1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * Copyright (C) 2017 Facebook Inc. 8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com> 9 * 10 * This file is released under the GPLv2 license. 11 * 12 * The percpu allocator handles both static and dynamic areas. Percpu 13 * areas are allocated in chunks which are divided into units. There is 14 * a 1-to-1 mapping for units to possible cpus. These units are grouped 15 * based on NUMA properties of the machine. 16 * 17 * c0 c1 c2 18 * ------------------- ------------------- ------------ 19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 20 * ------------------- ...... ------------------- .... ------------ 21 * 22 * Allocation is done by offsets into a unit's address space. Ie., an 23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 25 * and even sparse. Access is handled by configuring percpu base 26 * registers according to the cpu to unit mappings and offsetting the 27 * base address using pcpu_unit_size. 28 * 29 * There is special consideration for the first chunk which must handle 30 * the static percpu variables in the kernel image as allocation services 31 * are not online yet. In short, the first chunk is structured like so: 32 * 33 * <Static | [Reserved] | Dynamic> 34 * 35 * The static data is copied from the original section managed by the 36 * linker. The reserved section, if non-zero, primarily manages static 37 * percpu variables from kernel modules. Finally, the dynamic section 38 * takes care of normal allocations. 39 * 40 * The allocator organizes chunks into lists according to free size and 41 * tries to allocate from the fullest chunk first. Each chunk is managed 42 * by a bitmap with metadata blocks. The allocation map is updated on 43 * every allocation and free to reflect the current state while the boundary 44 * map is only updated on allocation. Each metadata block contains 45 * information to help mitigate the need to iterate over large portions 46 * of the bitmap. The reverse mapping from page to chunk is stored in 47 * the page's index. Lastly, units are lazily backed and grow in unison. 48 * 49 * There is a unique conversion that goes on here between bytes and bits. 50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 51 * tracks the number of pages it is responsible for in nr_pages. Helper 52 * functions are used to convert from between the bytes, bits, and blocks. 53 * All hints are managed in bits unless explicitly stated. 54 * 55 * To use this allocator, arch code should do the following: 56 * 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 58 * regular address to percpu pointer and back if they need to be 59 * different from the default 60 * 61 * - use pcpu_setup_first_chunk() during percpu area initialization to 62 * setup the first chunk containing the kernel static percpu area 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 67 #include <linux/bitmap.h> 68 #include <linux/bootmem.h> 69 #include <linux/err.h> 70 #include <linux/lcm.h> 71 #include <linux/list.h> 72 #include <linux/log2.h> 73 #include <linux/mm.h> 74 #include <linux/module.h> 75 #include <linux/mutex.h> 76 #include <linux/percpu.h> 77 #include <linux/pfn.h> 78 #include <linux/slab.h> 79 #include <linux/spinlock.h> 80 #include <linux/vmalloc.h> 81 #include <linux/workqueue.h> 82 #include <linux/kmemleak.h> 83 84 #include <asm/cacheflush.h> 85 #include <asm/sections.h> 86 #include <asm/tlbflush.h> 87 #include <asm/io.h> 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/percpu.h> 91 92 #include "percpu-internal.h" 93 94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 95 #define PCPU_SLOT_BASE_SHIFT 5 96 97 #define PCPU_EMPTY_POP_PAGES_LOW 2 98 #define PCPU_EMPTY_POP_PAGES_HIGH 4 99 100 #ifdef CONFIG_SMP 101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 102 #ifndef __addr_to_pcpu_ptr 103 #define __addr_to_pcpu_ptr(addr) \ 104 (void __percpu *)((unsigned long)(addr) - \ 105 (unsigned long)pcpu_base_addr + \ 106 (unsigned long)__per_cpu_start) 107 #endif 108 #ifndef __pcpu_ptr_to_addr 109 #define __pcpu_ptr_to_addr(ptr) \ 110 (void __force *)((unsigned long)(ptr) + \ 111 (unsigned long)pcpu_base_addr - \ 112 (unsigned long)__per_cpu_start) 113 #endif 114 #else /* CONFIG_SMP */ 115 /* on UP, it's always identity mapped */ 116 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 117 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 118 #endif /* CONFIG_SMP */ 119 120 static int pcpu_unit_pages __ro_after_init; 121 static int pcpu_unit_size __ro_after_init; 122 static int pcpu_nr_units __ro_after_init; 123 static int pcpu_atom_size __ro_after_init; 124 int pcpu_nr_slots __ro_after_init; 125 static size_t pcpu_chunk_struct_size __ro_after_init; 126 127 /* cpus with the lowest and highest unit addresses */ 128 static unsigned int pcpu_low_unit_cpu __ro_after_init; 129 static unsigned int pcpu_high_unit_cpu __ro_after_init; 130 131 /* the address of the first chunk which starts with the kernel static area */ 132 void *pcpu_base_addr __ro_after_init; 133 EXPORT_SYMBOL_GPL(pcpu_base_addr); 134 135 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 136 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 137 138 /* group information, used for vm allocation */ 139 static int pcpu_nr_groups __ro_after_init; 140 static const unsigned long *pcpu_group_offsets __ro_after_init; 141 static const size_t *pcpu_group_sizes __ro_after_init; 142 143 /* 144 * The first chunk which always exists. Note that unlike other 145 * chunks, this one can be allocated and mapped in several different 146 * ways and thus often doesn't live in the vmalloc area. 147 */ 148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 149 150 /* 151 * Optional reserved chunk. This chunk reserves part of the first 152 * chunk and serves it for reserved allocations. When the reserved 153 * region doesn't exist, the following variable is NULL. 154 */ 155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 156 157 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 158 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 159 160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 161 162 /* chunks which need their map areas extended, protected by pcpu_lock */ 163 static LIST_HEAD(pcpu_map_extend_chunks); 164 165 /* 166 * The number of empty populated pages, protected by pcpu_lock. The 167 * reserved chunk doesn't contribute to the count. 168 */ 169 int pcpu_nr_empty_pop_pages; 170 171 /* 172 * Balance work is used to populate or destroy chunks asynchronously. We 173 * try to keep the number of populated free pages between 174 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 175 * empty chunk. 176 */ 177 static void pcpu_balance_workfn(struct work_struct *work); 178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 179 static bool pcpu_async_enabled __read_mostly; 180 static bool pcpu_atomic_alloc_failed; 181 182 static void pcpu_schedule_balance_work(void) 183 { 184 if (pcpu_async_enabled) 185 schedule_work(&pcpu_balance_work); 186 } 187 188 /** 189 * pcpu_addr_in_chunk - check if the address is served from this chunk 190 * @chunk: chunk of interest 191 * @addr: percpu address 192 * 193 * RETURNS: 194 * True if the address is served from this chunk. 195 */ 196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 197 { 198 void *start_addr, *end_addr; 199 200 if (!chunk) 201 return false; 202 203 start_addr = chunk->base_addr + chunk->start_offset; 204 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 205 chunk->end_offset; 206 207 return addr >= start_addr && addr < end_addr; 208 } 209 210 static int __pcpu_size_to_slot(int size) 211 { 212 int highbit = fls(size); /* size is in bytes */ 213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 214 } 215 216 static int pcpu_size_to_slot(int size) 217 { 218 if (size == pcpu_unit_size) 219 return pcpu_nr_slots - 1; 220 return __pcpu_size_to_slot(size); 221 } 222 223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 224 { 225 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) 226 return 0; 227 228 return pcpu_size_to_slot(chunk->free_bytes); 229 } 230 231 /* set the pointer to a chunk in a page struct */ 232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 233 { 234 page->index = (unsigned long)pcpu; 235 } 236 237 /* obtain pointer to a chunk from a page struct */ 238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 239 { 240 return (struct pcpu_chunk *)page->index; 241 } 242 243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 244 { 245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 246 } 247 248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 249 { 250 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 251 } 252 253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 254 unsigned int cpu, int page_idx) 255 { 256 return (unsigned long)chunk->base_addr + 257 pcpu_unit_page_offset(cpu, page_idx); 258 } 259 260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) 261 { 262 *rs = find_next_zero_bit(bitmap, end, *rs); 263 *re = find_next_bit(bitmap, end, *rs + 1); 264 } 265 266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) 267 { 268 *rs = find_next_bit(bitmap, end, *rs); 269 *re = find_next_zero_bit(bitmap, end, *rs + 1); 270 } 271 272 /* 273 * Bitmap region iterators. Iterates over the bitmap between 274 * [@start, @end) in @chunk. @rs and @re should be integer variables 275 * and will be set to start and end index of the current free region. 276 */ 277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ 278 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ 279 (rs) < (re); \ 280 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) 281 282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ 283 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ 284 (rs) < (re); \ 285 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) 286 287 /* 288 * The following are helper functions to help access bitmaps and convert 289 * between bitmap offsets to address offsets. 290 */ 291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 292 { 293 return chunk->alloc_map + 294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 295 } 296 297 static unsigned long pcpu_off_to_block_index(int off) 298 { 299 return off / PCPU_BITMAP_BLOCK_BITS; 300 } 301 302 static unsigned long pcpu_off_to_block_off(int off) 303 { 304 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 305 } 306 307 static unsigned long pcpu_block_off_to_off(int index, int off) 308 { 309 return index * PCPU_BITMAP_BLOCK_BITS + off; 310 } 311 312 /** 313 * pcpu_next_md_free_region - finds the next hint free area 314 * @chunk: chunk of interest 315 * @bit_off: chunk offset 316 * @bits: size of free area 317 * 318 * Helper function for pcpu_for_each_md_free_region. It checks 319 * block->contig_hint and performs aggregation across blocks to find the 320 * next hint. It modifies bit_off and bits in-place to be consumed in the 321 * loop. 322 */ 323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 324 int *bits) 325 { 326 int i = pcpu_off_to_block_index(*bit_off); 327 int block_off = pcpu_off_to_block_off(*bit_off); 328 struct