PCPU_CHUNK_ROOT; 1590 1591 objcg = get_obj_cgroup_from_current(); 1592 if (!objcg) 1593 return PCPU_CHUNK_ROOT; 1594 1595 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) { 1596 obj_cgroup_put(objcg); 1597 return PCPU_FAIL_ALLOC; 1598 } 1599 1600 *objcgp = objcg; 1601 return PCPU_CHUNK_MEMCG; 1602 } 1603 1604 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1605 struct pcpu_chunk *chunk, int off, 1606 size_t size) 1607 { 1608 if (!objcg) 1609 return; 1610 1611 if (chunk) { 1612 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; 1613 1614 rcu_read_lock(); 1615 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1616 size * num_possible_cpus()); 1617 rcu_read_unlock(); 1618 } else { 1619 obj_cgroup_uncharge(objcg, size * num_possible_cpus()); 1620 obj_cgroup_put(objcg); 1621 } 1622 } 1623 1624 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1625 { 1626 struct obj_cgroup *objcg; 1627 1628 if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk))) 1629 return; 1630 1631 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; 1632 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; 1633 1634 obj_cgroup_uncharge(objcg, size * num_possible_cpus()); 1635 1636 rcu_read_lock(); 1637 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1638 -(size * num_possible_cpus())); 1639 rcu_read_unlock(); 1640 1641 obj_cgroup_put(objcg); 1642 } 1643 1644 #else /* CONFIG_MEMCG_KMEM */ 1645 static enum pcpu_chunk_type 1646 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) 1647 { 1648 return PCPU_CHUNK_ROOT; 1649 } 1650 1651 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1652 struct pcpu_chunk *chunk, int off, 1653 size_t size) 1654 { 1655 } 1656 1657 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1658 { 1659 } 1660 #endif /* CONFIG_MEMCG_KMEM */ 1661 1662 /** 1663 * pcpu_alloc - the percpu allocator 1664 * @size: size of area to allocate in bytes 1665 * @align: alignment of area (max PAGE_SIZE) 1666 * @reserved: allocate from the reserved chunk if available 1667 * @gfp: allocation flags 1668 * 1669 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1670 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1671 * then no warning will be triggered on invalid or failed allocation 1672 * requests. 1673 * 1674 * RETURNS: 1675 * Percpu pointer to the allocated area on success, NULL on failure. 1676 */ 1677 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1678 gfp_t gfp) 1679 { 1680 gfp_t pcpu_gfp; 1681 bool is_atomic; 1682 bool do_warn; 1683 enum pcpu_chunk_type type; 1684 struct list_head *pcpu_slot; 1685 struct obj_cgroup *objcg = NULL; 1686 static int warn_limit = 10; 1687 struct pcpu_chunk *chunk, *next; 1688 const char *err; 1689 int slot, off, cpu, ret; 1690 unsigned long flags; 1691 void __percpu *ptr; 1692 size_t bits, bit_align; 1693 1694 gfp = current_gfp_context(gfp); 1695 /* whitelisted flags that can be passed to the backing allocators */ 1696 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1697 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1698 do_warn = !(gfp & __GFP_NOWARN); 1699 1700 /* 1701 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1702 * therefore alignment must be a minimum of that many bytes. 1703 * An allocation may have internal fragmentation from rounding up 1704 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1705 */ 1706 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1707 align = PCPU_MIN_ALLOC_SIZE; 1708 1709 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1710 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1711 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1712 1713 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1714 !is_power_of_2(align))) { 1715 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1716 size, align); 1717 return NULL; 1718 } 1719 1720 type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg); 1721 if (unlikely(type == PCPU_FAIL_ALLOC)) 1722 return NULL; 1723 pcpu_slot = pcpu_chunk_list(type); 1724 1725 if (!is_atomic) { 1726 /* 1727 * pcpu_balance_workfn() allocates memory under this mutex, 1728 * and it may wait for memory reclaim. Allow current task 1729 * to become OOM victim, in case of memory pressure. 1730 */ 1731 if (gfp & __GFP_NOFAIL) { 1732 mutex_lock(&pcpu_alloc_mutex); 1733 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { 1734 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1735 return NULL; 1736 } 1737 } 1738 1739 spin_lock_irqsave(&pcpu_lock, flags); 1740 1741 /* serve reserved allocations from the reserved chunk if available */ 1742 if (reserved && pcpu_reserved_chunk) { 1743 chunk = pcpu_reserved_chunk; 1744 1745 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1746 if (off < 0) { 1747 err = "alloc from reserved chunk failed"; 1748 goto fail_unlock; 1749 } 1750 1751 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1752 if (off >= 0) 1753 goto area_found; 1754 1755 err = "alloc from reserved chunk failed"; 1756 goto fail_unlock; 1757 } 1758 1759 restart: 1760 /* search through normal chunks */ 1761 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1762 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) { 1763 off = pcpu_find_block_fit(chunk, bits, bit_align, 1764 is_atomic); 1765 if (off < 0) { 1766 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1767 pcpu_chunk_move(chunk, 0); 1768 continue; 1769 } 1770 1771 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1772 if (off >= 0) 1773 goto area_found; 1774 1775 } 1776 } 1777 1778 spin_unlock_irqrestore(&pcpu_lock, flags); 1779 1780 /* 1781 * No space left. Create a new chunk. We don't want multiple 1782 * tasks to create chunks simultaneously. Serialize and create iff 1783 * there's still no empty chunk after grabbing the mutex. 