xref: /openbmc/linux/mm/percpu.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * Copyright (C) 2017		Facebook Inc.
8  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
9  *
10  * This file is released under the GPLv2 license.
11  *
12  * The percpu allocator handles both static and dynamic areas.  Percpu
13  * areas are allocated in chunks which are divided into units.  There is
14  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
15  * based on NUMA properties of the machine.
16  *
17  *  c0                           c1                         c2
18  *  -------------------          -------------------        ------------
19  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
20  *  -------------------  ......  -------------------  ....  ------------
21  *
22  * Allocation is done by offsets into a unit's address space.  Ie., an
23  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
25  * and even sparse.  Access is handled by configuring percpu base
26  * registers according to the cpu to unit mappings and offsetting the
27  * base address using pcpu_unit_size.
28  *
29  * There is special consideration for the first chunk which must handle
30  * the static percpu variables in the kernel image as allocation services
31  * are not online yet.  In short, the first chunk is structured like so:
32  *
33  *                  <Static | [Reserved] | Dynamic>
34  *
35  * The static data is copied from the original section managed by the
36  * linker.  The reserved section, if non-zero, primarily manages static
37  * percpu variables from kernel modules.  Finally, the dynamic section
38  * takes care of normal allocations.
39  *
40  * The allocator organizes chunks into lists according to free size and
41  * tries to allocate from the fullest chunk first.  Each chunk is managed
42  * by a bitmap with metadata blocks.  The allocation map is updated on
43  * every allocation and free to reflect the current state while the boundary
44  * map is only updated on allocation.  Each metadata block contains
45  * information to help mitigate the need to iterate over large portions
46  * of the bitmap.  The reverse mapping from page to chunk is stored in
47  * the page's index.  Lastly, units are lazily backed and grow in unison.
48  *
49  * There is a unique conversion that goes on here between bytes and bits.
50  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
51  * tracks the number of pages it is responsible for in nr_pages.  Helper
52  * functions are used to convert from between the bytes, bits, and blocks.
53  * All hints are managed in bits unless explicitly stated.
54  *
55  * To use this allocator, arch code should do the following:
56  *
57  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58  *   regular address to percpu pointer and back if they need to be
59  *   different from the default
60  *
61  * - use pcpu_setup_first_chunk() during percpu area initialization to
62  *   setup the first chunk containing the kernel static percpu area
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84 
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92 
93 #include "percpu-internal.h"
94 
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT		5
97 
98 #define PCPU_EMPTY_POP_PAGES_LOW	2
99 #define PCPU_EMPTY_POP_PAGES_HIGH	4
100 
101 #ifdef CONFIG_SMP
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr)					\
105 	(void __percpu *)((unsigned long)(addr) -			\
106 			  (unsigned long)pcpu_base_addr	+		\
107 			  (unsigned long)__per_cpu_start)
108 #endif
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr)						\
111 	(void __force *)((unsigned long)(ptr) +				\
112 			 (unsigned long)pcpu_base_addr -		\
113 			 (unsigned long)__per_cpu_start)
114 #endif
115 #else	/* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
119 #endif	/* CONFIG_SMP */
120 
121 static int pcpu_unit_pages __ro_after_init;
122 static int pcpu_unit_size __ro_after_init;
123 static int pcpu_nr_units __ro_after_init;
124 static int pcpu_atom_size __ro_after_init;
125 int pcpu_nr_slots __ro_after_init;
126 static size_t pcpu_chunk_struct_size __ro_after_init;
127 
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131 
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135 
136 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
138 
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init;
141 static const unsigned long *pcpu_group_offsets __ro_after_init;
142 static const size_t *pcpu_group_sizes __ro_after_init;
143 
144 /*
145  * The first chunk which always exists.  Note that unlike other
146  * chunks, this one can be allocated and mapped in several different
147  * ways and thus often doesn't live in the vmalloc area.
148  */
149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150 
151 /*
152  * Optional reserved chunk.  This chunk reserves part of the first
153  * chunk and serves it for reserved allocations.  When the reserved
154  * region doesn't exist, the following variable is NULL.
155  */
156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157 
158 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
160 
161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162 
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks);
165 
166 /*
167  * The number of empty populated pages, protected by pcpu_lock.  The
168  * reserved chunk doesn't contribute to the count.
169  */
170 int pcpu_nr_empty_pop_pages;
171 
172 /*
173  * The number of populated pages in use by the allocator, protected by
174  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
175  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
176  * and increments/decrements this count by 1).
177  */
178 static unsigned long pcpu_nr_populated;
179 
180 /*
181  * Balance work is used to populate or destroy chunks asynchronously.  We
182  * try to keep the number of populated free pages between
183  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
184  * empty chunk.
185  */
186 static void pcpu_balance_workfn(struct work_struct *work);
187 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
188 static bool pcpu_async_enabled __read_mostly;
189 static bool pcpu_atomic_alloc_failed;
190 
191 static void pcpu_schedule_balance_work(void)
192 {
193 	if (pcpu_async_enabled)
194 		schedule_work(&pcpu_balance_work);
195 }
196 
197 /**
198  * pcpu_addr_in_chunk - check if the address is served from this chunk
199  * @chunk: chunk of interest
200  * @addr: percpu address
201  *
202  * RETURNS:
203  * True if the address is served from this chunk.
204  */
205 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
206 {
207 	void *start_addr, *end_addr;
208 
209 	if (!chunk)
210 		return false;
211 
212 	start_addr = chunk->base_addr + chunk->start_offset;
213 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
214 		   chunk->end_offset;
215 
216 	return addr >= start_addr && addr < end_addr;
217 }
218 
219 static int __pcpu_size_to_slot(int size)
220 {
221 	int highbit = fls(size);	/* size is in bytes */
222 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
223 }
224 
225 static int pcpu_size_to_slot(int size)
226 {
227 	if (size == pcpu_unit_size)
228 		return pcpu_nr_slots - 1;
229 	return __pcpu_size_to_slot(size);
230 }
231 
232 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
233 {
234 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
235 		return 0;
236 
237 	return pcpu_size_to_slot(chunk->free_bytes);
238 }
239 
240 /* set the pointer to a chunk in a page struct */
241 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
242 {
243 	page->index = (unsigned long)pcpu;
244 }
245 
246 /* obtain pointer to a chunk from a page struct */
247 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
248 {
249 	return (struct pcpu_chunk *)page->index;
250 }
251 
252 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
253 {
254 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
255 }
256 
257 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
258 {
259 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
260 }
261 
262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
263 				     unsigned int cpu, int page_idx)
264 {
265 	return (unsigned long)chunk->base_addr +
266 	       pcpu_unit_page_offset(cpu, page_idx);
267 }
268 
269 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
270 {
271 	*rs = find_next_zero_bit(bitmap, end, *rs);
272 	*re = find_next_bit(bitmap, end, *rs + 1);
273 }
274 
275 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
276 {
277 	*rs = find_next_bit(bitmap, end, *rs);
278 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
279 }
280 
281 /*
282  * Bitmap region iterators.  Iterates over the bitmap between
283  * [@start, @end) in @chunk.  @rs and @re should be integer variables
284  * and will be set to start and end index of the current free region.
285  */
286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
287 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
288 	     (rs) < (re);						     \
289 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
290 
291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
292 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
293 	     (rs) < (re);						     \
294 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
295 
296 /*
297  * The following are helper functions to help access bitmaps and convert
298  * between bitmap offsets to address offsets.
299  */
300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
301 {
302 	return chunk->alloc_map +
303 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
304 }
305 
306 static unsigned long pcpu_off_to_block_index(int off)
307 {
308 	return off / PCPU_BITMAP_BLOCK_BITS;
309 }
310 
311 static unsigned long pcpu_off_to_block_off(int off)
312 {
313 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
314 }
315 
316 static unsigned long pcpu_block_off_to_off(int index, int off)
317 {
318 	return index * PCPU_BITMAP_BLOCK_BITS + off;
319 }
320 
321 /**
322  * pcpu_next_md_free_region - finds the next hint free area
323  * @chunk: chunk of interest
324  * @bit_off: chunk offset
325  * @bits: size of free area
326  *
327  * Helper function for pcpu_for_each_md_free_region.  It checks
328  * block->contig_hint and performs aggregation across blocks to find the
329  * next hint.  It modifies bit_off and bits in-place to be consumed in the
330  * loop.
331  */
332 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
333 				     int *bits)
334 {
335 	int i = pcpu_off_to_block_index(*bit_off);
336 	int block_off = pcpu_off_to_block_off(*bit_off);
337 	struct pcpu_block_md *block;
338 
339 	*bits = 0;
340 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
341 	     block++, i++) {
342 		/* handles contig area across blocks */
343 		if (*bits) {
344 			*bits += block->left_free;
345 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
346 				continue;
347 			return;
348 		}
349 
350 		/*
351 		 * This checks three things.  First is there a contig_hint to
352 		 * check.  Second, have we checked this hint before by
353 		 * comparing the block_off.  Third, is this the same as the
354 		 * right contig hint.  In the last case, it spills over into
355 		 * the next block and should be handled by the contig area
356 		 * across blocks code.
357 		 */
358 		*bits = block->contig_hint;
359 		if (*bits && block->contig_hint_start >= block_off &&
360 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
361 			*bit_off = pcpu_block_off_to_off(i,
362 					block->contig_hint_start);
363 			return;
364 		}
365 		/* reset to satisfy the second predicate above */
366 		block_off = 0;
367 
368 		*bits = block->right_free;
369 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
370 	}
371 }
372 
373 /**
374  * pcpu_next_fit_region - finds fit areas for a given allocation request
375  * @chunk: chunk of interest
376  * @alloc_bits: size of allocation
377  * @align: alignment of area (max PAGE_SIZE)
378  * @bit_off: chunk offset
379  * @bits: size of free area
380  *
381  * Finds the next free region that is viable for use with a given size and
382  * alignment.  This only returns if there is a valid area to be used for this
383  * allocation.  block->first_free is returned if the allocation request fits
384  * within the block to see if the request can be fulfilled prior to the contig
385  * hint.
386  */
387 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
388 				 int align, int *bit_off, int *bits)
389 {
390 	int i = pcpu_off_to_block_index(*bit_off);
391 	int block_off = pcpu_off_to_block_off(*bit_off);
392 	struct pcpu_block_md *block;
393 
394 	*bits = 0;
395 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
396 	     block++, i++) {
397 		/* handles contig area across blocks */
398 		if (*bits) {
399 			*bits += block->left_free;
400 			if (*bits >= alloc_bits)
401 				return;
402 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
403 				continue;
404 		}
405 
406 		/* check block->contig_hint */
407 		*bits = ALIGN(block->contig_hint_start, align) -
408 			block->contig_hint_start;
409 		/*
410 		 * This uses the block offset to determine if this has been
411 		 * checked in the prior iteration.