pcpu_block_md *block; 329 330 *bits = 0; 331 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 332 block++, i++) { 333 /* handles contig area across blocks */ 334 if (*bits) { 335 *bits += block->left_free; 336 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 337 continue; 338 return; 339 } 340 341 /* 342 * This checks three things. First is there a contig_hint to 343 * check. Second, have we checked this hint before by 344 * comparing the block_off. Third, is this the same as the 345 * right contig hint. In the last case, it spills over into 346 * the next block and should be handled by the contig area 347 * across blocks code. 348 */ 349 *bits = block->contig_hint; 350 if (*bits && block->contig_hint_start >= block_off && 351 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 352 *bit_off = pcpu_block_off_to_off(i, 353 block->contig_hint_start); 354 return; 355 } 356 /* reset to satisfy the second predicate above */ 357 block_off = 0; 358 359 *bits = block->right_free; 360 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 361 } 362 } 363 364 /** 365 * pcpu_next_fit_region - finds fit areas for a given allocation request 366 * @chunk: chunk of interest 367 * @alloc_bits: size of allocation 368 * @align: alignment of area (max PAGE_SIZE) 369 * @bit_off: chunk offset 370 * @bits: size of free area 371 * 372 * Finds the next free region that is viable for use with a given size and 373 * alignment. This only returns if there is a valid area to be used for this 374 * allocation. block->first_free is returned if the allocation request fits 375 * within the block to see if the request can be fulfilled prior to the contig 376 * hint. 377 */ 378 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 379 int align, int *bit_off, int *bits) 380 { 381 int i = pcpu_off_to_block_index(*bit_off); 382 int block_off = pcpu_off_to_block_off(*bit_off); 383 struct pcpu_block_md *block; 384 385 *bits = 0; 386 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 387 block++, i++) { 388 /* handles contig area across blocks */ 389 if (*bits) { 390 *bits += block->left_free; 391 if (*bits >= alloc_bits) 392 return; 393 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 394 continue; 395 } 396 397 /* check block->contig_hint */ 398 *bits = ALIGN(block->contig_hint_start, align) - 399 block->contig_hint_start; 400 /* 401 * This uses the block offset to determine if this has been 402 * checked in the prior iteration. 403 */ 404 if (block->contig_hint && 405 block->contig_hint_start >= block_off && 406 block->contig_hint >= *bits + alloc_bits) { 407 *bits += alloc_bits + block->contig_hint_start - 408 block->first_free; 409 *bit_off = pcpu_block_off_to_off(i, block->first_free); 410 return; 411 } 412 /* reset to satisfy the second predicate above */ 413 block_off = 0; 414 415 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 416 align); 417 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 418 *bit_off = pcpu_block_off_to_off(i, *bit_off); 419 if (*bits >= alloc_bits) 420 return; 421 } 422 423 /* no valid offsets were found - fail condition */ 424 *bit_off = pcpu_chunk_map_bits(chunk); 425 } 426 427 /* 428 * Metadata free area iterators. These perform aggregation of free areas 429 * based on the metadata blocks and return the offset @bit_off and size in 430 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 431 * a fit is found for the allocation request. 432 */ 433 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 434 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 435 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 436 (bit_off) += (bits) + 1, \ 437 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 438 439 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 440 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 441 &(bits)); \ 442 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 443 (bit_off) += (bits), \ 444 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 445 &(bits))) 446 447 /** 448 * pcpu_mem_zalloc - allocate memory 449 * @size: bytes to allocate 450 * 451 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 452 * kzalloc() is used; otherwise, vzalloc() is used. The returned 453 * memory is always zeroed. 454 * 455 * CONTEXT: 456 * Does GFP_KERNEL allocation. 457 * 458 * RETURNS: 459 * Pointer to the allocated area on success, NULL on failure. 460 */ 461 static void *pcpu_mem_zalloc(size_t size) 462 { 463 if (WARN_ON_ONCE(!slab_is_available())) 464 return NULL; 465 466 if (size <= PAGE_SIZE) 467 return kzalloc(size, GFP_KERNEL); 468 else 469 return vzalloc(size); 470 } 471 472 /** 473 * pcpu_mem_free - free memory 474 * @ptr: memory to free 475 * 476 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 477 */ 478 static void pcpu_mem_free(void *ptr) 479 { 480 kvfree(ptr); 481 } 482 483 /** 484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 485 * @chunk: chunk of interest 486 * @oslot: the previous slot it was on 487 * 488 * This function is called after an allocation or free changed @chunk. 489 * New slot according to the changed state is determined and @chunk is 490 * moved to the slot. Note that the reserved chunk is never put on 491 * chunk slots. 