1784 */ 1785 if (is_atomic) { 1786 err = "atomic alloc failed, no space left"; 1787 goto fail; 1788 } 1789 1790 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1791 chunk = pcpu_create_chunk(type, pcpu_gfp); 1792 if (!chunk) { 1793 err = "failed to allocate new chunk"; 1794 goto fail; 1795 } 1796 1797 spin_lock_irqsave(&pcpu_lock, flags); 1798 pcpu_chunk_relocate(chunk, -1); 1799 } else { 1800 spin_lock_irqsave(&pcpu_lock, flags); 1801 } 1802 1803 goto restart; 1804 1805 area_found: 1806 pcpu_stats_area_alloc(chunk, size); 1807 spin_unlock_irqrestore(&pcpu_lock, flags); 1808 1809 /* populate if not all pages are already there */ 1810 if (!is_atomic) { 1811 unsigned int page_start, page_end, rs, re; 1812 1813 page_start = PFN_DOWN(off); 1814 page_end = PFN_UP(off + size); 1815 1816 bitmap_for_each_clear_region(chunk->populated, rs, re, 1817 page_start, page_end) { 1818 WARN_ON(chunk->immutable); 1819 1820 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1821 1822 spin_lock_irqsave(&pcpu_lock, flags); 1823 if (ret) { 1824 pcpu_free_area(chunk, off); 1825 err = "failed to populate"; 1826 goto fail_unlock; 1827 } 1828 pcpu_chunk_populated(chunk, rs, re); 1829 spin_unlock_irqrestore(&pcpu_lock, flags); 1830 } 1831 1832 mutex_unlock(&pcpu_alloc_mutex); 1833 } 1834 1835 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1836 pcpu_schedule_balance_work(); 1837 1838 /* clear the areas and return address relative to base address */ 1839 for_each_possible_cpu(cpu) 1840 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1841 1842 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1843 kmemleak_alloc_percpu(ptr, size, gfp); 1844 1845 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1846 chunk->base_addr, off, ptr); 1847 1848 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); 1849 1850 return ptr; 1851 1852 fail_unlock: 1853 spin_unlock_irqrestore(&pcpu_lock, flags); 1854 fail: 1855 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1856 1857 if (!is_atomic && do_warn && warn_limit) { 1858 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1859 size, align, is_atomic, err); 1860 dump_stack(); 1861 if (!--warn_limit) 1862 pr_info("limit reached, disable warning\n"); 1863 } 1864 if (is_atomic) { 1865 /* see the flag handling in pcpu_blance_workfn() */ 1866 pcpu_atomic_alloc_failed = true; 1867 pcpu_schedule_balance_work(); 1868 } else { 1869 mutex_unlock(&pcpu_alloc_mutex); 1870 } 1871 1872 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1873 1874 return NULL; 1875 } 1876 1877 /** 1878 * __alloc_percpu_gfp - allocate dynamic percpu area 1879 * @size: size of area to allocate in bytes 1880 * @align: alignment of area (max PAGE_SIZE) 1881 * @gfp: allocation flags 1882 * 1883 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1884 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1885 * be called from any context but is a lot more likely to fail. If @gfp 1886 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1887 * allocation requests. 1888 * 1889 * RETURNS: 1890 * Percpu pointer to the allocated area on success, NULL on failure. 1891 */ 1892 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1893 { 1894 return pcpu_alloc(size, align, false, gfp); 1895 } 1896 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1897 1898 /** 1899 * __alloc_percpu - allocate dynamic percpu area 1900 * @size: size of area to allocate in bytes 1901 * @align: alignment of area (max PAGE_SIZE) 1902 * 1903 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1904 */ 1905 void __percpu *__alloc_percpu(size_t size, size_t align) 1906 { 1907 return pcpu_alloc(size, align, false, GFP_KERNEL); 1908 } 1909 EXPORT_SYMBOL_GPL(__alloc_percpu); 1910 1911 /** 1912 * __alloc_reserved_percpu - allocate reserved percpu area 1913 * @size: size of area to allocate in bytes 1914 * @align: alignment of area (max PAGE_SIZE) 1915 * 1916 * Allocate zero-filled percpu area of @size bytes aligned at @align 1917 * from reserved percpu area if arch has set it up; otherwise, 1918 * allocation is served from the same dynamic area. Might sleep. 1919 * Might trigger writeouts. 1920 * 1921 * CONTEXT: 1922 * Does GFP_KERNEL allocation. 1923 * 1924 * RETURNS: 1925 * Percpu pointer to the allocated area on success, NULL on failure. 1926 */ 1927 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1928 { 1929 return pcpu_alloc(size, align, true, GFP_KERNEL); 1930 } 1931 1932 /** 1933 * __pcpu_balance_workfn - manage the amount of free chunks and populated pages 1934 * @type: chunk type 1935 * 1936 * Reclaim all fully free chunks except for the first one. This is also 1937 * responsible for maintaining the pool of empty populated pages. However, 1938 * it is possible that this is called when physical memory is scarce causing 1939 * OOM killer to be triggered. We should avoid doing so until an actual 1940 * allocation causes the failure as it is possible that requests can be 1941 * serviced from already backed regions. 1942 */ 1943 static void __pcpu_balance_workfn(enum pcpu_chunk_type type) 1944 { 1945 /* gfp flags passed to underlying allocators */ 1946 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1947 LIST_HEAD(to_free); 1948 struct list_head *pcpu_slot = pcpu_chunk_list(type); 1949 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1950 struct pcpu_chunk *chunk, *next; 1951 int slot, nr_to_pop, ret; 1952 1953 /* 1954 * There's no reason to keep around multiple unused chunks and VM 1955 * areas can be scarce. Destroy all free chunks except for one. 1956 */ 1957 mutex_lock(&pcpu_alloc_mutex); 1958 spin_lock_irq(&pcpu_lock); 1959 1960 list_for_each_entry_safe(chunk, next, free_head, list) { 1961 WARN_ON(chunk->immutable); 1962 1963 /* spare the first one */ 1964 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1965 continue; 1966 1967 list_move(&chunk->list, &to_free); 1968 } 1969 1970 spin_unlock_irq(&pcpu_lock); 1971 1972 list_for_each_entry_safe(chunk, next, &to_free, list) { 1973 unsigned int rs, re; 1974 1975 bitmap_for_each_set_region(chunk->populated, rs, re, 0, 1976 chunk->nr_pages) { 1977 pcpu_depopulate_chunk(chunk, rs, re); 1978 spin_lock_irq(&pcpu_lock); 1979 pcpu_chunk_depopulated(chunk, rs, re); 1980 spin_unlock_irq(&pcpu_lock); 1981 } 1982 pcpu_destroy_chunk(chunk); 1983 cond_resched(); 1984 } 1985 1986 /* 1987 * Ensure there are certain number of free populated pages for 1988 * atomic allocs. Fill up from the most packed so that atomic 1989 * allocs don't increase fragmentation. If atomic allocation 1990 * failed previously, always populate the maximum amount. This 1991 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1992 * failing indefinitely; however, large atomic allocs are not 1993 * something we support properly and can be highly unreliable and 1994 * inefficient. 