412 		 */
413 		if (block->contig_hint &&
414 		    block->contig_hint_start >= block_off &&
415 		    block->contig_hint >= *bits + alloc_bits) {
416 			*bits += alloc_bits + block->contig_hint_start -
417 				 block->first_free;
418 			*bit_off = pcpu_block_off_to_off(i, block->first_free);
419 			return;
420 		}
421 		/* reset to satisfy the second predicate above */
422 		block_off = 0;
423 
424 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
425 				 align);
426 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
427 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
428 		if (*bits >= alloc_bits)
429 			return;
430 	}
431 
432 	/* no valid offsets were found - fail condition */
433 	*bit_off = pcpu_chunk_map_bits(chunk);
434 }
435 
436 /*
437  * Metadata free area iterators.  These perform aggregation of free areas
438  * based on the metadata blocks and return the offset @bit_off and size in
439  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
440  * a fit is found for the allocation request.
441  */
442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
443 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
444 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
445 	     (bit_off) += (bits) + 1,					\
446 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
447 
448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
449 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
450 				  &(bits));				      \
451 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
452 	     (bit_off) += (bits),					      \
453 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
454 				  &(bits)))
455 
456 /**
457  * pcpu_mem_zalloc - allocate memory
458  * @size: bytes to allocate
459  * @gfp: allocation flags
460  *
461  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
462  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
463  * This is to facilitate passing through whitelisted flags.  The
464  * returned memory is always zeroed.
465  *
466  * RETURNS:
467  * Pointer to the allocated area on success, NULL on failure.
468  */
469 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
470 {
471 	if (WARN_ON_ONCE(!slab_is_available()))
472 		return NULL;
473 
474 	if (size <= PAGE_SIZE)
475 		return kzalloc(size, gfp);
476 	else
477 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
478 }
479 
480 /**
481  * pcpu_mem_free - free memory
482  * @ptr: memory to free
483  *
484  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
485  */
486 static void pcpu_mem_free(void *ptr)
487 {
488 	kvfree(ptr);
489 }
490 
491 /**
492  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
493  * @chunk: chunk of interest
494  * @oslot: the previous slot it was on
495  *
496  * This function is called after an allocation or free changed @chunk.
497  * New slot according to the changed state is determined and @chunk is
498  * moved to the slot.  Note that the reserved chunk is never put on
499  * chunk slots.
500  *
501  * CONTEXT:
502  * pcpu_lock.
503  */
504 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
505 {
506 	int nslot = pcpu_chunk_slot(chunk);
507 
508 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
509 		if (oslot < nslot)
510 			list_move(&chunk->list, &pcpu_slot[nslot]);
511 		else
512 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
513 	}
514 }
515 
516 /**
517  * pcpu_cnt_pop_pages- counts populated backing pages in range
518  * @chunk: chunk of interest
519  * @bit_off: start offset
520  * @bits: size of area to check
521  *
522  * Calculates the number of populated pages in the region
523  * [page_start, page_end).  This keeps track of how many empty populated
524  * pages are available and decide if async work should be scheduled.
525  *
526  * RETURNS:
527  * The nr of populated pages.
528  */
529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
530 				     int bits)
531 {
532 	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
533 	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
534 
535 	if (page_start >= page_end)
536 		return 0;
537 
538 	/*
539 	 * bitmap_weight counts the number of bits set in a bitmap up to
540 	 * the specified number of bits.  This is counting the populated
541 	 * pages up to page_end and then subtracting the populated pages
542 	 * up to page_start to count the populated pages in
543 	 * [page_start, page_end).
544 	 */
545 	return bitmap_weight(chunk->populated, page_end) -
546 	       bitmap_weight(chunk->populated, page_start);
547 }
548 
549 /**
550  * pcpu_chunk_update - updates the chunk metadata given a free area
551  * @chunk: chunk of interest
552  * @bit_off: chunk offset
553  * @bits: size of free area
554  *
555  * This updates the chunk's contig hint and starting offset given a free area.
556  * Choose the best starting offset if the contig hint is equal.
557  */
558 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
559 {
560 	if (bits > chunk->contig_bits) {
561 		chunk->contig_bits_start = bit_off;
562 		chunk->contig_bits = bits;
563 	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
564 		   (!bit_off ||
565 		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
566 		/* use the start with the best alignment */
567 		chunk->contig_bits_start = bit_off;
568 	}
569 }
570 
571 /**
572  * pcpu_chunk_refresh_hint - updates metadata about a chunk
573  * @chunk: chunk of interest
574  *
575  * Iterates over the metadata blocks to find the largest contig area.
576  * It also counts the populated pages and uses the delta to update the
577  * global count.
578  *
579  * Updates:
580  *      chunk->contig_bits
581  *      chunk->contig_bits_start
582  *      nr_empty_pop_pages (chunk and global)
583  */
584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
585 {
586 	int bit_off, bits, nr_empty_pop_pages;
587 
588 	/* clear metadata */
589 	chunk->contig_bits = 0;
590 
591 	bit_off = chunk->first_bit;
592 	bits = nr_empty_pop_pages = 0;
593 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
594 		pcpu_chunk_update(chunk, bit_off, bits);
595 
596 		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
597 	}
598 
599 	/*
600 	 * Keep track of nr_empty_pop_pages.
601 	 *
602 	 * The chunk maintains the previous number of free pages it held,
603 	 * so the delta is used to update the global counter.  The reserved
604 	 * chunk is not part of the free page count as they are populated
605 	 * at init and are special to serving reserved allocations.
606 	 */
607 	if (chunk != pcpu_reserved_chunk)
608 		pcpu_nr_empty_pop_pages +=
609 			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
610 
611 	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
612 }
613 
614 /**
615  * pcpu_block_update - updates a block given a free area
616  * @block: block of interest
617  * @start: start offset in block
618  * @end: end offset in block
619  *
620  * Updates a block given a known free area.  The region [start, end) is
621  * expected to be the entirety of the free area within a block.  Chooses
622  * the best starting offset if the contig hints are equal.
623  */
624 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
625 {
626 	int contig = end - start;
627 
628 	block->first_free = min(block->first_free, start);
629 	if (start == 0)
630 		block->left_free = contig;
631 
632 	if (end == PCPU_BITMAP_BLOCK_BITS)
633 		block->right_free = contig;
634 
635 	if (contig > block->contig_hint) {
636 		block->contig_hint_start = start;
637 		block->contig_hint = contig;
638 	} else if (block->contig_hint_start && contig == block->contig_hint &&
639 		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
640 		/* use the start with the best alignment */
641 		block->contig_hint_start = start;
642 	}
643 }
644 
645 /**
646  * pcpu_block_refresh_hint
647  * @chunk: chunk of interest
648  * @index: index of the metadata block
649  *
650  * Scans over the block beginning at first_free and updates the block
651  * metadata accordingly.
652  */
653 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
654 {
655 	struct pcpu_block_md *block = chunk->md_blocks + index;
656 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
657 	int rs, re;	/* region start, region end */
658 
659 	/* clear hints */
660 	block->contig_hint = 0;
661 	block->left_free = block->right_free = 0;
662 
663 	/* iterate over free areas and update the contig hints */
664 	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
665 				   PCPU_BITMAP_BLOCK_BITS) {
666 		pcpu_block_update(block, rs, re);
667 	}
668 }
669 
670 /**
671  * pcpu_block_update_hint_alloc - update hint on allocation path
672  * @chunk: chunk of interest
673  * @bit_off: chunk offset
674  * @bits: size of request
675  *
676  * Updates metadata for the allocation path.  The metadata only has to be
677  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
678  * scans are required if the block's contig hint is broken.
679  */
680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
681 					 int bits)
682 {
683 	struct pcpu_block_md *s_block, *e_block, *block;
684 	int s_index, e_index;	/* block indexes of the freed allocation */
685 	int s_off, e_off;	/* block offsets of the freed allocation */
686 
687 	/*
688 	 * Calculate per block offsets.
689 	 * The calculation uses an inclusive range, but the resulting offsets
690 	 * are [start, end).  e_index always points to the last block in the
691 	 * range.
692 	 */
693 	s_index = pcpu_off_to_block_index(bit_off);
694 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
695 	s_off = pcpu_off_to_block_off(bit_off);
696 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
697 
698 	s_block = chunk->md_blocks + s_index;
699 	e_block = chunk->md_blocks + e_index;
700 
701 	/*
702 	 * Update s_block.
703 	 * block->first_free must be updated if the allocation takes its place.
704 	 * If the allocation breaks the contig_hint, a scan is required to
705 	 * restore this hint.
706 	 */
707 	if (s_off == s_block->first_free)
708 		s_block->first_free = find_next_zero_bit(
709 					pcpu_index_alloc_map(chunk, s_index),
710 					PCPU_BITMAP_BLOCK_BITS,
711 					s_off + bits);
712 
713 	if (s_off >= s_block->contig_hint_start &&
714 	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
715 		/* block contig hint is broken - scan to fix it */
716 		pcpu_block_refresh_hint(chunk, s_index);
717 	} else {
718 		/* update left and right contig manually */
719 		s_block->left_free = min(s_block->left_free, s_off);
720 		if (s_index == e_index)
721 			s_block->right_free = min_t(int, s_block->right_free,
722 					PCPU_BITMAP_BLOCK_BITS - e_off);
723 		else
724 			s_block->right_free = 0;
725 	}
726 
727 	/*
728 	 * Update e_block.
729 	 */
730 	if (s_index != e_index) {
731 		/*
732 		 * When the allocation is across blocks, the end is along
733 		 * the left part of the e_block.
734 		 */
735 		e_block->first_free = find_next_zero_bit(
736 				pcpu_index_alloc_map(chunk, e_index),
737 				PCPU_BITMAP_BLOCK_BITS, e_off);
738 
739 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
740 			/* reset the block */
741 			e_block++;
742 		} else {
743 			if (e_off > e_block->contig_hint_start) {
744 				/* contig hint is broken - scan to fix it */
745 				pcpu_block_refresh_hint(chunk, e_index);
746 			} else {
747 				e_block->left_free = 0;
748 				e_block->right_free =
749 					min_t(int, e_block->right_free,
750 					      PCPU_BITMAP_BLOCK_BITS - e_off);
751 			}
752 		}
753 
754 		/* update in-between md_blocks */
755 		for (block = s_block + 1; block < e_block; block++) {
756 			block->contig_hint = 0;
757 			block->left_free = 0;
758 			block->right_free = 0;
759 		}
760 	}
761 
762 	/*
763 	 * The only time a full chunk scan is required is if the chunk
764 	 * contig hint is broken.  Otherwise, it means a smaller space
765 	 * was used and therefore the chunk contig hint is still correct.
766 	 */
767 	if (bit_off >= chunk->contig_bits_start  &&
768 	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
769 		pcpu_chunk_refresh_hint(chunk);
770 }
771 
772 /**
773  * pcpu_block_update_hint_free - updates the block hints on the free path
774  * @chunk: chunk of interest
775  * @bit_off: chunk offset
776  * @bits: size of request
777  *
778  * Updates metadata for the allocation path.  This avoids a blind block
779  * refresh by making use of the block contig hints.  If this fails, it scans
780  * forward and backward to determine the extent of the free area.  This is
781  * capped at the boundary of blocks.