492 * 493 * CONTEXT: 494 * pcpu_lock. 495 */ 496 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 497 { 498 int nslot = pcpu_chunk_slot(chunk); 499 500 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 501 if (oslot < nslot) 502 list_move(&chunk->list, &pcpu_slot[nslot]); 503 else 504 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 505 } 506 } 507 508 /** 509 * pcpu_cnt_pop_pages- counts populated backing pages in range 510 * @chunk: chunk of interest 511 * @bit_off: start offset 512 * @bits: size of area to check 513 * 514 * Calculates the number of populated pages in the region 515 * [page_start, page_end). This keeps track of how many empty populated 516 * pages are available and decide if async work should be scheduled. 517 * 518 * RETURNS: 519 * The nr of populated pages. 520 */ 521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, 522 int bits) 523 { 524 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); 525 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 526 527 if (page_start >= page_end) 528 return 0; 529 530 /* 531 * bitmap_weight counts the number of bits set in a bitmap up to 532 * the specified number of bits. This is counting the populated 533 * pages up to page_end and then subtracting the populated pages 534 * up to page_start to count the populated pages in 535 * [page_start, page_end). 536 */ 537 return bitmap_weight(chunk->populated, page_end) - 538 bitmap_weight(chunk->populated, page_start); 539 } 540 541 /** 542 * pcpu_chunk_update - updates the chunk metadata given a free area 543 * @chunk: chunk of interest 544 * @bit_off: chunk offset 545 * @bits: size of free area 546 * 547 * This updates the chunk's contig hint and starting offset given a free area. 548 * Choose the best starting offset if the contig hint is equal. 549 */ 550 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) 551 { 552 if (bits > chunk->contig_bits) { 553 chunk->contig_bits_start = bit_off; 554 chunk->contig_bits = bits; 555 } else if (bits == chunk->contig_bits && chunk->contig_bits_start && 556 (!bit_off || 557 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { 558 /* use the start with the best alignment */ 559 chunk->contig_bits_start = bit_off; 560 } 561 } 562 563 /** 564 * pcpu_chunk_refresh_hint - updates metadata about a chunk 565 * @chunk: chunk of interest 566 * 567 * Iterates over the metadata blocks to find the largest contig area. 568 * It also counts the populated pages and uses the delta to update the 569 * global count. 570 * 571 * Updates: 572 * chunk->contig_bits 573 * chunk->contig_bits_start 574 * nr_empty_pop_pages (chunk and global) 575 */ 576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) 577 { 578 int bit_off, bits, nr_empty_pop_pages; 579 580 /* clear metadata */ 581 chunk->contig_bits = 0; 582 583 bit_off = chunk->first_bit; 584 bits = nr_empty_pop_pages = 0; 585 pcpu_for_each_md_free_region(chunk, bit_off, bits) { 586 pcpu_chunk_update(chunk, bit_off, bits); 587 588 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); 589 } 590 591 /* 592 * Keep track of nr_empty_pop_pages. 593 * 594 * The chunk maintains the previous number of free pages it held, 595 * so the delta is used to update the global counter. The reserved 596 * chunk is not part of the free page count as they are populated 597 * at init and are special to serving reserved allocations. 598 */ 599 if (chunk != pcpu_reserved_chunk) 600 pcpu_nr_empty_pop_pages += 601 (nr_empty_pop_pages - chunk->nr_empty_pop_pages); 602 603 chunk->nr_empty_pop_pages = nr_empty_pop_pages; 604 } 605 606 /** 607 * pcpu_block_update - updates a block given a free area 608 * @block: block of interest 609 * @start: start offset in block 610 * @end: end offset in block 611 * 612 * Updates a block given a known free area. The region [start, end) is 613 * expected to be the entirety of the free area within a block. Chooses 614 * the best starting offset if the contig hints are equal. 615 */ 616 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 617 { 618 int contig = end - start; 619 620 block->first_free = min(block->first_free, start); 621 if (start == 0) 622 block->left_free = contig; 623 624 if (end == PCPU_BITMAP_BLOCK_BITS) 625 block->right_free = contig; 626 627 if (contig > block->contig_hint) { 628 block->contig_hint_start = start; 629 block->contig_hint = contig; 630 } else if (block->contig_hint_start && contig == block->contig_hint && 631 (!start || __ffs(start) > __ffs(block->contig_hint_start))) { 632 /* use the start with the best alignment */ 633 block->contig_hint_start = start; 634 } 635 } 636 637 /** 638 * pcpu_block_refresh_hint 639 * @chunk: chunk of interest 640 * @index: index of the metadata block 641 * 642 * Scans over the block beginning at first_free and updates the block 643 * metadata accordingly. 644 */ 645 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 646 { 647 struct pcpu_block_md *block = chunk->md_blocks + index; 648 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 649 int rs, re; /* region start, region end */ 650 651 /* clear hints */ 652 block->contig_hint = 0; 653 block->left_free = block->right_free = 0; 654 655 /* iterate over free areas and update the contig hints */ 656 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, 657 PCPU_BITMAP_BLOCK_BITS) { 658 pcpu_block_update(block, rs, re); 659 } 660 } 661 662 /** 663 * pcpu_block_update_hint_alloc - update hint on allocation path 664 * @chunk: chunk of interest 665 * @bit_off: chunk offset 666 * @bits: size of request 667 * 668 * Updates metadata for the allocation path. The metadata only has to be 669 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 670 * scans are required if the block's contig hint is broken. 671 */ 672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 673 int bits) 674 { 675 struct pcpu_block_md *s_block, *e_block, *block; 676 int s_index, e_index; /* block indexes of the freed allocation */ 677 int s_off, e_off; /* block offsets of the freed allocation */ 678 679 /* 680 * Calculate per block offsets. 