1995 */ 1996 retry_pop: 1997 if (pcpu_atomic_alloc_failed) { 1998 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1999 /* best effort anyway, don't worry about synchronization */ 2000 pcpu_atomic_alloc_failed = false; 2001 } else { 2002 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 2003 pcpu_nr_empty_pop_pages, 2004 0, PCPU_EMPTY_POP_PAGES_HIGH); 2005 } 2006 2007 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 2008 unsigned int nr_unpop = 0, rs, re; 2009 2010 if (!nr_to_pop) 2011 break; 2012 2013 spin_lock_irq(&pcpu_lock); 2014 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 2015 nr_unpop = chunk->nr_pages - chunk->nr_populated; 2016 if (nr_unpop) 2017 break; 2018 } 2019 spin_unlock_irq(&pcpu_lock); 2020 2021 if (!nr_unpop) 2022 continue; 2023 2024 /* @chunk can't go away while pcpu_alloc_mutex is held */ 2025 bitmap_for_each_clear_region(chunk->populated, rs, re, 0, 2026 chunk->nr_pages) { 2027 int nr = min_t(int, re - rs, nr_to_pop); 2028 2029 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 2030 if (!ret) { 2031 nr_to_pop -= nr; 2032 spin_lock_irq(&pcpu_lock); 2033 pcpu_chunk_populated(chunk, rs, rs + nr); 2034 spin_unlock_irq(&pcpu_lock); 2035 } else { 2036 nr_to_pop = 0; 2037 } 2038 2039 if (!nr_to_pop) 2040 break; 2041 } 2042 } 2043 2044 if (nr_to_pop) { 2045 /* ran out of chunks to populate, create a new one and retry */ 2046 chunk = pcpu_create_chunk(type, gfp); 2047 if (chunk) { 2048 spin_lock_irq(&pcpu_lock); 2049 pcpu_chunk_relocate(chunk, -1); 2050 spin_unlock_irq(&pcpu_lock); 2051 goto retry_pop; 2052 } 2053 } 2054 2055 mutex_unlock(&pcpu_alloc_mutex); 2056 } 2057 2058 /** 2059 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 2060 * @work: unused 2061 * 2062 * Call __pcpu_balance_workfn() for each chunk type. 2063 */ 2064 static void pcpu_balance_workfn(struct work_struct *work) 2065 { 2066 enum pcpu_chunk_type type; 2067 2068 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) 2069 __pcpu_balance_workfn(type); 2070 } 2071 2072 /** 2073 * free_percpu - free percpu area 2074 * @ptr: pointer to area to free 2075 * 2076 * Free percpu area @ptr. 2077 * 2078 * CONTEXT: 2079 * Can be called from atomic context. 2080 */ 2081 void free_percpu(void __percpu *ptr) 2082 { 2083 void *addr; 2084 struct pcpu_chunk *chunk; 2085 unsigned long flags; 2086 int size, off; 2087 bool need_balance = false; 2088 struct list_head *pcpu_slot; 2089 2090 if (!ptr) 2091 return; 2092 2093 kmemleak_free_percpu(ptr); 2094 2095 addr = __pcpu_ptr_to_addr(ptr); 2096 2097 spin_lock_irqsave(&pcpu_lock, flags); 2098 2099 chunk = pcpu_chunk_addr_search(addr); 2100 off = addr - chunk->base_addr; 2101 2102 size = pcpu_free_area(chunk, off); 2103 2104 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk)); 2105 2106 pcpu_memcg_free_hook(chunk, off, size); 2107 2108 /* if there are more than one fully free chunks, wake up grim reaper */ 2109 if (chunk->free_bytes == pcpu_unit_size) { 2110 struct pcpu_chunk *pos; 2111 2112 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 2113 if (pos != chunk) { 2114 need_balance = true; 2115 break; 2116 } 2117 } 2118 2119 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 2120 2121 spin_unlock_irqrestore(&pcpu_lock, flags); 2122 2123 if (need_balance) 2124 pcpu_schedule_balance_work(); 2125 } 2126 EXPORT_SYMBOL_GPL(free_percpu); 2127 2128 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 2129 { 2130 #ifdef CONFIG_SMP 2131 const size_t static_size = __per_cpu_end - __per_cpu_start; 2132 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2133 unsigned int cpu; 2134 2135 for_each_possible_cpu(cpu) { 2136 void *start = per_cpu_ptr(base, cpu); 2137 void *va = (void *)addr; 2138 2139 if (va >= start && va < start + static_size) { 2140 if (can_addr) { 2141 *can_addr = (unsigned long) (va - start); 2142 *can_addr += (unsigned long) 2143 per_cpu_ptr(base, get_boot_cpu_id()); 2144 } 2145 return true; 2146 } 2147 } 2148 #endif 2149 /* on UP, can't distinguish from other static vars, always false */ 2150 return false; 2151 } 2152 2153 /** 2154 * is_kernel_percpu_address - test whether address is from static percpu area 2155 * @addr: address to test 2156 * 2157 * Test whether @addr belongs to in-kernel static percpu area. Module 2158 * static percpu areas are not considered. For those, use 2159 * is_module_percpu_address(). 2160 * 2161 * RETURNS: 2162 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2163 */ 2164 bool is_kernel_percpu_address(unsigned long addr) 2165 { 2166 return __is_kernel_percpu_address(addr, NULL); 2167 } 2168 2169 /** 2170 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2171 * @addr: the address to be converted to physical address 2172 * 2173 * Given @addr which is dereferenceable address obtained via one of 2174 * percpu access macros, this function translates it into its physical 2175 * address. The caller is responsible for ensuring @addr stays valid 2176 * until this function finishes. 2177 * 2178 * percpu allocator has special setup for the first chunk, which currently 2179 * supports either embedding in linear address space or vmalloc mapping, 2180 * and, from the second one, the backing allocator (currently either vm or 2181 * km) provides translation. 2182 * 2183 * The addr can be translated simply without checking if it falls into the 2184 * first chunk. But the current code reflects better how percpu allocator 2185 * actually works, and the verification can discover both bugs in percpu 2186 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2187 * code. 2188 * 2189 * RETURNS: 2190 * The physical address for @addr. 2191 */ 2192 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2193 { 2194 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2195 bool in_first_chunk = false; 2196 unsigned long first_low, first_high; 2197 unsigned int cpu; 2198 2199 /* 2200 * The following test on unit_low/high isn't strictly 2201 * necessary but will speed up lookups of addresses which 2202 * aren't in the first chunk. 2203 * 2204 * The address check is against full chunk sizes. pcpu_base_addr 2205 * points to the beginning of the first chunk including the 2206 * static region. Assumes good intent as the first chunk may 2207 * not be full (ie. < pcpu_unit_pages in size). 2208 */ 2209 first_low = (unsigned long)pcpu_base_addr + 2210 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2211 first_high = (unsigned long)pcpu_base_addr + 2212 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2213 if ((unsigned long)addr >= first_low && 2214 (unsigned long)addr < first_high) { 2215 for_each_possible_cpu(cpu) { 2216 void *start = per_cpu_ptr(base, cpu); 2217 2218 if (addr >= start && addr < start + pcpu_unit_size) { 2219 in_first_chunk = true; 2220 break; 2221 } 2222 } 2223 } 2224 2225 if (in_first_chunk) { 2226 if (!is_vmalloc_addr(addr)) 2227 return __pa(addr); 2228 else 2229 return page_to_phys(vmalloc_to_page(addr)) + 2230 offset_in_page(addr); 2231 } else 2232 return page_to_phys(pcpu_addr_to_page(addr)) + 2233 offset_in_page(addr); 2234 } 2235 2236 /** 2237 * pcpu_alloc_alloc_info - allocate percpu allocation info 2238 * @nr_groups: the number of groups 2239 * @nr_units: the number of units 2240 * 2241 * Allocate ai which is large enough for @nr_groups groups containing 2242 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2243 * cpu_map array which is long enough for @nr_units and filled with 2244 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2245 * pointer of other groups. 