782  *
783  * A chunk update is triggered if a page becomes free, a block becomes free,
784  * or the free spans across blocks.  This tradeoff is to minimize iterating
785  * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
786  * may be off by up to a page, but it will never be more than the available
787  * space.  If the contig hint is contained in one block, it will be accurate.
788  */
789 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
790 					int bits)
791 {
792 	struct pcpu_block_md *s_block, *e_block, *block;
793 	int s_index, e_index;	/* block indexes of the freed allocation */
794 	int s_off, e_off;	/* block offsets of the freed allocation */
795 	int start, end;		/* start and end of the whole free area */
796 
797 	/*
798 	 * Calculate per block offsets.
799 	 * The calculation uses an inclusive range, but the resulting offsets
800 	 * are [start, end).  e_index always points to the last block in the
801 	 * range.
802 	 */
803 	s_index = pcpu_off_to_block_index(bit_off);
804 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
805 	s_off = pcpu_off_to_block_off(bit_off);
806 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
807 
808 	s_block = chunk->md_blocks + s_index;
809 	e_block = chunk->md_blocks + e_index;
810 
811 	/*
812 	 * Check if the freed area aligns with the block->contig_hint.
813 	 * If it does, then the scan to find the beginning/end of the
814 	 * larger free area can be avoided.
815 	 *
816 	 * start and end refer to beginning and end of the free area
817 	 * within each their respective blocks.  This is not necessarily
818 	 * the entire free area as it may span blocks past the beginning
819 	 * or end of the block.
820 	 */
821 	start = s_off;
822 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
823 		start = s_block->contig_hint_start;
824 	} else {
825 		/*
826 		 * Scan backwards to find the extent of the free area.
827 		 * find_last_bit returns the starting bit, so if the start bit
828 		 * is returned, that means there was no last bit and the
829 		 * remainder of the chunk is free.
830 		 */
831 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
832 					  start);
833 		start = (start == l_bit) ? 0 : l_bit + 1;
834 	}
835 
836 	end = e_off;
837 	if (e_off == e_block->contig_hint_start)
838 		end = e_block->contig_hint_start + e_block->contig_hint;
839 	else
840 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
841 				    PCPU_BITMAP_BLOCK_BITS, end);
842 
843 	/* update s_block */
844 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
845 	pcpu_block_update(s_block, start, e_off);
846 
847 	/* freeing in the same block */
848 	if (s_index != e_index) {
849 		/* update e_block */
850 		pcpu_block_update(e_block, 0, end);
851 
852 		/* reset md_blocks in the middle */
853 		for (block = s_block + 1; block < e_block; block++) {
854 			block->first_free = 0;
855 			block->contig_hint_start = 0;
856 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
857 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
858 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
859 		}
860 	}
861 
862 	/*
863 	 * Refresh chunk metadata when the free makes a page free, a block
864 	 * free, or spans across blocks.  The contig hint may be off by up to
865 	 * a page, but if the hint is contained in a block, it will be accurate
866 	 * with the else condition below.
867 	 */
868 	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
869 	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
870 	    s_index != e_index)
871 		pcpu_chunk_refresh_hint(chunk);
872 	else
873 		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
874 				  s_block->contig_hint);
875 }
876 
877 /**
878  * pcpu_is_populated - determines if the region is populated
879  * @chunk: chunk of interest
880  * @bit_off: chunk offset
881  * @bits: size of area
882  * @next_off: return value for the next offset to start searching
883  *
884  * For atomic allocations, check if the backing pages are populated.
885  *
886  * RETURNS:
887  * Bool if the backing pages are populated.
888  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
889  */
890 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
891 			      int *next_off)
892 {
893 	int page_start, page_end, rs, re;
894 
895 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
896 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
897 
898 	rs = page_start;
899 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
900 	if (rs >= page_end)
901 		return true;
902 
903 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
904 	return false;
905 }
906 
907 /**
908  * pcpu_find_block_fit - finds the block index to start searching
909  * @chunk: chunk of interest
910  * @alloc_bits: size of request in allocation units
911  * @align: alignment of area (max PAGE_SIZE bytes)
912  * @pop_only: use populated regions only
913  *
914  * Given a chunk and an allocation spec, find the offset to begin searching
915  * for a free region.  This iterates over the bitmap metadata blocks to
916  * find an offset that will be guaranteed to fit the requirements.  It is
917  * not quite first fit as if the allocation does not fit in the contig hint
918  * of a block or chunk, it is skipped.  This errs on the side of caution
919  * to prevent excess iteration.  Poor alignment can cause the allocator to
920  * skip over blocks and chunks that have valid free areas.
921  *
922  * RETURNS:
923  * The offset in the bitmap to begin searching.
924  * -1 if no offset is found.
925  */
926 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
927 			       size_t align, bool pop_only)
928 {
929 	int bit_off, bits, next_off;
930 
931 	/*
932 	 * Check to see if the allocation can fit in the chunk's contig hint.
933 	 * This is an optimization to prevent scanning by assuming if it
934 	 * cannot fit in the global hint, there is memory pressure and creating
935 	 * a new chunk would happen soon.
936 	 */
937 	bit_off = ALIGN(chunk->contig_bits_start, align) -
938 		  chunk->contig_bits_start;
939 	if (bit_off + alloc_bits > chunk->contig_bits)
940 		return -1;
941 
942 	bit_off = chunk->first_bit;
943 	bits = 0;
944 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
945 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
946 						   &next_off))
947 			break;
948 
949 		bit_off = next_off;
950 		bits = 0;
951 	}
952 
953 	if (bit_off == pcpu_chunk_map_bits(chunk))
954 		return -1;
955 
956 	return bit_off;
957 }
958 
959 /**
960  * pcpu_alloc_area - allocates an area from a pcpu_chunk
961  * @chunk: chunk of interest
962  * @alloc_bits: size of request in allocation units
963  * @align: alignment of area (max PAGE_SIZE)
964  * @start: bit_off to start searching
965  *
966  * This function takes in a @start offset to begin searching to fit an
967  * allocation of @alloc_bits with alignment @align.  It needs to scan
968  * the allocation map because if it fits within the block's contig hint,
969  * @start will be block->first_free. This is an attempt to fill the
970  * allocation prior to breaking the contig hint.  The allocation and
971  * boundary maps are updated accordingly if it confirms a valid
972  * free area.
973  *
974  * RETURNS:
975  * Allocated addr offset in @chunk on success.
976  * -1 if no matching area is found.
977  */
978 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
979 			   size_t align, int start)
980 {
981 	size_t align_mask = (align) ? (align - 1) : 0;
982 	int bit_off, end, oslot;
983 
984 	lockdep_assert_held(&pcpu_lock);
985 
986 	oslot = pcpu_chunk_slot(chunk);
987 
988 	/*
989 	 * Search to find a fit.
990 	 */
991 	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
992 	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
993 					     alloc_bits, align_mask);
994 	if (bit_off >= end)
995 		return -1;
996 
997 	/* update alloc map */
998 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
999 
1000 	/* update boundary map */
1001 	set_bit(bit_off, chunk->bound_map);
1002 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1003 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1004 
1005 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1006 
1007 	/* update first free bit */
1008 	if (bit_off == chunk->first_bit)
1009 		chunk->first_bit = find_next_zero_bit(
1010 					chunk->alloc_map,
1011 					pcpu_chunk_map_bits(chunk),
1012 					bit_off + alloc_bits);
1013 
1014 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1015 
1016 	pcpu_chunk_relocate(chunk, oslot);
1017 
1018 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1019 }
1020 
1021 /**
1022  * pcpu_free_area - frees the corresponding offset
1023  * @chunk: chunk of interest
1024  * @off: addr offset into chunk
1025  *
1026  * This function determines the size of an allocation to free using
1027  * the boundary bitmap and clears the allocation map.
1028  */
1029 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1030 {
1031 	int bit_off, bits, end, oslot;
1032 
1033 	lockdep_assert_held(&pcpu_lock);
1034 	pcpu_stats_area_dealloc(chunk);
1035 
1036 	oslot = pcpu_chunk_slot(chunk);
1037 
1038 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1039 
1040 	/* find end index */
1041 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1042 			    bit_off + 1);
1043 	bits = end - bit_off;
1044 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1045 
1046 	/* update metadata */
1047 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1048 
1049 	/* update first free bit */
1050 	chunk->first_bit = min(chunk->first_bit, bit_off);
1051 
1052 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1053 
1054 	pcpu_chunk_relocate(chunk, oslot);
1055 }
1056 
1057 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1058 {
1059 	struct pcpu_block_md *md_block;
1060 
1061 	for (md_block = chunk->md_blocks;
1062 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1063 	     md_block++) {
1064 		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1065 		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1066 		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1067 	}
1068 }
1069 
1070 /**
1071  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1072  * @tmp_addr: the start of the region served
1073  * @map_size: size of the region served
1074  *
1075  * This is responsible for creating the chunks that serve the first chunk.  The
1076  * base_addr is page aligned down of @tmp_addr while the region end is page
1077  * aligned up.  Offsets are kept track of to determine the region served. All
1078  * this is done to appease the bitmap allocator in avoiding partial blocks.
1079  *
1080  * RETURNS:
1081  * Chunk serving the region at @tmp_addr of @map_size.
1082  */
1083 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1084 							 int map_size)
1085 {
1086 	struct pcpu_chunk *chunk;
1087 	unsigned long aligned_addr, lcm_align;
1088 	int start_offset, offset_bits, region_size, region_bits;
1089 
1090 	/* region calculations */
1091 	aligned_addr = tmp_addr & PAGE_MASK;
1092 
1093 	start_offset = tmp_addr - aligned_addr;
1094 
1095 	/*
1096 	 * Align the end of the region with the LCM of PAGE_SIZE and
1097 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1098 	 * the other.