681 * The calculation uses an inclusive range, but the resulting offsets 682 * are [start, end). e_index always points to the last block in the 683 * range. 684 */ 685 s_index = pcpu_off_to_block_index(bit_off); 686 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 687 s_off = pcpu_off_to_block_off(bit_off); 688 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 689 690 s_block = chunk->md_blocks + s_index; 691 e_block = chunk->md_blocks + e_index; 692 693 /* 694 * Update s_block. 695 * block->first_free must be updated if the allocation takes its place. 696 * If the allocation breaks the contig_hint, a scan is required to 697 * restore this hint. 698 */ 699 if (s_off == s_block->first_free) 700 s_block->first_free = find_next_zero_bit( 701 pcpu_index_alloc_map(chunk, s_index), 702 PCPU_BITMAP_BLOCK_BITS, 703 s_off + bits); 704 705 if (s_off >= s_block->contig_hint_start && 706 s_off < s_block->contig_hint_start + s_block->contig_hint) { 707 /* block contig hint is broken - scan to fix it */ 708 pcpu_block_refresh_hint(chunk, s_index); 709 } else { 710 /* update left and right contig manually */ 711 s_block->left_free = min(s_block->left_free, s_off); 712 if (s_index == e_index) 713 s_block->right_free = min_t(int, s_block->right_free, 714 PCPU_BITMAP_BLOCK_BITS - e_off); 715 else 716 s_block->right_free = 0; 717 } 718 719 /* 720 * Update e_block. 721 */ 722 if (s_index != e_index) { 723 /* 724 * When the allocation is across blocks, the end is along 725 * the left part of the e_block. 726 */ 727 e_block->first_free = find_next_zero_bit( 728 pcpu_index_alloc_map(chunk, e_index), 729 PCPU_BITMAP_BLOCK_BITS, e_off); 730 731 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 732 /* reset the block */ 733 e_block++; 734 } else { 735 if (e_off > e_block->contig_hint_start) { 736 /* contig hint is broken - scan to fix it */ 737 pcpu_block_refresh_hint(chunk, e_index); 738 } else { 739 e_block->left_free = 0; 740 e_block->right_free = 741 min_t(int, e_block->right_free, 742 PCPU_BITMAP_BLOCK_BITS - e_off); 743 } 744 } 745 746 /* update in-between md_blocks */ 747 for (block = s_block + 1; block < e_block; block++) { 748 block->contig_hint = 0; 749 block->left_free = 0; 750 block->right_free = 0; 751 } 752 } 753 754 /* 755 * The only time a full chunk scan is required is if the chunk 756 * contig hint is broken. Otherwise, it means a smaller space 757 * was used and therefore the chunk contig hint is still correct. 758 */ 759 if (bit_off >= chunk->contig_bits_start && 760 bit_off < chunk->contig_bits_start + chunk->contig_bits) 761 pcpu_chunk_refresh_hint(chunk); 762 } 763 764 /** 765 * pcpu_block_update_hint_free - updates the block hints on the free path 766 * @chunk: chunk of interest 767 * @bit_off: chunk offset 768 * @bits: size of request 769 * 770 * Updates metadata for the allocation path. This avoids a blind block 771 * refresh by making use of the block contig hints. If this fails, it scans 772 * forward and backward to determine the extent of the free area. This is 773 * capped at the boundary of blocks. 774 * 775 * A chunk update is triggered if a page becomes free, a block becomes free, 776 * or the free spans across blocks. This tradeoff is to minimize iterating 777 * over the block metadata to update chunk->contig_bits. chunk->contig_bits 778 * may be off by up to a page, but it will never be more than the available 779 * space. If the contig hint is contained in one block, it will be accurate. 780 */ 781 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 782 int bits) 783 { 784 struct pcpu_block_md *s_block, *e_block, *block; 785 int s_index, e_index; /* block indexes of the freed allocation */ 786 int s_off, e_off; /* block offsets of the freed allocation */ 787 int start, end; /* start and end of the whole free area */ 788 789 /* 790 * Calculate per block offsets. 791 * The calculation uses an inclusive range, but the resulting offsets 792 * are [start, end). e_index always points to the last block in the 793 * range. 794 */ 795 s_index = pcpu_off_to_block_index(bit_off); 796 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 797 s_off = pcpu_off_to_block_off(bit_off); 798 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 799 800 s_block = chunk->md_blocks + s_index; 801 e_block = chunk->md_blocks + e_index; 802 803 /* 804 * Check if the freed area aligns with the block->contig_hint. 805 * If it does, then the scan to find the beginning/end of the 806 * larger free area can be avoided. 807 * 808 * start and end refer to beginning and end of the free area 809 * within each their respective blocks. This is not necessarily 810 * the entire free area as it may span blocks past the beginning 811 * or end of the block. 812 */ 813 start = s_off; 814 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 815 start = s_block->contig_hint_start; 816 } else { 817 /* 818 * Scan backwards to find the extent of the free area. 819 * find_last_bit returns the starting bit, so if the start bit 820 * is returned, that means there was no last bit and the 821 * remainder of the chunk is free. 822 */ 823 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 824 start); 825 start = (start == l_bit) ? 