2246 * 2247 * RETURNS: 2248 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2249 * failure. 2250 */ 2251 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2252 int nr_units) 2253 { 2254 struct pcpu_alloc_info *ai; 2255 size_t base_size, ai_size; 2256 void *ptr; 2257 int unit; 2258 2259 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2260 __alignof__(ai->groups[0].cpu_map[0])); 2261 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2262 2263 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2264 if (!ptr) 2265 return NULL; 2266 ai = ptr; 2267 ptr += base_size; 2268 2269 ai->groups[0].cpu_map = ptr; 2270 2271 for (unit = 0; unit < nr_units; unit++) 2272 ai->groups[0].cpu_map[unit] = NR_CPUS; 2273 2274 ai->nr_groups = nr_groups; 2275 ai->__ai_size = PFN_ALIGN(ai_size); 2276 2277 return ai; 2278 } 2279 2280 /** 2281 * pcpu_free_alloc_info - free percpu allocation info 2282 * @ai: pcpu_alloc_info to free 2283 * 2284 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2285 */ 2286 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2287 { 2288 memblock_free_early(__pa(ai), ai->__ai_size); 2289 } 2290 2291 /** 2292 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2293 * @lvl: loglevel 2294 * @ai: allocation info to dump 2295 * 2296 * Print out information about @ai using loglevel @lvl. 2297 */ 2298 static void pcpu_dump_alloc_info(const char *lvl, 2299 const struct pcpu_alloc_info *ai) 2300 { 2301 int group_width = 1, cpu_width = 1, width; 2302 char empty_str[] = "--------"; 2303 int alloc = 0, alloc_end = 0; 2304 int group, v; 2305 int upa, apl; /* units per alloc, allocs per line */ 2306 2307 v = ai->nr_groups; 2308 while (v /= 10) 2309 group_width++; 2310 2311 v = num_possible_cpus(); 2312 while (v /= 10) 2313 cpu_width++; 2314 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2315 2316 upa = ai->alloc_size / ai->unit_size; 2317 width = upa * (cpu_width + 1) + group_width + 3; 2318 apl = rounddown_pow_of_two(max(60 / width, 1)); 2319 2320 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2321 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2322 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2323 2324 for (group = 0; group < ai->nr_groups; group++) { 2325 const struct pcpu_group_info *gi = &ai->groups[group]; 2326 int unit = 0, unit_end = 0; 2327 2328 BUG_ON(gi->nr_units % upa); 2329 for (alloc_end += gi->nr_units / upa; 2330 alloc < alloc_end; alloc++) { 2331 if (!(alloc % apl)) { 2332 pr_cont("\n"); 2333 printk("%spcpu-alloc: ", lvl); 2334 } 2335 pr_cont("[%0*d] ", group_width, group); 2336 2337 for (unit_end += upa; unit < unit_end; unit++) 2338 if (gi->cpu_map[unit] != NR_CPUS) 2339 pr_cont("%0*d ", 2340 cpu_width, gi->cpu_map[unit]); 2341 else 2342 pr_cont("%s ", empty_str); 2343 } 2344 } 2345 pr_cont("\n"); 2346 } 2347 2348 /** 2349 * pcpu_setup_first_chunk - initialize the first percpu chunk 2350 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2351 * @base_addr: mapped address 2352 * 2353 * Initialize the first percpu chunk which contains the kernel static 2354 * percpu area. This function is to be called from arch percpu area 2355 * setup path. 2356 * 2357 * @ai contains all information necessary to initialize the first 2358 * chunk and prime the dynamic percpu allocator. 2359 * 2360 * @ai->static_size is the size of static percpu area. 2361 * 2362 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2363 * reserve after the static area in the first chunk. This reserves 2364 * the first chunk such that it's available only through reserved 2365 * percpu allocation. This is primarily used to serve module percpu 2366 * static areas on architectures where the addressing model has 2367 * limited offset range for symbol relocations to guarantee module 2368 * percpu symbols fall inside the relocatable range. 2369 * 2370 * @ai->dyn_size determines the number of bytes available for dynamic 2371 * allocation in the first chunk. The area between @ai->static_size + 2372 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2373 * 2374 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2375 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2376 * @ai->dyn_size. 2377 * 2378 * @ai->atom_size is the allocation atom size and used as alignment 2379 * for vm areas. 2380 * 2381 * @ai->alloc_size is the allocation size and always multiple of 2382 * @ai->atom_size. This is larger than @ai->atom_size if 2383 * @ai->unit_size is larger than @ai->atom_size. 2384 * 2385 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2386 * percpu areas. Units which should be colocated are put into the 2387 * same group. Dynamic VM areas will be allocated according to these 2388 * groupings. If @ai->nr_groups is zero, a single group containing 2389 * all units is assumed. 2390 * 2391 * The caller should have mapped the first chunk at @base_addr and 2392 * copied static data to each unit. 2393 * 2394 * The first chunk will always contain a static and a dynamic region. 2395 * However, the static region is not managed by any chunk. If the first 2396 * chunk also contains a reserved region, it is served by two chunks - 2397 * one for the reserved region and one for the dynamic region. They 2398 * share the same vm, but use offset regions in the area allocation map. 2399 * The chunk serving the dynamic region is circulated in the chunk slots 2400 * and available for dynamic allocation like any other chunk. 