1099 	 */
1100 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1101 	region_size = ALIGN(start_offset + map_size, lcm_align);
1102 
1103 	/* allocate chunk */
1104 	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1105 				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1106 				    0);
1107 
1108 	INIT_LIST_HEAD(&chunk->list);
1109 
1110 	chunk->base_addr = (void *)aligned_addr;
1111 	chunk->start_offset = start_offset;
1112 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1113 
1114 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1115 	region_bits = pcpu_chunk_map_bits(chunk);
1116 
1117 	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1118 					       sizeof(chunk->alloc_map[0]), 0);
1119 	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1120 					       sizeof(chunk->bound_map[0]), 0);
1121 	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1122 					       sizeof(chunk->md_blocks[0]), 0);
1123 	pcpu_init_md_blocks(chunk);
1124 
1125 	/* manage populated page bitmap */
1126 	chunk->immutable = true;
1127 	bitmap_fill(chunk->populated, chunk->nr_pages);
1128 	chunk->nr_populated = chunk->nr_pages;
1129 	chunk->nr_empty_pop_pages =
1130 		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1131 				   map_size / PCPU_MIN_ALLOC_SIZE);
1132 
1133 	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1134 	chunk->free_bytes = map_size;
1135 
1136 	if (chunk->start_offset) {
1137 		/* hide the beginning of the bitmap */
1138 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1139 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1140 		set_bit(0, chunk->bound_map);
1141 		set_bit(offset_bits, chunk->bound_map);
1142 
1143 		chunk->first_bit = offset_bits;
1144 
1145 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1146 	}
1147 
1148 	if (chunk->end_offset) {
1149 		/* hide the end of the bitmap */
1150 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1151 		bitmap_set(chunk->alloc_map,
1152 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1153 			   offset_bits);
1154 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1155 			chunk->bound_map);
1156 		set_bit(region_bits, chunk->bound_map);
1157 
1158 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1159 					     - offset_bits, offset_bits);
1160 	}
1161 
1162 	return chunk;
1163 }
1164 
1165 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1166 {
1167 	struct pcpu_chunk *chunk;
1168 	int region_bits;
1169 
1170 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1171 	if (!chunk)
1172 		return NULL;
1173 
1174 	INIT_LIST_HEAD(&chunk->list);
1175 	chunk->nr_pages = pcpu_unit_pages;
1176 	region_bits = pcpu_chunk_map_bits(chunk);
1177 
1178 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1179 					   sizeof(chunk->alloc_map[0]), gfp);
1180 	if (!chunk->alloc_map)
1181 		goto alloc_map_fail;
1182 
1183 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1184 					   sizeof(chunk->bound_map[0]), gfp);
1185 	if (!chunk->bound_map)
1186 		goto bound_map_fail;
1187 
1188 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1189 					   sizeof(chunk->md_blocks[0]), gfp);
1190 	if (!chunk->md_blocks)
1191 		goto md_blocks_fail;
1192 
1193 	pcpu_init_md_blocks(chunk);
1194 
1195 	/* init metadata */
1196 	chunk->contig_bits = region_bits;
1197 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1198 
1199 	return chunk;
1200 
1201 md_blocks_fail:
1202 	pcpu_mem_free(chunk->bound_map);
1203 bound_map_fail:
1204 	pcpu_mem_free(chunk->alloc_map);
1205 alloc_map_fail:
1206 	pcpu_mem_free(chunk);
1207 
1208 	return NULL;
1209 }
1210 
1211 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1212 {
1213 	if (!chunk)
1214 		return;
1215 	pcpu_mem_free(chunk->bound_map);
1216 	pcpu_mem_free(chunk->alloc_map);
1217 	pcpu_mem_free(chunk);
1218 }
1219 
1220 /**
1221  * pcpu_chunk_populated - post-population bookkeeping
1222  * @chunk: pcpu_chunk which got populated
1223  * @page_start: the start page
1224  * @page_end: the end page
1225  * @for_alloc: if this is to populate for allocation
1226  *
1227  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1228  * the bookkeeping information accordingly.  Must be called after each
1229  * successful population.
1230  *
1231  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1232  * is to serve an allocation in that area.
1233  */
1234 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1235 				 int page_end, bool for_alloc)
1236 {
1237 	int nr = page_end - page_start;
1238 
1239 	lockdep_assert_held(&pcpu_lock);
1240 
1241 	bitmap_set(chunk->populated, page_start, nr);
1242 	chunk->nr_populated += nr;
1243 	pcpu_nr_populated += nr;
1244 
1245 	if (!for_alloc) {
1246 		chunk->nr_empty_pop_pages += nr;
1247 		pcpu_nr_empty_pop_pages += nr;
1248 	}
1249 }
1250 
1251 /**
1252  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1253  * @chunk: pcpu_chunk which got depopulated
1254  * @page_start: the start page
1255  * @page_end: the end page
1256  *
1257  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1258  * Update the bookkeeping information accordingly.  Must be called after
1259  * each successful depopulation.
1260  */
1261 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1262 				   int page_start, int page_end)
1263 {
1264 	int nr = page_end - page_start;
1265 
1266 	lockdep_assert_held(&pcpu_lock);
1267 
1268 	bitmap_clear(chunk->populated, page_start, nr);
1269 	chunk->nr_populated -= nr;
1270 	chunk->nr_empty_pop_pages -= nr;
1271 	pcpu_nr_empty_pop_pages -= nr;
1272 	pcpu_nr_populated -= nr;
1273 }
1274 
1275 /*
1276  * Chunk management implementation.
1277  *
1278  * To allow different implementations, chunk alloc/free and
1279  * [de]population are implemented in a separate file which is pulled
1280  * into this file and compiled together.  The following functions
1281  * should be implemented.
1282  *
1283  * pcpu_populate_chunk		- populate the specified range of a chunk
1284  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1285  * pcpu_create_chunk		- create a new chunk
1286  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1287  * pcpu_addr_to_page		- translate address to physical address
1288  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1289  */
1290 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1291 			       int page_start, int page_end, gfp_t gfp);
1292 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1293 				  int page_start, int page_end);
1294 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1295 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1296 static struct page *pcpu_addr_to_page(void *addr);
1297 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1298 
1299 #ifdef CONFIG_NEED_PER_CPU_KM
1300 #include "percpu-km.c"
1301 #else
1302 #include "percpu-vm.c"
1303 #endif
1304 
1305 /**
1306  * pcpu_chunk_addr_search - determine chunk containing specified address
1307  * @addr: address for which the chunk needs to be determined.
1308  *
1309  * This is an internal function that handles all but static allocations.
1310  * Static percpu address values should never be passed into the allocator.
1311  *
1312  * RETURNS:
1313  * The address of the found chunk.
1314  */
1315 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1316 {
1317 	/* is it in the dynamic region (first chunk)? */
1318 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1319 		return pcpu_first_chunk;
1320 
1321 	/* is it in the reserved region? */
1322 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1323 		return pcpu_reserved_chunk;
1324 
1325 	/*
1326 	 * The address is relative to unit0 which might be unused and
1327 	 * thus unmapped.  Offset the address to the unit space of the
1328 	 * current processor before looking it up in the vmalloc
1329 	 * space.  Note that any possible cpu id can be used here, so
1330 	 * there's no need to worry about preemption or cpu hotplug.
1331 	 */
1332 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1333 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1334 }
1335 
1336 /**
1337  * pcpu_alloc - the percpu allocator
1338  * @size: size of area to allocate in bytes
1339  * @align: alignment of area (max PAGE_SIZE)
1340  * @reserved: allocate from the reserved chunk if available
1341  * @gfp: allocation flags
1342  *
1343  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1344  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1345  * then no warning will be triggered on invalid or failed allocation
1346  * requests.
1347  *
1348  * RETURNS:
1349  * Percpu pointer to the allocated area on success, NULL on failure.
1350  */
1351 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1352 				 gfp_t gfp)
1353 {
1354 	/* whitelisted flags that can be passed to the backing allocators */
1355 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1356 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1357 	bool do_warn = !(gfp & __GFP_NOWARN);
1358 	static int warn_limit = 10;
1359 	struct pcpu_chunk *chunk;
1360 	const char *err;
1361 	int slot, off, cpu, ret;
1362 	unsigned long flags;
1363 	void __percpu *ptr;
1364 	size_t bits, bit_align;
1365 
1366 	/*
1367 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1368 	 * therefore alignment must be a minimum of that many bytes.
1369 	 * An allocation may have internal fragmentation from rounding up
1370 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1371 	 */
1372 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1373 		align = PCPU_MIN_ALLOC_SIZE;
1374 
1375 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1376 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1377 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1378 
1379 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1380 		     !is_power_of_2(align))) {
1381 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1382 		     size, align);
1383 		return NULL;
1384 	}
1385 
1386 	if (!is_atomic) {
1387 		/*
1388 		 * pcpu_balance_workfn() allocates memory under this mutex,
1389 		 * and it may wait for memory reclaim. Allow current task
1390 		 * to become OOM victim, in case of memory pressure.
1391 		 */
1392 		if (gfp & __GFP_NOFAIL)
1393 			mutex_lock(&pcpu_alloc_mutex);
1394 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1395 			return NULL;
1396 	}
1397 
1398 	spin_lock_irqsave(&pcpu_lock, flags);
1399 
1400 	/* serve reserved allocations from the reserved chunk if available */
1401 	if (reserved && pcpu_reserved_chunk) {
1402 		chunk = pcpu_reserved_chunk;
1403 
1404 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1405 		if (off < 0) {
1406 			err = "alloc from reserved chunk failed";
1407 			goto fail_unlock;
1408 		}
1409 
1410 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1411 		if (off >= 0)
1412 			goto area_found;
1413 
1414 		err = "alloc from reserved chunk failed";
1415 		goto fail_unlock;
1416 	}
1417 
1418 restart:
1419 	/* search through normal chunks */
1420 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1421 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1422 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1423 						  is_atomic);
1424 			if (off < 0)
1425 				continue;
1426 
1427 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1428 			if (off >= 0)
1429 				goto area_found;
1430 
1431 		}
1432 	}
1433 
1434 	spin_unlock_irqrestore(&pcpu_lock, flags);
1435 
1436 	/*
1437 	 * No space left.  Create a new chunk.  We don't want multiple
1438 	 * tasks to create chunks simultaneously.  Serialize and create iff
1439 	 * there's still no empty chunk after grabbing the mutex.