0 : l_bit + 1; 826 } 827 828 end = e_off; 829 if (e_off == e_block->contig_hint_start) 830 end = e_block->contig_hint_start + e_block->contig_hint; 831 else 832 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 833 PCPU_BITMAP_BLOCK_BITS, end); 834 835 /* update s_block */ 836 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 837 pcpu_block_update(s_block, start, e_off); 838 839 /* freeing in the same block */ 840 if (s_index != e_index) { 841 /* update e_block */ 842 pcpu_block_update(e_block, 0, end); 843 844 /* reset md_blocks in the middle */ 845 for (block = s_block + 1; block < e_block; block++) { 846 block->first_free = 0; 847 block->contig_hint_start = 0; 848 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 849 block->left_free = PCPU_BITMAP_BLOCK_BITS; 850 block->right_free = PCPU_BITMAP_BLOCK_BITS; 851 } 852 } 853 854 /* 855 * Refresh chunk metadata when the free makes a page free, a block 856 * free, or spans across blocks. The contig hint may be off by up to 857 * a page, but if the hint is contained in a block, it will be accurate 858 * with the else condition below. 859 */ 860 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > 861 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || 862 s_index != e_index) 863 pcpu_chunk_refresh_hint(chunk); 864 else 865 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), 866 s_block->contig_hint); 867 } 868 869 /** 870 * pcpu_is_populated - determines if the region is populated 871 * @chunk: chunk of interest 872 * @bit_off: chunk offset 873 * @bits: size of area 874 * @next_off: return value for the next offset to start searching 875 * 876 * For atomic allocations, check if the backing pages are populated. 877 * 878 * RETURNS: 879 * Bool if the backing pages are populated. 880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 881 */ 882 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 883 int *next_off) 884 { 885 int page_start, page_end, rs, re; 886 887 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 888 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 889 890 rs = page_start; 891 pcpu_next_unpop(chunk->populated, &rs, &re, page_end); 892 if (rs >= page_end) 893 return true; 894 895 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 896 return false; 897 } 898 899 /** 900 * pcpu_find_block_fit - finds the block index to start searching 901 * @chunk: chunk of interest 902 * @alloc_bits: size of request in allocation units 903 * @align: alignment of area (max PAGE_SIZE bytes) 904 * @pop_only: use populated regions only 905 * 906 * Given a chunk and an allocation spec, find the offset to begin searching 907 * for a free region. This iterates over the bitmap metadata blocks to 908 * find an offset that will be guaranteed to fit the requirements. It is 909 * not quite first fit as if the allocation does not fit in the contig hint 910 * of a block or chunk, it is skipped. This errs on the side of caution 911 * to prevent excess iteration. Poor alignment can cause the allocator to 912 * skip over blocks and chunks that have valid free areas. 913 * 914 * RETURNS: 915 * The offset in the bitmap to begin searching. 916 * -1 if no offset is found. 917 */ 918 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 919 size_t align, bool pop_only) 920 { 921 int bit_off, bits, next_off; 922 923 /* 924 * Check to see if the allocation can fit in the chunk's contig hint. 925 * This is an optimization to prevent scanning by assuming if it 926 * cannot fit in the global hint, there is memory pressure and creating 927 * a new chunk would happen soon. 928 */ 929 bit_off = ALIGN(chunk->contig_bits_start, align) - 930 chunk->contig_bits_start; 931 if (bit_off + alloc_bits > chunk->contig_bits) 932 return -1; 933 934 bit_off = chunk->first_bit; 935 bits = 0; 936 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 937 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 938 &next_off)) 939 break; 940 941 bit_off = next_off; 942 bits = 0; 943 } 944 945 if (bit_off == pcpu_chunk_map_bits(chunk)) 946 return -1; 947 948 return bit_off; 949 } 950 951 /** 952 * pcpu_alloc_area - allocates an area from a pcpu_chunk 953 * @chunk: chunk of interest 954 * @alloc_bits: size of request in allocation units 955 * @align: alignment of area (max PAGE_SIZE) 956 * @start: bit_off to start searching 957 * 958 * This function takes in a @start offset to begin searching to fit an 959 * allocation of @alloc_bits with alignment @align. It needs to scan 960 * the allocation map because if it fits within the block's contig hint, 961 * @start will be block->first_free. This is an attempt to fill the 962 * allocation prior to breaking the contig hint. The allocation and 963 * boundary maps are updated accordingly if it confirms a valid 964 * free area. 965 * 966 * RETURNS: 967 * Allocated addr offset in @chunk on success. 968 * -1 if no matching area is found. 969 */ 970 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 971 size_t align, int start) 972 { 973 size_t align_mask = (align) ? (align - 1) : 0; 974 int bit_off, end, oslot; 975 976 lockdep_assert_held(&pcpu_lock); 977 978 oslot = pcpu_chunk_slot(chunk); 979 980 /* 981 * Search to find a fit. 982 */ 983 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; 984 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, 985 alloc_bits, align_mask); 986 if (bit_off >= end) 987 return -1; 988 989 /* update alloc map */ 990 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 991 992 /* update boundary map */ 993 set_bit(bit_off, chunk->bound_map); 994 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 995 set_bit(bit_off + alloc_bits, chunk->bound_map); 996 997 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 998 999 /* update first free bit */ 1000 if (bit_off == chunk->first_bit) 1001 chunk->first_bit = find_next_zero_bit( 1002 chunk->alloc_map, 1003 pcpu_chunk_map_bits(chunk), 1004 bit_off + alloc_bits); 1005 1006 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1007 1008 pcpu_chunk_relocate(chunk, oslot); 1009 1010 return bit_off * PCPU_MIN_ALLOC_SIZE; 1011 } 1012 1013 /** 1014 * pcpu_free_area - frees the corresponding offset 1015 * @chunk: chunk of interest 1016 * @off: addr offset into chunk 1017 * 1018 * This function determines the size of an allocation to free using 1019 * the boundary bitmap and clears the allocation map. 1020 */ 1021 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1022 { 1023 int bit_off, bits, end, oslot; 1024 1025 lockdep_assert_held(&pcpu_lock); 1026 pcpu_stats_area_dealloc(chunk); 1027 1028 oslot = pcpu_chunk_slot(chunk); 1029 1030 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1031 1032 /* find end index */ 1033 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1034 bit_off + 1); 1035 bits = end - bit_off; 1036 bitmap_clear(chunk->alloc_map, bit_off, bits); 1037 1038 /* update metadata */ 1039 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1040 1041 /* update first free bit */ 1042 chunk->first_bit = min(chunk->first_bit, bit_off); 1043 1044 pcpu_block_update_hint_free(chunk, bit_off, bits); 1045 1046 pcpu_chunk_relocate(chunk, oslot); 1047 } 1048 1049 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1050 { 1051 struct pcpu_block_md *md_block; 1052 1053 for (md_block = chunk->md_blocks; 1054 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1055 md_block++) { 1056 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1057 md_block->left_free = PCPU_BITMAP_BLOCK_BITS; 1058 md_block->right_free = PCPU_BITMAP_BLOCK_BITS; 1059 } 1060 } 1061 1062 /** 1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1064 * @tmp_addr: the start of the region served 1065 * @map_size: size of the region served 1066 * 1067 * This is responsible for creating the chunks that serve the first chunk. The 1068 * base_addr is page aligned down of @tmp_addr while the region end is page 1069 * aligned up. Offsets are kept track of to determine the region served. All 1070 * this is done to appease the bitmap allocator in avoiding partial blocks. 1071 * 1072 * RETURNS: 1073 * Chunk serving the region at @tmp_addr of @map_size. 1074 */ 1075 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1076 int map_size) 1077 { 1078 struct pcpu_chunk *chunk; 1079 unsigned long aligned_addr, lcm_align; 1080 int start_offset, offset_bits, region_size, region_bits; 1081 1082 /* region calculations */ 1083 aligned_addr = tmp_addr & PAGE_MASK; 1084 1085 start_offset = tmp_addr - aligned_addr; 1086 1087 /* 1088 * Align the end of the region with the LCM of PAGE_SIZE and 1089 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1090 * the other. 1091 */ 1092 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1093 region_size = ALIGN(start_offset + map_size, lcm_align); 1094 1095 /* allocate chunk */ 1096 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) + 1097 BITS_TO_LONGS(region_size >> PAGE_SHIFT), 1098 0); 1099 1100 INIT_LIST_HEAD(&chunk->list); 1101 1102 chunk->base_addr = (void *)aligned_addr; 1103 chunk->start_offset = start_offset; 1104 chunk->end_offset = region_size - chunk->start_offset - map_size; 1105 1106 chunk->nr_pages = region_size >> PAGE_SHIFT; 1107 region_bits = pcpu_chunk_map_bits(chunk); 1108 1109 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) * 1110 sizeof(chunk->alloc_map[0]), 0); 1111 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) * 1112 sizeof(chunk->bound_map[0]), 0); 1113 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) * 1114 sizeof(chunk->md_blocks[0]), 0); 1115 pcpu_init_md_blocks(chunk); 1116 1117 /* manage populated page bitmap */ 1118 chunk->immutable = true; 1119 bitmap_fill(chunk->populated, chunk->nr_pages); 1120 chunk->nr_populated = chunk->nr_pages; 1121 chunk->nr_empty_pop_pages = 1122 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, 1123 map_size / PCPU_MIN_ALLOC_SIZE); 1124 1125 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; 1126 chunk->free_bytes = map_size; 1127 1128 if (chunk->start_offset) { 1129 /* hide the beginning of the bitmap */ 1130 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1131 bitmap_set(chunk->alloc_map, 0, offset_bits); 1132 set_bit(0, chunk->bound_map); 1133 set_bit(offset_bits, chunk->bound_map); 1134 1135 chunk->first_bit = offset_bits; 1136 1137 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1138 } 1139 1140 if (chunk->end_offset) { 1141 /* hide the end of the bitmap */ 1142 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1143 bitmap_set(chunk->alloc_map, 1144 pcpu_chunk_map_bits(chunk) - offset_bits, 1145 offset_bits); 1146 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1147 chunk->bound_map); 1148 set_bit(region_bits, chunk->bound_map); 1149 1150 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1151 - offset_bits, offset_bits); 1152 } 1153 1154 return chunk; 1155 } 1156 1157 static struct pcpu_chunk *pcpu_alloc_chunk(void) 1158 { 1159 struct pcpu_chunk *chunk; 1160 int region_bits; 1161 1162 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 1163 if (!chunk) 1164 return NULL; 1165 1166 INIT_LIST_HEAD(&chunk->list); 1167 chunk->nr_pages = pcpu_unit_pages; 1168 region_bits = pcpu_chunk_map_bits(chunk); 1169 1170 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1171 sizeof(chunk->alloc_map[0])); 1172 if (!chunk->alloc_map) 1173 goto alloc_map_fail; 1174 1175 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1176 