2401 */ 2402 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2403 void *base_addr) 2404 { 2405 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2406 size_t static_size, dyn_size; 2407 struct pcpu_chunk *chunk; 2408 unsigned long *group_offsets; 2409 size_t *group_sizes; 2410 unsigned long *unit_off; 2411 unsigned int cpu; 2412 int *unit_map; 2413 int group, unit, i; 2414 int map_size; 2415 unsigned long tmp_addr; 2416 size_t alloc_size; 2417 enum pcpu_chunk_type type; 2418 2419 #define PCPU_SETUP_BUG_ON(cond) do { \ 2420 if (unlikely(cond)) { \ 2421 pr_emerg("failed to initialize, %s\n", #cond); \ 2422 pr_emerg("cpu_possible_mask=%*pb\n", \ 2423 cpumask_pr_args(cpu_possible_mask)); \ 2424 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2425 BUG(); \ 2426 } \ 2427 } while (0) 2428 2429 /* sanity checks */ 2430 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2431 #ifdef CONFIG_SMP 2432 PCPU_SETUP_BUG_ON(!ai->static_size); 2433 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2434 #endif 2435 PCPU_SETUP_BUG_ON(!base_addr); 2436 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2437 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2438 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2439 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2440 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2441 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2442 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2443 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2444 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2445 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2446 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2447 2448 /* process group information and build config tables accordingly */ 2449 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2450 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2451 if (!group_offsets) 2452 panic("%s: Failed to allocate %zu bytes\n", __func__, 2453 alloc_size); 2454 2455 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2456 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2457 if (!group_sizes) 2458 panic("%s: Failed to allocate %zu bytes\n", __func__, 2459 alloc_size); 2460 2461 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2462 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2463 if (!unit_map) 2464 panic("%s: Failed to allocate %zu bytes\n", __func__, 2465 alloc_size); 2466 2467 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2468 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2469 if (!unit_off) 2470 panic("%s: Failed to allocate %zu bytes\n", __func__, 2471 alloc_size); 2472 2473 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2474 unit_map[cpu] = UINT_MAX; 2475 2476 pcpu_low_unit_cpu = NR_CPUS; 2477 pcpu_high_unit_cpu = NR_CPUS; 2478 2479 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2480 const struct pcpu_group_info *gi = &ai->groups[group]; 2481 2482 group_offsets[group] = gi->base_offset; 2483 group_sizes[group] = gi->nr_units * ai->unit_size; 2484 2485 for (i = 0; i < gi->nr_units; i++) { 2486 cpu = gi->cpu_map[i]; 2487 if (cpu == NR_CPUS) 2488 continue; 2489 2490 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2491 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2492 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2493 2494 unit_map[cpu] = unit + i; 2495 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2496 2497 /* determine low/high unit_cpu */ 2498 if (pcpu_low_unit_cpu == NR_CPUS || 2499 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2500 pcpu_low_unit_cpu = cpu; 2501 if (pcpu_high_unit_cpu == NR_CPUS || 2502 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2503 pcpu_high_unit_cpu = cpu; 2504 } 2505 } 2506 pcpu_nr_units = unit; 2507 2508 for_each_possible_cpu(cpu) 2509 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2510 2511 /* we're done parsing the input, undefine BUG macro and dump config */ 2512 #undef PCPU_SETUP_BUG_ON 2513 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2514 2515 pcpu_nr_groups = ai->nr_groups; 2516 pcpu_group_offsets = group_offsets; 2517 pcpu_group_sizes = group_sizes; 2518 pcpu_unit_map = unit_map; 2519 pcpu_unit_offsets = unit_off; 2520 2521 /* determine basic parameters */ 2522 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2523 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2524 pcpu_atom_size = ai->atom_size; 2525 pcpu_chunk_struct_size = struct_size(chunk, populated, 2526 BITS_TO_LONGS(pcpu_unit_pages)); 2527 2528 pcpu_stats_save_ai(ai); 2529 2530 /* 2531 * Allocate chunk slots. The additional last slot is for 2532 * empty chunks. 2533 */ 2534 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2535 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * 2536 sizeof(pcpu_chunk_lists[0]) * 2537 PCPU_NR_CHUNK_TYPES, 2538 SMP_CACHE_BYTES); 2539 if (!pcpu_chunk_lists) 2540 panic("%s: Failed to allocate %zu bytes\n", __func__, 2541 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) * 2542 PCPU_NR_CHUNK_TYPES); 2543 2544 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) 2545 for (i = 0; i < pcpu_nr_slots; i++) 2546 INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]); 2547 2548 /* 2549 * The end of the static region needs to be aligned with the 2550 * minimum allocation size as this offsets the reserved and 2551 * dynamic region. The first chunk ends page aligned by 2552 * expanding the dynamic region, therefore the dynamic region 2553 * can be shrunk to compensate while still staying above the 2554 * configured sizes. 2555 */ 2556 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2557 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2558 2559 /* 2560 * Initialize first chunk. 2561 * If the reserved_size is non-zero, this initializes the reserved 2562 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2563 * and the dynamic region is initialized here. The first chunk, 2564 * pcpu_first_chunk, will always point to the chunk that serves 2565 * the dynamic region. 2566 */ 2567 tmp_addr = (unsigned long)base_addr + static_size; 2568 map_size = ai->reserved_size ?: dyn_size; 2569 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2570 2571 /* init dynamic chunk if necessary */ 2572 if (ai->reserved_size) { 2573 pcpu_reserved_chunk = chunk; 2574 2575 tmp_addr = (unsigned long)base_addr + static_size + 2576 ai->reserved_size; 2577 map_size = dyn_size; 2578 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2579 } 2580 2581 /* link the first chunk in */ 2582 pcpu_first_chunk = chunk; 2583 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2584 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2585 2586 /* include all regions of the first chunk */ 2587 pcpu_nr_populated += PFN_DOWN(size_sum); 2588 2589 pcpu_stats_chunk_alloc(); 2590 trace_percpu_create_chunk(base_addr); 2591 2592 /* we're done */ 2593 pcpu_base_addr = base_addr; 2594 } 2595 2596 #ifdef CONFIG_SMP 2597 2598 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2599 [PCPU_FC_AUTO] = "auto", 2600 [PCPU_FC_EMBED] = "embed", 2601 [PCPU_FC_PAGE] = "page", 2602 }; 2603 2604 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2605 2606 static