1440 	 */
1441 	if (is_atomic) {
1442 		err = "atomic alloc failed, no space left";
1443 		goto fail;
1444 	}
1445 
1446 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1447 		chunk = pcpu_create_chunk(pcpu_gfp);
1448 		if (!chunk) {
1449 			err = "failed to allocate new chunk";
1450 			goto fail;
1451 		}
1452 
1453 		spin_lock_irqsave(&pcpu_lock, flags);
1454 		pcpu_chunk_relocate(chunk, -1);
1455 	} else {
1456 		spin_lock_irqsave(&pcpu_lock, flags);
1457 	}
1458 
1459 	goto restart;
1460 
1461 area_found:
1462 	pcpu_stats_area_alloc(chunk, size);
1463 	spin_unlock_irqrestore(&pcpu_lock, flags);
1464 
1465 	/* populate if not all pages are already there */
1466 	if (!is_atomic) {
1467 		int page_start, page_end, rs, re;
1468 
1469 		page_start = PFN_DOWN(off);
1470 		page_end = PFN_UP(off + size);
1471 
1472 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1473 					   page_start, page_end) {
1474 			WARN_ON(chunk->immutable);
1475 
1476 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1477 
1478 			spin_lock_irqsave(&pcpu_lock, flags);
1479 			if (ret) {
1480 				pcpu_free_area(chunk, off);
1481 				err = "failed to populate";
1482 				goto fail_unlock;
1483 			}
1484 			pcpu_chunk_populated(chunk, rs, re, true);
1485 			spin_unlock_irqrestore(&pcpu_lock, flags);
1486 		}
1487 
1488 		mutex_unlock(&pcpu_alloc_mutex);
1489 	}
1490 
1491 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1492 		pcpu_schedule_balance_work();
1493 
1494 	/* clear the areas and return address relative to base address */
1495 	for_each_possible_cpu(cpu)
1496 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1497 
1498 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1499 	kmemleak_alloc_percpu(ptr, size, gfp);
1500 
1501 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1502 			chunk->base_addr, off, ptr);
1503 
1504 	return ptr;
1505 
1506 fail_unlock:
1507 	spin_unlock_irqrestore(&pcpu_lock, flags);
1508 fail:
1509 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1510 
1511 	if (!is_atomic && do_warn && warn_limit) {
1512 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1513 			size, align, is_atomic, err);
1514 		dump_stack();
1515 		if (!--warn_limit)
1516 			pr_info("limit reached, disable warning\n");
1517 	}
1518 	if (is_atomic) {
1519 		/* see the flag handling in pcpu_blance_workfn() */
1520 		pcpu_atomic_alloc_failed = true;
1521 		pcpu_schedule_balance_work();
1522 	} else {
1523 		mutex_unlock(&pcpu_alloc_mutex);
1524 	}
1525 	return NULL;
1526 }
1527 
1528 /**
1529  * __alloc_percpu_gfp - allocate dynamic percpu area
1530  * @size: size of area to allocate in bytes
1531  * @align: alignment of area (max PAGE_SIZE)
1532  * @gfp: allocation flags
1533  *
1534  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1535  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1536  * be called from any context but is a lot more likely to fail. If @gfp
1537  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1538  * allocation requests.
1539  *
1540  * RETURNS:
1541  * Percpu pointer to the allocated area on success, NULL on failure.
1542  */
1543 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1544 {
1545 	return pcpu_alloc(size, align, false, gfp);
1546 }
1547 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1548 
1549 /**
1550  * __alloc_percpu - allocate dynamic percpu area
1551  * @size: size of area to allocate in bytes
1552  * @align: alignment of area (max PAGE_SIZE)
1553  *
1554  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1555  */
1556 void __percpu *__alloc_percpu(size_t size, size_t align)
1557 {
1558 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1559 }
1560 EXPORT_SYMBOL_GPL(__alloc_percpu);
1561 
1562 /**
1563  * __alloc_reserved_percpu - allocate reserved percpu area
1564  * @size: size of area to allocate in bytes
1565  * @align: alignment of area (max PAGE_SIZE)
1566  *
1567  * Allocate zero-filled percpu area of @size bytes aligned at @align
1568  * from reserved percpu area if arch has set it up; otherwise,
1569  * allocation is served from the same dynamic area.  Might sleep.
1570  * Might trigger writeouts.
1571  *
1572  * CONTEXT:
1573  * Does GFP_KERNEL allocation.
1574  *
1575  * RETURNS:
1576  * Percpu pointer to the allocated area on success, NULL on failure.
1577  */
1578 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1579 {
1580 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1581 }
1582 
1583 /**
1584  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1585  * @work: unused
1586  *
1587  * Reclaim all fully free chunks except for the first one.  This is also
1588  * responsible for maintaining the pool of empty populated pages.  However,
1589  * it is possible that this is called when physical memory is scarce causing
1590  * OOM killer to be triggered.  We should avoid doing so until an actual
1591  * allocation causes the failure as it is possible that requests can be
1592  * serviced from already backed regions.
1593  */
1594 static void pcpu_balance_workfn(struct work_struct *work)
1595 {
1596 	/* gfp flags passed to underlying allocators */
1597 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1598 	LIST_HEAD(to_free);
1599 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1600 	struct pcpu_chunk *chunk, *next;
1601 	int slot, nr_to_pop, ret;
1602 
1603 	/*
1604 	 * There's no reason to keep around multiple unused chunks and VM
1605 	 * areas can be scarce.  Destroy all free chunks except for one.
1606 	 */
1607 	mutex_lock(&pcpu_alloc_mutex);
1608 	spin_lock_irq(&pcpu_lock);
1609 
1610 	list_for_each_entry_safe(chunk, next, free_head, list) {
1611 		WARN_ON(chunk->immutable);
1612 
1613 		/* spare the first one */
1614 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1615 			continue;
1616 
1617 		list_move(&chunk->list, &to_free);
1618 	}
1619 
1620 	spin_unlock_irq(&pcpu_lock);
1621 
1622 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1623 		int rs, re;
1624 
1625 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1626 					 chunk->nr_pages) {
1627 			pcpu_depopulate_chunk(chunk, rs, re);
1628 			spin_lock_irq(&pcpu_lock);
1629 			pcpu_chunk_depopulated(chunk, rs, re);
1630 			spin_unlock_irq(&pcpu_lock);
1631 		}
1632 		pcpu_destroy_chunk(chunk);
1633 		cond_resched();
1634 	}
1635 
1636 	/*
1637 	 * Ensure there are certain number of free populated pages for
1638 	 * atomic allocs.  Fill up from the most packed so that atomic
1639 	 * allocs don't increase fragmentation.  If atomic allocation
1640 	 * failed previously, always populate the maximum amount.  This
1641 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1642 	 * failing indefinitely; however, large atomic allocs are not
1643 	 * something we support properly and can be highly unreliable and
1644 	 * inefficient.
1645 	 */
1646 retry_pop:
1647 	if (pcpu_atomic_alloc_failed) {
1648 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1649 		/* best effort anyway, don't worry about synchronization */
1650 		pcpu_atomic_alloc_failed = false;
1651 	} else {
1652 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1653 				  pcpu_nr_empty_pop_pages,
1654 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1655 	}
1656 
1657 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1658 		int nr_unpop = 0, rs, re;
1659 
1660 		if (!nr_to_pop)
1661 			break;
1662 
1663 		spin_lock_irq(&pcpu_lock);
1664 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1665 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1666 			if (nr_unpop)
1667 				break;
1668 		}
1669 		spin_unlock_irq(&pcpu_lock);
1670 
1671 		if (!nr_unpop)
1672 			continue;
1673 
1674 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1675 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1676 					   chunk->nr_pages) {
1677 			int nr = min(re - rs, nr_to_pop);
1678 
1679 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1680 			if (!ret) {
1681 				nr_to_pop -= nr;
1682 				spin_lock_irq(&pcpu_lock);
1683 				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1684 				spin_unlock_irq(&pcpu_lock);
1685 			} else {
1686 				nr_to_pop = 0;
1687 			}
1688 
1689 			if (!nr_to_pop)
1690 				break;
1691 		}
1692 	}
1693 
1694 	if (nr_to_pop) {
1695 		/* ran out of chunks to populate, create a new one and retry */
1696 		chunk = pcpu_create_chunk(gfp);
1697 		if (chunk) {
1698 			spin_lock_irq(&pcpu_lock);
1699 			pcpu_chunk_relocate(chunk, -1);
1700 			spin_unlock_irq(&pcpu_lock);
1701 			goto retry_pop;
1702 		}
1703 	}
1704 
1705 	mutex_unlock(&pcpu_alloc_mutex);
1706 }
1707 
1708 /**
1709  * free_percpu - free percpu area
1710  * @ptr: pointer to area to free
1711  *
1712  * Free percpu area @ptr.
1713  *
1714  * CONTEXT:
1715  * Can be called from atomic context.
1716  */
1717 void free_percpu(void __percpu *ptr)
1718 {
1719 	void *addr;
1720 	struct pcpu_chunk *chunk;
1721 	unsigned long flags;
1722 	int off;
1723 
1724 	if (!ptr)
1725 		return;
1726 
1727 	kmemleak_free_percpu(ptr);
1728 
1729 	addr = __pcpu_ptr_to_addr(ptr);
1730 
1731 	spin_lock_irqsave(&pcpu_lock, flags);
1732 
1733 	chunk = pcpu_chunk_addr_search(addr);
1734 	off = addr - chunk->base_addr;
1735 
1736 	pcpu_free_area(chunk, off);
1737 
1738 	/* if there are more than one fully free chunks, wake up grim reaper */
1739 	if (chunk->free_bytes == pcpu_unit_size) {
1740 		struct pcpu_chunk *pos;
1741 
1742 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1743 			if (pos != chunk) {
1744 				pcpu_schedule_balance_work();
1745 				break;
1746 			}
1747 	}
1748 
1749 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1750 
1751 	spin_unlock_irqrestore(&pcpu_lock, flags);
1752 }
1753 EXPORT_SYMBOL_GPL(free_percpu);
1754 
1755 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1756 {
1757 #ifdef CONFIG_SMP
1758 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1759 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1760 	unsigned int cpu;
1761 
1762 	for_each_possible_cpu(cpu) {
1763 		void *start = per_cpu_ptr(base, cpu);
1764 		void *va = (void *)addr;
1765 
1766 		if (va >= start && va < start + static_size) {
1767 			if (can_addr) {
1768 				*can_addr = (unsigned long) (va - start);
1769 				*can_addr += (unsigned long)
1770 					per_cpu_ptr(base, get_boot_cpu_id());
1771 			}
1772 			return true;
1773 		}
1774 	}
1775 #endif
1776 	/* on UP, can't distinguish from other static vars, always false */
1777 	return false;
1778 }
1779 
1780 /**
1781  * is_kernel_percpu_address - test whether address is from static percpu area
1782  * @addr: address to test
1783  *
1784  * Test whether @addr belongs to in-kernel static percpu area.  Module
1785  * static percpu areas are not considered.  For those, use
1786  * is_module_percpu_address().
1787  *
1788  * RETURNS:
1789  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1790  */
1791 bool is_kernel_percpu_address(unsigned long addr)
1792 {
1793 	return __is_kernel_percpu_address(addr, NULL);
1794 }
1795 
1796 /**
1797  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1798  * @addr: the address to be converted to physical address
1799  *
1800  * Given @addr which is dereferenceable address obtained via one of
1801  * percpu access macros, this function translates it into its physical
1802  * address.  The caller is responsible for ensuring @addr stays valid
1803  * until this function finishes.
1804  *
1805  * percpu allocator has special setup for the first chunk, which currently
1806  * supports either embedding in linear address space or vmalloc mapping,
1807  * and, from the second one, the backing allocator (currently either vm or
1808  * km) provides translation.
1809  *
1810  * The addr can be translated simply without checking if it falls into the
1811  * first chunk. But the current code reflects better how percpu allocator
1812  * actually works, and the verification can discover both bugs in percpu
1813  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1814  * code.
1815  *
1816  * RETURNS:
1817  * The physical address for @addr.
1818  */
1819 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1820 {
1821 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1822 	bool in_first_chunk = false;
1823 	unsigned long first_low, first_high;
1824 	unsigned int cpu;
1825 
1826 	/*
1827 	 * The following test on unit_low/high isn't strictly
1828 	 * necessary but will speed up lookups of addresses which
1829 	 * aren't in the first chunk.
1830 	 *
1831 	 * The address check is against full chunk sizes.  pcpu_base_addr
1832 	 * points to the beginning of the first chunk including the
1833 	 * static region.  Assumes good intent as the first chunk may
1834 	 * not be full (ie. < pcpu_unit_pages in size).
1835 	 */
1836 	first_low = (unsigned long)pcpu_base_addr +
1837 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1838 	first_high = (unsigned long)pcpu_base_addr +
1839 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1840 	if ((unsigned long)addr >= first_low &&
1841 	    (unsigned long)addr < first_high) {
1842 		for_each_possible_cpu(cpu) {
1843 			void *start = per_cpu_ptr(base, cpu);
1844 
1845 			if (addr >= start && addr < start + pcpu_unit_size) {
1846 				in_first_chunk = true;
1847 				break;
1848 			}
1849 		}
1850 	}
1851 
1852 	if (in_first_chunk) {
1853 		if (!is_vmalloc_addr(addr))
1854 			return __pa(addr);
1855 		else
1856 			return page_to_phys(vmalloc_to_page(addr)) +
1857 			       offset_in_page(addr);
1858 	} else
1859 		return page_to_phys(pcpu_addr_to_page(addr)) +
1860 		       offset_in_page(addr);
1861 }
1862 
1863 /**
1864  * pcpu_alloc_alloc_info - allocate percpu allocation info
1865  * @nr_groups: the number of groups
1866  * @nr_units: the number of units
1867  *
1868  * Allocate ai which is large enough for @nr_groups groups containing
1869  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1870  * cpu_map array which is long enough for @nr_units and filled with
1871  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1872  * pointer of other groups.
1873  *
1874  * RETURNS:
1875  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1876  * failure.
1877  */
1878 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1879 						      int nr_units)
1880 {
1881 	struct pcpu_alloc_info *ai;
1882 	size_t base_size, ai_size;
1883 	void *ptr;
1884 	int unit;
1885 
1886 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1887 			  __alignof__(ai->groups[0].cpu_map[0]));
1888 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1889 
1890 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1891 	if (!ptr)
1892 		return NULL;
1893 	ai = ptr;
1894 	ptr += base_size;
1895 
1896 	ai->groups[0].cpu_map = ptr;
1897 
1898 	for (unit = 0; unit < nr_units; unit++)
1899 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1900 
1901 	ai->nr_groups = nr_groups;
1902 	ai->__ai_size = PFN_ALIGN(ai_size);
1903 
1904 	return ai;
1905 }
1906 
1907 /**
1908  * pcpu_free_alloc_info - free percpu allocation info
1909  * @ai: pcpu_alloc_info to free
1910  *
1911  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1912  */
1913 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1914 {
1915 	memblock_free_early(__pa(ai), ai->__ai_size);
1916 }
1917 
1918 /**
1919  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1920  * @lvl: loglevel
1921  * @ai: allocation info to dump
1922  *
1923  * Print out information about @ai using loglevel @lvl.
1924  */
1925 static void pcpu_dump_alloc_info(const char *lvl,
1926 				 const struct pcpu_alloc_info *ai)
1927 {
1928 	int group_width = 1, cpu_width = 1, width;
1929 	char empty_str[] = "--------";
1930 	int alloc = 0, alloc_end = 0;
1931 	int group, v;
1932 	int upa, apl;	/* units per alloc, allocs per line */
1933 
1934 	v = ai->nr_groups;
1935 	while (v /= 10)
1936 		group_width++;
1937 
1938 	v = num_possible_cpus();
1939 	while (v /= 10)
1940 		cpu_width++;
1941 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1942 
1943 	upa = ai->alloc_size / ai->unit_size;
1944 	width = upa * (cpu_width + 1) + group_width + 3;
1945 	apl = rounddown_pow_of_two(max(60 / width, 1));
1946 
1947 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1948 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1949 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1950 
1951 	for (group = 0; group < ai->nr_groups; group++) {
1952 		const struct pcpu_group_info *gi = &ai->groups[group];
1953 		int unit = 0, unit_end = 0;
1954 
1955 		BUG_ON(gi->nr_units % upa);
1956 		for (alloc_end += gi->nr_units / upa;
1957 		     alloc < alloc_end; alloc++) {
1958 			if (!(alloc % apl)) {
1959 				pr_cont("\n");
1960 				printk("%spcpu-alloc: ", lvl);
1961 			}
1962 			pr_cont("[%0*d] ", group_width, group);
1963 
1964 			for (unit_end += upa; unit < unit_end; unit++)
1965 				if (gi->cpu_map[unit] != NR_CPUS)
1966 					pr_cont("%0*d ",
1967 						cpu_width, gi->cpu_map[unit]);
1968 				else
1969 					pr_cont("%s ", empty_str);
1970 		}
1971 	}
1972 	pr_cont("\n");
1973 }
1974 
1975 /**
1976  * pcpu_setup_first_chunk - initialize the first percpu chunk
1977  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1978  * @base_addr: mapped address
1979  *
1980  * Initialize the first percpu chunk which contains the kernel static
1981  * perpcu area.  This function is to be called from arch percpu area
1982  * setup path.
1983  *
1984  * @ai contains all information necessary to initialize the first
1985  * chunk and prime the dynamic percpu allocator.
1986  *
1987  * @ai->static_size is the size of static percpu area.
1988  *
1989  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1990  * reserve after the static area in the first chunk.  This reserves
1991  * the first chunk such that it's available only through reserved
1992  * percpu allocation.  This is primarily used to serve module percpu
1993  * static areas on architectures where the addressing model has
1994  * limited offset range for symbol relocations to guarantee module
1995  * percpu symbols fall inside the relocatable range.
1996  *
1997  * @ai->dyn_size determines the number of bytes available for dynamic
1998  * allocation in the first chunk.  The area between @ai->static_size +
1999  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2000  *
2001  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2002  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2003  * @ai->dyn_size.
2004  *
2005  * @ai->atom_size is the allocation atom size and used as alignment
2006  * for vm areas.
2007  *
2008  * @ai->alloc_size is the allocation size and always multiple of
2009  * @ai->atom_size.  This is larger than @ai->atom_size if
2010  * @ai->unit_size is larger than @ai->atom_size.
2011  *
2012  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2013  * percpu areas.  Units which should be colocated are put into the
2014  * same group.  Dynamic VM areas will be allocated according to these
2015  * groupings.  If @ai->nr_groups is zero, a single group containing
2016  * all units is assumed.
2017  *
2018  * The caller should have mapped the first chunk at @base_addr and
2019  * copied static data to each unit.
2020  *
2021  * The first chunk will always contain a static and a dynamic region.
2022  * However, the static region is not managed by any chunk.  If the first
2023  * chunk also contains a reserved region, it is served by two chunks -
2024  * one for the reserved region and one for the dynamic region.  They
2025  * share the same vm, but use offset regions in the area allocation map.
2026  * The chunk serving the dynamic region is circulated in the chunk slots
2027  * and available for dynamic allocation like any other chunk.
2028  *
2029  * RETURNS:
2030  * 0 on success, -errno on failure.
2031  */
2032 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2033 				  void *base_addr)
2034 {
2035 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2036 	size_t static_size, dyn_size;
2037 	struct pcpu_chunk *chunk;
2038 	unsigned long *group_offsets;
2039 	size_t *group_sizes;
2040 	unsigned long *unit_off;
2041 	unsigned int cpu;
2042 	int *unit_map;
2043 	int group, unit, i;
2044 	int map_size;
2045 	unsigned long tmp_addr;
2046 
2047 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2048 	if (unlikely(cond)) {						\
2049 		pr_emerg("failed to initialize, %s\n", #cond);		\
2050 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2051 			 cpumask_pr_args(cpu_possible_mask));		\
2052 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2053 		BUG();							\
2054 	}								\
2055 } while (0)
2056 
2057 	/* sanity checks */
2058 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2059 #ifdef CONFIG_SMP
2060 	PCPU_SETUP_BUG_ON(!ai->static_size);
2061 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2062 #endif
2063 	PCPU_SETUP_BUG_ON(!base_addr);
2064 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2065 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2066 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2067 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2068 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2069 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2070 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2071 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2072 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2073 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2074 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2075 
2076 	/* process group information and build config tables accordingly */
2077 	group_offsets = memblock_virt_alloc(ai->nr_groups *
2078 					     sizeof(group_offsets[0]), 0);
2079 	group_sizes = memblock_virt_alloc(ai->nr_groups *
2080 					   sizeof(group_sizes[0]), 0);
2081 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2082 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2083 
2084 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2085 		unit_map[cpu] = UINT_MAX;
2086 
2087 	pcpu_low_unit_cpu = NR_CPUS;
2088 	pcpu_high_unit_cpu = NR_CPUS;
2089 
2090 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2091 		const struct pcpu_group_info *gi = &ai->groups[group];
2092 
2093 		group_offsets[group] = gi->base_offset;
2094 		group_sizes[group] = gi->nr_units * ai->unit_size;
2095 
2096 		for (i = 0; i < gi->nr_units; i++) {
2097 			cpu = gi->cpu_map[i];
2098 			if (cpu == NR_CPUS)
2099 				continue;
2100 
2101 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2102 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2103 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2104 
2105 			unit_map[cpu] = unit + i;
2106 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2107 
2108 			/* determine low/high unit_cpu */
2109 			if (pcpu_low_unit_cpu == NR_CPUS ||
2110 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2111 				pcpu_low_unit_cpu = cpu;
2112 			if (pcpu_high_unit_cpu == NR_CPUS ||
2113 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2114 				pcpu_high_unit_cpu = cpu;
2115 		}
2116 	}
2117 	pcpu_nr_units = unit;
2118 
2119 	for_each_possible_cpu(cpu)
2120 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2121 
2122 	/* we're done parsing the input, undefine BUG macro and dump config */
2123 #undef PCPU_SETUP_BUG_ON
2124 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2125 
2126 	pcpu_nr_groups = ai->nr_groups;
2127 	pcpu_group_offsets = group_offsets;
2128 	pcpu_group_sizes = group_sizes;
2129 	pcpu_unit_map = unit_map;
2130 	pcpu_unit_offsets = unit_off;
2131 
2132 	/* determine basic parameters */
2133 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2134 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2135 	pcpu_atom_size = ai->atom_size;
2136 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2137 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2138 
2139 	pcpu_stats_save_ai(ai);
2140 
2141 	/*
2142 	 * Allocate chunk slots.  The additional last slot is for
2143 	 * empty chunks.
2144 	 */
2145 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2146 	pcpu_slot = memblock_virt_alloc(
2147 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2148 	for (i = 0; i < pcpu_nr_slots; i++)
2149 		INIT_LIST_HEAD(&pcpu_slot[i]);
2150 
2151 	/*
2152 	 * The end of the static region needs to be aligned with the
2153 	 * minimum allocation size as this offsets the reserved and
2154 	 * dynamic region.  The first chunk ends page aligned by
2155 	 * expanding the dynamic region, therefore the dynamic region
2156 	 * can be shrunk to compensate while still staying above the
2157 	 * configured sizes.