int __init percpu_alloc_setup(char *str) 2607 { 2608 if (!str) 2609 return -EINVAL; 2610 2611 if (0) 2612 /* nada */; 2613 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2614 else if (!strcmp(str, "embed")) 2615 pcpu_chosen_fc = PCPU_FC_EMBED; 2616 #endif 2617 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2618 else if (!strcmp(str, "page")) 2619 pcpu_chosen_fc = PCPU_FC_PAGE; 2620 #endif 2621 else 2622 pr_warn("unknown allocator %s specified\n", str); 2623 2624 return 0; 2625 } 2626 early_param("percpu_alloc", percpu_alloc_setup); 2627 2628 /* 2629 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2630 * Build it if needed by the arch config or the generic setup is going 2631 * to be used. 2632 */ 2633 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2634 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2635 #define BUILD_EMBED_FIRST_CHUNK 2636 #endif 2637 2638 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2639 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2640 #define BUILD_PAGE_FIRST_CHUNK 2641 #endif 2642 2643 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2644 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2645 /** 2646 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2647 * @reserved_size: the size of reserved percpu area in bytes 2648 * @dyn_size: minimum free size for dynamic allocation in bytes 2649 * @atom_size: allocation atom size 2650 * @cpu_distance_fn: callback to determine distance between cpus, optional 2651 * 2652 * This function determines grouping of units, their mappings to cpus 2653 * and other parameters considering needed percpu size, allocation 2654 * atom size and distances between CPUs. 2655 * 2656 * Groups are always multiples of atom size and CPUs which are of 2657 * LOCAL_DISTANCE both ways are grouped together and share space for 2658 * units in the same group. The returned configuration is guaranteed 2659 * to have CPUs on different nodes on different groups and >=75% usage 2660 * of allocated virtual address space. 2661 * 2662 * RETURNS: 2663 * On success, pointer to the new allocation_info is returned. On 2664 * failure, ERR_PTR value is returned. 2665 */ 2666 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( 2667 size_t reserved_size, size_t dyn_size, 2668 size_t atom_size, 2669 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2670 { 2671 static int group_map[NR_CPUS] __initdata; 2672 static int group_cnt[NR_CPUS] __initdata; 2673 static struct cpumask mask __initdata; 2674 const size_t static_size = __per_cpu_end - __per_cpu_start; 2675 int nr_groups = 1, nr_units = 0; 2676 size_t size_sum, min_unit_size, alloc_size; 2677 int upa, max_upa, best_upa; /* units_per_alloc */ 2678 int last_allocs, group, unit; 2679 unsigned int cpu, tcpu; 2680 struct pcpu_alloc_info *ai; 2681 unsigned int *cpu_map; 2682 2683 /* this function may be called multiple times */ 2684 memset(group_map, 0, sizeof(group_map)); 2685 memset(group_cnt, 0, sizeof(group_cnt)); 2686 cpumask_clear(&mask); 2687 2688 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2689 size_sum = PFN_ALIGN(static_size + reserved_size + 2690 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2691 dyn_size = size_sum - static_size - reserved_size; 2692 2693 /* 2694 * Determine min_unit_size, alloc_size and max_upa such that 2695 * alloc_size is multiple of atom_size and is the smallest 2696 * which can accommodate 4k aligned segments which are equal to 2697 * or larger than min_unit_size. 2698 */ 2699 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2700 2701 /* determine the maximum # of units that can fit in an allocation */ 2702 alloc_size = roundup(min_unit_size, atom_size); 2703 upa = alloc_size / min_unit_size; 2704 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2705 upa--; 2706 max_upa = upa; 2707 2708 cpumask_copy(&mask, cpu_possible_mask); 2709 2710 /* group cpus according to their proximity */ 2711 for (group = 0; !cpumask_empty(&mask); group++) { 2712 /* pop the group's first cpu */ 2713 cpu = cpumask_first(&mask); 2714 group_map[cpu] = group; 2715 group_cnt[group]++; 2716 cpumask_clear_cpu(cpu, &mask); 2717 2718 for_each_cpu(tcpu, &mask) { 2719 if (!cpu_distance_fn || 2720 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && 2721 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { 2722 group_map[tcpu] = group; 2723 group_cnt[group]++; 2724 cpumask_clear_cpu(tcpu, &mask); 2725 } 2726 } 2727 } 2728 nr_groups = group; 2729 2730 /* 2731 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2732 * Expand the unit_size until we use >= 75% of the units allocated. 2733 * Related to atom_size, which could be much larger than the unit_size. 2734 */ 2735 last_allocs = INT_MAX; 2736 for (upa = max_upa; upa; upa--) { 2737 int allocs = 0, wasted = 0; 2738 2739 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2740 continue; 2741 2742 for (group = 0; group < nr_groups; group++) { 2743 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2744 allocs += this_allocs; 2745 wasted += this_allocs * upa - group_cnt[group]; 2746 } 2747 2748 /* 2749 * Don't accept if wastage is over 1/3. The 2750 * greater-than comparison ensures upa==1 always 2751 * passes the following check. 2752 */ 2753 if (wasted > num_possible_cpus() / 3) 2754 continue; 2755 2756 /* and then don't consume more memory */ 2757 if (allocs > last_allocs) 2758 break; 2759 last_allocs = allocs; 2760 best_upa = upa; 2761 } 2762 upa = best_upa; 2763 2764 /* allocate and fill alloc_info */ 2765 for (group = 0; group < nr_groups; group++) 2766 nr_units += roundup(group_cnt[group], upa); 2767 2768 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2769 if (!ai) 2770 return ERR_PTR(-ENOMEM); 2771 cpu_map = ai->groups[0].cpu_map; 2772 2773 for (group = 0; group < nr_groups; group++) { 2774 ai->groups[group].cpu_map = cpu_map; 2775 cpu_map += roundup(group_cnt[group], upa); 2776 } 2777 2778 ai->static_size = static_size; 2779 ai->reserved_size = reserved_size; 2780 ai->dyn_size = dyn_size; 2781 ai->unit_size = alloc_size / upa; 2782 ai->atom_size = atom_size; 2783 ai->alloc_size = alloc_size; 2784 2785 for (group = 0, unit = 0; group < nr_groups; group++) { 2786 struct pcpu_group_info *gi = &ai->groups[group]; 2787 2788 /* 2789 * Initialize base_offset as if all groups are located 2790 * back-to-back. The caller should update this to 2791 * reflect actual allocation. 