2158 	 */
2159 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2160 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2161 
2162 	/*
2163 	 * Initialize first chunk.
2164 	 * If the reserved_size is non-zero, this initializes the reserved
2165 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2166 	 * and the dynamic region is initialized here.  The first chunk,
2167 	 * pcpu_first_chunk, will always point to the chunk that serves
2168 	 * the dynamic region.
2169 	 */
2170 	tmp_addr = (unsigned long)base_addr + static_size;
2171 	map_size = ai->reserved_size ?: dyn_size;
2172 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2173 
2174 	/* init dynamic chunk if necessary */
2175 	if (ai->reserved_size) {
2176 		pcpu_reserved_chunk = chunk;
2177 
2178 		tmp_addr = (unsigned long)base_addr + static_size +
2179 			   ai->reserved_size;
2180 		map_size = dyn_size;
2181 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2182 	}
2183 
2184 	/* link the first chunk in */
2185 	pcpu_first_chunk = chunk;
2186 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2187 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2188 
2189 	/* include all regions of the first chunk */
2190 	pcpu_nr_populated += PFN_DOWN(size_sum);
2191 
2192 	pcpu_stats_chunk_alloc();
2193 	trace_percpu_create_chunk(base_addr);
2194 
2195 	/* we're done */
2196 	pcpu_base_addr = base_addr;
2197 	return 0;
2198 }
2199 
2200 #ifdef CONFIG_SMP
2201 
2202 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2203 	[PCPU_FC_AUTO]	= "auto",
2204 	[PCPU_FC_EMBED]	= "embed",
2205 	[PCPU_FC_PAGE]	= "page",
2206 };
2207 
2208 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2209 
2210 static int __init percpu_alloc_setup(char *str)
2211 {
2212 	if (!str)
2213 		return -EINVAL;
2214 
2215 	if (0)
2216 		/* nada */;
2217 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2218 	else if (!strcmp(str, "embed"))
2219 		pcpu_chosen_fc = PCPU_FC_EMBED;
2220 #endif
2221 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2222 	else if (!strcmp(str, "page"))
2223 		pcpu_chosen_fc = PCPU_FC_PAGE;
2224 #endif
2225 	else
2226 		pr_warn("unknown allocator %s specified\n", str);
2227 
2228 	return 0;
2229 }
2230 early_param("percpu_alloc", percpu_alloc_setup);
2231 
2232 /*
2233  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2234  * Build it if needed by the arch config or the generic setup is going
2235  * to be used.
2236  */
2237 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2238 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2239 #define BUILD_EMBED_FIRST_CHUNK
2240 #endif
2241 
2242 /* build pcpu_page_first_chunk() iff needed by the arch config */
2243 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2244 #define BUILD_PAGE_FIRST_CHUNK
2245 #endif
2246 
2247 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2248 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2249 /**
2250  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2251  * @reserved_size: the size of reserved percpu area in bytes
2252  * @dyn_size: minimum free size for dynamic allocation in bytes
2253  * @atom_size: allocation atom size
2254  * @cpu_distance_fn: callback to determine distance between cpus, optional
2255  *
2256  * This function determines grouping of units, their mappings to cpus
2257  * and other parameters considering needed percpu size, allocation
2258  * atom size and distances between CPUs.
2259  *
2260  * Groups are always multiples of atom size and CPUs which are of
2261  * LOCAL_DISTANCE both ways are grouped together and share space for
2262  * units in the same group.  The returned configuration is guaranteed
2263  * to have CPUs on different nodes on different groups and >=75% usage
2264  * of allocated virtual address space.
2265  *
2266  * RETURNS:
2267  * On success, pointer to the new allocation_info is returned.  On
2268  * failure, ERR_PTR value is returned.
2269  */
2270 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2271 				size_t reserved_size, size_t dyn_size,
2272 				size_t atom_size,
2273 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2274 {
2275 	static int group_map[NR_CPUS] __initdata;
2276 	static int group_cnt[NR_CPUS] __initdata;
2277 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2278 	int nr_groups = 1, nr_units = 0;
2279 	size_t size_sum, min_unit_size, alloc_size;
2280 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2281 	int last_allocs, group, unit;
2282 	unsigned int cpu, tcpu;
2283 	struct pcpu_alloc_info *ai;
2284 	unsigned int *cpu_map;
2285 
2286 	/* this function may be called multiple times */
2287 	memset(group_map, 0, sizeof(group_map));
2288 	memset(group_cnt, 0, sizeof(group_cnt));
2289 
2290 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2291 	size_sum = PFN_ALIGN(static_size + reserved_size +
2292 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2293 	dyn_size = size_sum - static_size - reserved_size;
2294 
2295 	/*
2296 	 * Determine min_unit_size, alloc_size and max_upa such that
2297 	 * alloc_size is multiple of atom_size and is the smallest
2298 	 * which can accommodate 4k aligned segments which are equal to
2299 	 * or larger than min_unit_size.
2300 	 */
2301 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2302 
2303 	/* determine the maximum # of units that can fit in an allocation */
2304 	alloc_size = roundup(min_unit_size, atom_size);
2305 	upa = alloc_size / min_unit_size;
2306 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2307 		upa--;
2308 	max_upa = upa;
2309 
2310 	/* group cpus according to their proximity */
2311 	for_each_possible_cpu(cpu) {
2312 		group = 0;
2313 	next_group:
2314 		for_each_possible_cpu(tcpu) {
2315 			if (cpu == tcpu)
2316 				break;
2317 			if (group_map[tcpu] == group && cpu_distance_fn &&
2318 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2319 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2320 				group++;
2321 				nr_groups = max(nr_groups, group + 1);
2322 				goto next_group;
2323 			}
2324 		}
2325 		group_map[cpu] = group;
2326 		group_cnt[group]++;
2327 	}
2328 
2329 	/*
2330 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2331 	 * Expand the unit_size until we use >= 75% of the units allocated.
2332 	 * Related to atom_size, which could be much larger than the unit_size.
2333 	 */
2334 	last_allocs = INT_MAX;
2335 	for (upa = max_upa; upa; upa--) {
2336 		int allocs = 0, wasted = 0;
2337 
2338 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2339 			continue;
2340 
2341 		for (group = 0; group < nr_groups; group++) {
2342 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2343 			allocs += this_allocs;
2344 			wasted += this_allocs * upa - group_cnt[group];
2345 		}
2346 
2347 		/*
2348 		 * Don't accept if wastage is over 1/3.  The
2349 		 * greater-than comparison ensures upa==1 always
2350 		 * passes the following check.
2351 		 */
2352 		if (wasted > num_possible_cpus() / 3)
2353 			continue;
2354 
2355 		/* and then don't consume more memory */
2356 		if (allocs > last_allocs)
2357 			break;
2358 		last_allocs = allocs;
2359 		best_upa = upa;
2360 	}
2361 	upa = best_upa;
2362 
2363 	/* allocate and fill alloc_info */
2364 	for (group = 0; group < nr_groups; group++)
2365 		nr_units += roundup(group_cnt[group], upa);
2366 
2367 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2368 	if (!ai)
2369 		return ERR_PTR(-ENOMEM);
2370 	cpu_map = ai->groups[0].cpu_map;
2371 
2372 	for (group = 0; group < nr_groups; group++) {
2373 		ai->groups[group].cpu_map = cpu_map;
2374 		cpu_map += roundup(group_cnt[group], upa);
2375 	}
2376 
2377 	ai->static_size = static_size;
2378 	ai->reserved_size = reserved_size;
2379 	ai->dyn_size = dyn_size;
2380 	ai->unit_size = alloc_size / upa;
2381 	ai->atom_size = atom_size;
2382 	ai->alloc_size = alloc_size;
2383 
2384 	for (group = 0, unit = 0; group_cnt[group]; group++) {
2385 		struct pcpu_group_info *gi = &ai->groups[group];
2386 
2387 		/*
2388 		 * Initialize base_offset as if all groups are located
2389 		 * back-to-back.  The caller should update this to
2390 		 * reflect actual allocation.
2391 		 */
2392 		gi->base_offset = unit * ai->unit_size;
2393 
2394 		for_each_possible_cpu(cpu)
2395 			if (group_map[cpu] == group)
2396 				gi->cpu_map[gi->nr_units++] = cpu;
2397 		gi->nr_units = roundup(gi->nr_units, upa);
2398 		unit += gi->nr_units;
2399 	}
2400 	BUG_ON(unit != nr_units);
2401 
2402 	return ai;
2403 }
2404 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2405 
2406 #if defined(BUILD_EMBED_FIRST_CHUNK)
2407 /**
2408  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2409  * @reserved_size: the size of reserved percpu area in bytes
2410  * @dyn_size: minimum free size for dynamic allocation in bytes
2411  * @atom_size: allocation atom size
2412  * @cpu_distance_fn: callback to determine distance between cpus, optional
2413  * @alloc_fn: function to allocate percpu page
2414  * @free_fn: function to free percpu page
2415  *
2416  * This is a helper to ease setting up embedded first percpu chunk and
2417  * can be called where pcpu_setup_first_chunk() is expected.
2418  *
2419  * If this function is used to setup the first chunk, it is allocated
2420  * by calling @alloc_fn and used as-is without being mapped into
2421  * vmalloc area.  Allocations are always whole multiples of @atom_size
2422  * aligned to @atom_size.
2423  *
2424  * This enables the first chunk to piggy back on the linear physical
2425  * mapping which often uses larger page size.  Please note that this
2426  * can result in very sparse cpu->unit mapping on NUMA machines thus
2427  * requiring large vmalloc address space.  Don't use this allocator if
2428  * vmalloc space is not orders of magnitude larger than distances
2429  * between node memory addresses (ie. 32bit NUMA machines).
2430  *
2431  * @dyn_size specifies the minimum dynamic area size.
2432  *
2433  * If the needed size is smaller than the minimum or specified unit
2434  * size, the leftover is returned using @free_fn.
2435  *
2436  * RETURNS:
2437  * 0 on success, -errno on failure.
2438  */
2439 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2440 				  size_t atom_size,
2441 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2442 				  pcpu_fc_alloc_fn_t alloc_fn,
2443 				  pcpu_fc_free_fn_t free_fn)
2444 {
2445 	void *base = (void *)ULONG_MAX;
2446 	void **areas = NULL;
2447 	struct pcpu_alloc_info *ai;
2448 	size_t size_sum, areas_size;
2449 	unsigned long max_distance;
2450 	int group, i, highest_group, rc;
2451 
2452 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2453 				   cpu_distance_fn);
2454 	if (IS_ERR(ai))
2455 		return PTR_ERR(ai);
2456 
2457 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2458 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2459 
2460 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2461 	if (!areas) {
2462 		rc = -ENOMEM;
2463 		goto out_free;
2464 	}
2465 
2466 	/* allocate, copy and determine base address & max_distance */
2467 	highest_group = 0;
2468 	for (group = 0; group < ai->nr_groups; group++) {
2469 		struct pcpu_group_info *gi = &ai->groups[group];
2470 		unsigned int cpu = NR_CPUS;
2471 		void *ptr;
2472 
2473 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2474 			cpu = gi->cpu_map[i];
2475 		BUG_ON(cpu == NR_CPUS);
2476 
2477 		/* allocate space for the whole group */
2478 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2479 		if (!ptr) {
2480 			rc = -ENOMEM;
2481 			goto out_free_areas;
2482 		}
2483 		/* kmemleak tracks the percpu allocations separately */
2484 		kmemleak_free(ptr);
2485 		areas[group] = ptr;
2486 
2487 		base = min(ptr, base);
2488 		if (ptr > areas[highest_group])
2489 			highest_group = group;
2490 	}
2491 	max_distance = areas[highest_group] - base;
2492 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2493 
2494 	/* warn if maximum distance is further than 75% of vmalloc space */
2495 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2496 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2497 				max_distance, VMALLOC_TOTAL);
2498 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2499 		/* and fail if we have fallback */
2500 		rc = -EINVAL;
2501 		goto out_free_areas;
2502 #endif
2503 	}
2504 
2505 	/*
2506 	 * Copy data and free unused parts.  This should happen after all
2507 	 * allocations are complete; otherwise, we may end up with
2508 	 * overlapping groups.
2509 	 */
2510 	for (group = 0; group < ai->nr_groups; group++) {
2511 		struct pcpu_group_info *gi = &ai->groups[group];
2512 		void *ptr = areas[group];
2513 
2514 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2515 			if (gi->cpu_map[i] == NR_CPUS) {
2516 				/* unused unit, free whole */
2517 				free_fn(ptr, ai->unit_size);
2518 				continue;
2519 			}
2520 			/* copy and return the unused part */
2521 			memcpy(ptr, __per_cpu_load, ai->static_size);
2522 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2523 		}
2524 	}
2525 
2526 	/* base address is now known, determine group base offsets */
2527 	for (group = 0; group < ai->nr_groups; group++) {
2528 		ai->groups[group].base_offset = areas[group] - base;
2529 	}
2530 
2531 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2532 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2533 		ai->dyn_size, ai->unit_size);
2534 
2535 	rc = pcpu_setup_first_chunk(ai, base);
2536 	goto out_free;
2537 
2538 out_free_areas:
2539 	for (group = 0; group < ai->nr_groups; group++)
2540 		if (areas[group])
2541 			free_fn(areas[group],
2542 				ai->groups[group].nr_units * ai->unit_size);
2543 out_free:
2544 	pcpu_free_alloc_info(ai);
2545 	if (areas)
2546 		memblock_free_early(__pa(areas), areas_size);
2547 	return rc;
2548 }
2549 #endif /* BUILD_EMBED_FIRST_CHUNK */
2550 
2551 #ifdef BUILD_PAGE_FIRST_CHUNK
2552 /**
2553  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2554  * @reserved_size: the size of reserved percpu area in bytes
2555  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2556  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2557  * @populate_pte_fn: function to populate pte
2558  *
2559  * This is a helper to ease setting up page-remapped first percpu
2560  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2561  *
2562  * This is the basic allocator.  Static percpu area is allocated
2563  * page-by-page into vmalloc area.
2564  *
2565  * RETURNS:
2566  * 0 on success, -errno on failure.
2567  */
2568 int __init pcpu_page_first_chunk(size_t reserved_size,
2569 				 pcpu_fc_alloc_fn_t alloc_fn,
2570 				 pcpu_fc_free_fn_t free_fn,
2571 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2572 {
2573 	static struct vm_struct vm;
2574 	struct pcpu_alloc_info *ai;
2575 	char psize_str[16];
2576 	int unit_pages;
2577 	size_t pages_size;
2578 	struct page **pages;
2579 	int unit, i, j, rc;
2580 	int upa;
2581 	int nr_g0_units;
2582 
2583 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2584 
2585 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2586 	if (IS_ERR(ai))
2587 		return PTR_ERR(ai);
2588 	BUG_ON(ai->nr_groups != 1);
2589 	upa = ai->alloc_size/ai->unit_size;
2590 	nr_g0_units = roundup(num_possible_cpus(), upa);
2591 	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2592 		pcpu_free_alloc_info(ai);
2593 		return -EINVAL;
2594 	}
2595 
2596 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2597 
2598 	/* unaligned allocations can't be freed, round up to page size */
2599 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2600 			       sizeof(pages[0]));
2601 	pages = memblock_virt_alloc(pages_size, 0);
2602 
2603 	/* allocate pages */
2604 	j = 0;
2605 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2606 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2607 		for (i = 0; i < unit_pages; i++) {
2608 			void *ptr;
2609 
2610 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2611 			if (!ptr) {
2612 				pr_warn("failed to allocate %s page for cpu%u\n",
2613 						psize_str, cpu);
2614 				goto enomem;
2615 			}
2616 			/* kmemleak tracks the percpu allocations separately */
2617 			kmemleak_free(ptr);
2618 			pages[j++] = virt_to_page(ptr);
2619 		}
2620 	}
2621 
2622 	/* allocate vm area, map the pages and copy static data */
2623 	vm.flags = VM_ALLOC;
2624 	vm.size = num_possible_cpus() * ai->unit_size;
2625 	vm_area_register_early(&vm, PAGE_SIZE);
2626 
2627 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2628 		unsigned long unit_addr =
2629 			(unsigned long)vm.addr + unit * ai->unit_size;
2630 
2631 		for (i = 0; i < unit_pages; i++)
2632 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2633 
2634 		/* pte already populated, the following shouldn't fail */
2635 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2636 				      unit_pages);
2637 		if (rc < 0)
2638 			panic("failed to map percpu area, err=%d\n", rc);
2639 
2640 		/*
2641 		 * FIXME: Archs with virtual cache should flush local
2642 		 * cache for the linear mapping here - something
2643 		 * equivalent to flush_cache_vmap() on the local cpu.
2644 		 * flush_cache_vmap() can't be used as most supporting
2645 		 * data structures are not set up yet.
2646 		 */
2647 
2648 		/* copy static data */
2649 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2650 	}
2651 
2652 	/* we're ready, commit */
2653 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2654 		unit_pages, psize_str, vm.addr, ai->static_size,
2655 		ai->reserved_size, ai->dyn_size);
2656 
2657 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2658 	goto out_free_ar;
2659 
2660 enomem:
2661 	while (--j >= 0)
2662 		free_fn(page_address(pages[j]), PAGE_SIZE);
2663 	rc = -ENOMEM;
2664 out_free_ar:
2665 	memblock_free_early(__pa(pages), pages_size);
2666 	pcpu_free_alloc_info(ai);
2667 	return rc;
2668 }
2669 #endif /* BUILD_PAGE_FIRST_CHUNK */
2670 
2671 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2672 /*
2673  * Generic SMP percpu area setup.
2674  *
2675  * The embedding helper is used because its behavior closely resembles
2676  * the original non-dynamic generic percpu area setup.  This is
2677  * important because many archs have addressing restrictions and might
2678  * fail if the percpu area is located far away from the previous
2679  * location.  As an added bonus, in non-NUMA cases, embedding is
2680  * generally a good idea TLB-wise because percpu area can piggy back
2681  * on the physical linear memory mapping which uses large page
2682  * mappings on applicable archs.
2683  */
2684 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2685 EXPORT_SYMBOL(__per_cpu_offset);
2686 
2687 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2688 				       size_t align)
2689 {
2690 	return  memblock_virt_alloc_from_nopanic(
2691 			size, align, __pa(MAX_DMA_ADDRESS));
2692 }
2693 
2694 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2695 {
2696 	memblock_free_early(__pa(ptr), size);
2697 }
2698 
2699 void __init setup_per_cpu_areas(void)
2700 {
2701 	unsigned long delta;
2702 	unsigned int cpu;
2703 	int rc;
2704 
2705 	/*
2706 	 * Always reserve area for module percpu variables.  That's
2707 	 * what the legacy allocator did.
2708 	 */
2709 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2710 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2711 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2712 	if (rc < 0)
2713 		panic("Failed to initialize percpu areas.");
2714 
2715 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2716 	for_each_possible_cpu(cpu)
2717 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2718 }
2719 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2720 
2721 #else	/* CONFIG_SMP */
2722 
2723 /*
2724  * UP percpu area setup.
2725  *
2726  * UP always uses km-based percpu allocator with identity mapping.
2727  * Static percpu variables are indistinguishable from the usual static
2728  * variables and don't require any special preparation.
2729  */
2730 void __init setup_per_cpu_areas(void)
2731 {
2732 	const size_t unit_size =
2733 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2734 					 PERCPU_DYNAMIC_RESERVE));
2735 	struct pcpu_alloc_info *ai;
2736 	void *fc;
2737 
2738 	ai = pcpu_alloc_alloc_info(1, 1);
2739 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2740 					      PAGE_SIZE,
2741 					      __pa(MAX_DMA_ADDRESS));
2742 	if (!ai || !fc)
2743 		panic("Failed to allocate memory for percpu areas.");
2744 	/* kmemleak tracks the percpu allocations separately */
2745 	kmemleak_free(fc);
2746 
2747 	ai->dyn_size = unit_size;
2748 	ai->unit_size = unit_size;
2749 	ai->atom_size = unit_size;
2750 	ai->alloc_size = unit_size;
2751 	ai->groups[0].nr_units = 1;
2752 	ai->groups[0].cpu_map[0] = 0;
2753 
2754 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2755 		panic("Failed to initialize percpu areas.");
2756 	pcpu_free_alloc_info(ai);
2757 }
2758 
2759 #endif	/* CONFIG_SMP */
2760 
2761 /*
2762  * pcpu_nr_pages - calculate total number of populated backing pages
2763  *
2764  * This reflects the number of pages populated to back chunks.  Metadata is
2765  * excluded in the number exposed in meminfo as the number of backing pages
2766  * scales with the number of cpus and can quickly outweigh the memory used for
2767  * metadata.  It also keeps this calculation nice and simple.
2768  *
2769  * RETURNS:
2770  * Total number of populated backing pages in use by the allocator.
2771  */
2772 unsigned long pcpu_nr_pages(void)
2773 {
2774 	return pcpu_nr_populated * pcpu_nr_units;
2775 }
2776 
2777 /*
2778  * Percpu allocator is initialized early during boot when neither slab or
2779  * workqueue is available.  Plug async management until everything is up
2780  * and running.
2781  */
2782 static int __init percpu_enable_async(void)
2783 {
2784 	pcpu_async_enabled = true;
2785 	return 0;
2786 }
2787 subsys_initcall(percpu_enable_async);
2788