2792 */ 2793 gi->base_offset = unit * ai->unit_size; 2794 2795 for_each_possible_cpu(cpu) 2796 if (group_map[cpu] == group) 2797 gi->cpu_map[gi->nr_units++] = cpu; 2798 gi->nr_units = roundup(gi->nr_units, upa); 2799 unit += gi->nr_units; 2800 } 2801 BUG_ON(unit != nr_units); 2802 2803 return ai; 2804 } 2805 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2806 2807 #if defined(BUILD_EMBED_FIRST_CHUNK) 2808 /** 2809 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2810 * @reserved_size: the size of reserved percpu area in bytes 2811 * @dyn_size: minimum free size for dynamic allocation in bytes 2812 * @atom_size: allocation atom size 2813 * @cpu_distance_fn: callback to determine distance between cpus, optional 2814 * @alloc_fn: function to allocate percpu page 2815 * @free_fn: function to free percpu page 2816 * 2817 * This is a helper to ease setting up embedded first percpu chunk and 2818 * can be called where pcpu_setup_first_chunk() is expected. 2819 * 2820 * If this function is used to setup the first chunk, it is allocated 2821 * by calling @alloc_fn and used as-is without being mapped into 2822 * vmalloc area. Allocations are always whole multiples of @atom_size 2823 * aligned to @atom_size. 2824 * 2825 * This enables the first chunk to piggy back on the linear physical 2826 * mapping which often uses larger page size. Please note that this 2827 * can result in very sparse cpu->unit mapping on NUMA machines thus 2828 * requiring large vmalloc address space. Don't use this allocator if 2829 * vmalloc space is not orders of magnitude larger than distances 2830 * between node memory addresses (ie. 32bit NUMA machines). 2831 * 2832 * @dyn_size specifies the minimum dynamic area size. 2833 * 2834 * If the needed size is smaller than the minimum or specified unit 2835 * size, the leftover is returned using @free_fn. 2836 * 2837 * RETURNS: 2838 * 0 on success, -errno on failure. 2839 */ 2840 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2841 size_t atom_size, 2842 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2843 pcpu_fc_alloc_fn_t alloc_fn, 2844 pcpu_fc_free_fn_t free_fn) 2845 { 2846 void *base = (void *)ULONG_MAX; 2847 void **areas = NULL; 2848 struct pcpu_alloc_info *ai; 2849 size_t size_sum, areas_size; 2850 unsigned long max_distance; 2851 int group, i, highest_group, rc = 0; 2852 2853 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2854 cpu_distance_fn); 2855 if (IS_ERR(ai)) 2856 return PTR_ERR(ai); 2857 2858 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2859 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2860 2861 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 2862 if (!areas) { 2863 rc = -ENOMEM; 2864 goto out_free; 2865 } 2866 2867 /* allocate, copy and determine base address & max_distance */ 2868 highest_group = 0; 2869 for (group = 0; group < ai->nr_groups; group++) { 2870 struct pcpu_group_info *gi = &ai->groups[group]; 2871 unsigned int cpu = NR_CPUS; 2872 void *ptr; 2873 2874 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2875 cpu = gi->cpu_map[i]; 2876 BUG_ON(cpu == NR_CPUS); 2877 2878 /* allocate space for the whole group */ 2879 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2880 if (!ptr) { 2881 rc = -ENOMEM; 2882 goto out_free_areas; 2883 } 2884 /* kmemleak tracks the percpu allocations separately */ 2885 kmemleak_free(ptr); 2886 areas[group] = ptr; 2887 2888 base = min(ptr, base); 2889 if (ptr > areas[highest_group]) 2890 highest_group = group; 2891 } 2892 max_distance = areas[highest_group] - base; 2893 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2894 2895 /* warn if maximum distance is further than 75% of vmalloc space */ 2896 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2897 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2898 max_distance, VMALLOC_TOTAL); 2899 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2900 /* and fail if we have fallback */ 2901 rc = -EINVAL; 2902 goto out_free_areas; 2903 #endif 2904 } 2905 2906 /* 2907 * Copy data and free unused parts. This should happen after all 2908 * allocations are complete; otherwise, we may end up with 2909 * overlapping groups. 2910 */ 2911 for (group = 0; group < ai->nr_groups; group++) { 2912 struct pcpu_group_info *gi = &ai->groups[group]; 2913 void *ptr = areas[group]; 2914 2915 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2916 if (gi->cpu_map[i] == NR_CPUS) { 2917 /* unused unit, free whole */ 2918 free_fn(ptr, ai->unit_size); 2919 continue; 2920 } 2921 /* copy and return the unused part */ 2922 memcpy(ptr, __per_cpu_load, ai->static_size); 2923 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2924 } 2925 } 2926 2927 /* base address is now known, determine group base offsets */ 2928 for (group = 0; group < ai->nr_groups; group++) { 2929 ai->groups[group].base_offset = areas[group] - base; 2930 } 2931 2932 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 2933 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 2934 ai->dyn_size, ai->unit_size); 2935 2936 pcpu_setup_first_chunk(ai, base); 2937 goto out_free; 2938 2939 out_free_areas: 2940 for (group = 0; group < ai->nr_groups; group++) 2941 if (areas[group]) 2942 free_fn(areas[group], 2943 ai->groups[group].nr_units * ai->unit_size); 2944 out_free: 2945 pcpu_free_alloc_info(ai); 2946 if (areas) 2947 memblock_free_early(__pa(areas), areas_size); 2948 return rc; 2949 } 2950 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2951 2952 #ifdef BUILD_PAGE_FIRST_CHUNK 2953 /** 2954 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2955 * @reserved_size: the size of reserved percpu area in bytes 2956 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2957 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2958 * @populate_pte_fn: function to populate pte 2959 * 2960 * This is a helper to ease setting up page-remapped first percpu 2961 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2962 * 2963 * This is the basic allocator. Static percpu area is allocated 2964 * page-by-page into vmalloc area. 2965 * 2966 * RETURNS: 2967 * 0 on success, -errno on failure. 2968 */ 2969 int __init pcpu_page_first_chunk(size_t reserved_size, 2970 pcpu_fc_alloc_fn_t alloc_fn, 2971 pcpu_fc_free_fn_t free_fn, 2972 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2973 { 2974 static struct vm_struct vm; 2975 struct pcpu_alloc_info *ai; 2976 char psize_str[16]; 2977 int unit_pages; 2978 size_t pages_size; 2979 struct page **pages; 2980 int unit, i, j, rc = 0; 2981 int upa; 2982 int nr_g0_units; 2983 2984 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2985 2986 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2987 if (IS_ERR(ai)) 2988 return PTR_ERR(ai); 2989 BUG_ON(ai->nr_groups != 1); 2990 upa = ai->alloc_size/ai->unit_size; 2991 nr_g0_units = roundup(num_possible_cpus(), upa); 2992 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2993 pcpu_free_alloc_info(ai); 2994 return -EINVAL; 2995 } 2996 2997 unit_pages = ai->unit_size >> PAGE_SHIFT; 2998 2999 /* unaligned allocations can't be freed, round up to page size */ 3000 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 3001 sizeof(pages[0])); 3002 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 3003 if (!pages) 3004 panic("%s: Failed to allocate %zu bytes\n", __func__, 3005 pages_size); 3006 3007 /* allocate pages */ 3008 j = 0; 3009 for (unit = 0; unit < num_possible_cpus(); unit++) { 3010 unsigned int cpu = ai->groups[0].cpu_map[unit]; 3011 for (i = 0; i < unit_pages; i++) { 3012 void *ptr; 3013 3014 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 3015 if (!ptr) { 3016 pr_warn("failed to allocate %s page for cpu%u\n", 3017 psize_str, cpu); 3018 goto enomem; 3019 } 3020 /* kmemleak tracks the percpu allocations separately */ 3021 kmemleak_free(ptr); 3022 pages[j++] = virt_to_page(ptr); 3023 } 3024 } 3025 3026 /* allocate vm area, map the pages and copy static data */ 3027 vm.flags = VM_ALLOC; 3028 vm.size = num_possible_cpus() * ai->unit_size; 3029 vm_area_register_early(&vm, PAGE_SIZE); 3030 3031 for (unit = 0; unit < num_possible_cpus(); unit++) { 3032 unsigned long unit_addr = 3033 (unsigned long)vm.addr + unit * ai->unit_size; 3034 3035 for (i = 0; i < unit_pages; i++) 3036 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 3037 3038 /* pte already populated, the following shouldn't fail */ 3039 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 3040 unit_pages); 3041 if (rc < 0) 3042 panic("failed to map percpu area, err=%d\n", rc); 3043 3044 /* 3045 * FIXME: Archs with virtual cache should flush local 3046 * cache for the linear mapping here - something 3047 * equivalent to flush_cache_vmap() on the local cpu. 3048 * flush_cache_vmap() can't be used as most supporting 3049 * data structures are not set up yet. 3050 */ 3051 3052 /* copy static data */ 3053 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 3054 } 3055 3056 /* we're ready, commit */ 3057 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 3058 unit_pages, psize_str, ai->static_size, 3059 ai->reserved_size, ai->dyn_size); 3060 3061 pcpu_setup_first_chunk(ai, vm.addr); 3062 goto out_free_ar; 3063 3064 enomem: 3065 while (--j >= 0) 3066 free_fn(page_address(pages[j]), PAGE_SIZE); 3067 rc = -ENOMEM; 3068 out_free_ar: 3069 memblock_free_early(__pa(pages), pages_size); 3070 pcpu_free_alloc_info(ai); 3071 return rc; 3072 } 3073 #endif /* BUILD_PAGE_FIRST_CHUNK */ 3074 3075 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 3076 /* 3077 * Generic SMP percpu area setup. 3078 * 3079 * The embedding helper is used because its behavior closely resembles 3080 * the original non-dynamic generic percpu area setup. This is 3081 * important because many archs have addressing restrictions and might 3082 * fail if the percpu area is located far away from the previous 3083 * location. As an added bonus, in non-NUMA cases, embedding is 3084 * generally a good idea TLB-wise because percpu area can piggy back 3085 * on the physical linear memory mapping which uses large page 3086 * mappings on applicable archs. 3087 */ 3088 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 3089 EXPORT_SYMBOL(__per_cpu_offset); 3090 3091 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 3092 size_t align) 3093 { 3094 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 3095 } 3096 3097 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 3098 { 3099 memblock_free_early(__pa(ptr), size); 3100 } 3101 3102 void __init setup_per_cpu_areas(void) 3103 { 3104 unsigned long delta; 3105 unsigned int cpu; 3106 int rc; 3107 3108 /* 3109 * Always reserve area for module percpu variables. That's 3110 * what the legacy allocator did. 3111 */ 3112 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 3113 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 3114 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 3115 if (rc < 0) 3116 panic("Failed to initialize percpu areas."); 3117 3118 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 3119 for_each_possible_cpu(cpu) 3120 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 3121 } 3122 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 3123 3124 #else /* CONFIG_SMP */ 3125 3126 /* 3127 * UP percpu area setup. 3128 * 3129 * UP always uses km-based percpu allocator with identity mapping. 3130 * Static percpu variables are indistinguishable from the usual static 3131 * variables and don't require any special preparation. 3132 */ 3133 void __init setup_per_cpu_areas(void) 3134 { 3135 const size_t unit_size = 3136 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 3137 PERCPU_DYNAMIC_RESERVE)); 3138 struct pcpu_alloc_info *ai; 3139 void *fc; 3140 3141 ai = pcpu_alloc_alloc_info(1, 1); 3142 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 3143 if (!ai || !fc) 3144 panic("Failed to allocate memory for percpu areas."); 3145 /* kmemleak tracks the percpu allocations separately */ 3146 kmemleak_free(fc); 3147 3148 ai->dyn_size = unit_size; 3149 ai->unit_size = unit_size; 3150 ai->atom_size = unit_size; 3151 ai->alloc_size = unit_size; 3152 ai->groups[0].nr_units = 1; 3153 ai->groups[0].cpu_map[0] = 0; 3154 3155 pcpu_setup_first_chunk(ai, fc); 3156 pcpu_free_alloc_info(ai); 3157 } 3158 3159 #endif /* CONFIG_SMP */ 3160 3161 /* 3162 * pcpu_nr_pages - calculate total number of populated backing pages 3163 * 3164 * This reflects the number of pages populated to back chunks. Metadata is 3165 * excluded in the number exposed in meminfo as the number of backing pages 3166 * scales with the number of cpus and can quickly outweigh the memory used for 3167 * metadata. It also keeps this calculation nice and simple. 3168 * 3169 * RETURNS: 3170 * Total number of populated backing pages in use by the allocator. 3171 */ 3172 unsigned long pcpu_nr_pages(void) 3173 { 3174 return pcpu_nr_populated * pcpu_nr_units; 3175 } 3176 3177 /* 3178 * Percpu allocator is initialized early during boot when neither slab or 3179 * workqueue is available. Plug async management until everything is up 3180 * and running. 3181 */ 3182 static int __init percpu_enable_async(void) 3183 { 3184 pcpu_async_enabled = true; 3185 return 0; 3186 } 3187 subsys_initcall(percpu_enable_async); 3188