sizeof(chunk->bound_map[0])); 1177 if (!chunk->bound_map) 1178 goto bound_map_fail; 1179 1180 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1181 sizeof(chunk->md_blocks[0])); 1182 if (!chunk->md_blocks) 1183 goto md_blocks_fail; 1184 1185 pcpu_init_md_blocks(chunk); 1186 1187 /* init metadata */ 1188 chunk->contig_bits = region_bits; 1189 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1190 1191 return chunk; 1192 1193 md_blocks_fail: 1194 pcpu_mem_free(chunk->bound_map); 1195 bound_map_fail: 1196 pcpu_mem_free(chunk->alloc_map); 1197 alloc_map_fail: 1198 pcpu_mem_free(chunk); 1199 1200 return NULL; 1201 } 1202 1203 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1204 { 1205 if (!chunk) 1206 return; 1207 pcpu_mem_free(chunk->bound_map); 1208 pcpu_mem_free(chunk->alloc_map); 1209 pcpu_mem_free(chunk); 1210 } 1211 1212 /** 1213 * pcpu_chunk_populated - post-population bookkeeping 1214 * @chunk: pcpu_chunk which got populated 1215 * @page_start: the start page 1216 * @page_end: the end page 1217 * @for_alloc: if this is to populate for allocation 1218 * 1219 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1220 * the bookkeeping information accordingly. Must be called after each 1221 * successful population. 1222 * 1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1224 * is to serve an allocation in that area. 1225 */ 1226 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1227 int page_end, bool for_alloc) 1228 { 1229 int nr = page_end - page_start; 1230 1231 lockdep_assert_held(&pcpu_lock); 1232 1233 bitmap_set(chunk->populated, page_start, nr); 1234 chunk->nr_populated += nr; 1235 1236 if (!for_alloc) { 1237 chunk->nr_empty_pop_pages += nr; 1238 pcpu_nr_empty_pop_pages += nr; 1239 } 1240 } 1241 1242 /** 1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1244 * @chunk: pcpu_chunk which got depopulated 1245 * @page_start: the start page 1246 * @page_end: the end page 1247 * 1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1249 * Update the bookkeeping information accordingly. Must be called after 1250 * each successful depopulation. 1251 */ 1252 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1253 int page_start, int page_end) 1254 { 1255 int nr = page_end - page_start; 1256 1257 lockdep_assert_held(&pcpu_lock); 1258 1259 bitmap_clear(chunk->populated, page_start, nr); 1260 chunk->nr_populated -= nr; 1261 chunk->nr_empty_pop_pages -= nr; 1262 pcpu_nr_empty_pop_pages -= nr; 1263 } 1264 1265 /* 1266 * Chunk management implementation. 1267 * 1268 * To allow different implementations, chunk alloc/free and 1269 * [de]population are implemented in a separate file which is pulled 1270 * into this file and compiled together. The following functions 1271 * should be implemented. 1272 * 1273 * pcpu_populate_chunk - populate the specified range of a chunk 1274 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1275 * pcpu_create_chunk - create a new chunk 1276 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1277 * pcpu_addr_to_page - translate address to physical address 1278 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1279 */ 1280 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 1281 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 1282 static struct pcpu_chunk *pcpu_create_chunk(void); 1283 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1284 static struct page *pcpu_addr_to_page(void *addr); 1285 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1286 1287 #ifdef CONFIG_NEED_PER_CPU_KM 1288 #include "percpu-km.c" 1289 #else 1290 #include "percpu-vm.c" 1291 #endif 1292 1293 /** 1294 * pcpu_chunk_addr_search - determine chunk containing specified address 1295 * @addr: address for which the chunk needs to be determined. 1296 * 1297 * This is an internal function that handles all but static allocations. 1298 * Static percpu address values should never be passed into the allocator. 1299 * 1300 * RETURNS: 1301 * The address of the found chunk. 1302 */ 1303 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1304 { 1305 /* is it in the dynamic region (first chunk)? */ 1306 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1307 return pcpu_first_chunk; 1308 1309 /* is it in the reserved region? */ 1310 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1311 return pcpu_reserved_chunk; 1312 1313 /* 1314 * The address is relative to unit0 which might be unused and 1315 * thus unmapped. Offset the address to the unit space of the 1316 * current processor before looking it up in the vmalloc 1317 * space. Note that any possible cpu id can be used here, so 1318 * there's no need to worry about preemption or cpu hotplug. 1319 */ 1320 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1321 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1322 } 1323 1324 /** 1325 * pcpu_alloc - the percpu allocator 1326 * @size: size of area to allocate in bytes 1327 * @align: alignment of area (max PAGE_SIZE) 1328 * @reserved: allocate from the reserved chunk if available 1329 * @gfp: allocation flags 1330 * 1331 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1332 * contain %GFP_KERNEL, the allocation is atomic. 1333 * 1334 * RETURNS: 1335 * Percpu pointer to the allocated area on success, NULL on failure. 1336 */ 1337 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1338 gfp_t gfp) 1339 { 1340 static int warn_limit = 10; 1341 struct pcpu_chunk *chunk; 1342 const char *err; 1343 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1344 int slot, off, cpu, ret; 1345 unsigned long flags; 1346 void __percpu *ptr; 1347 size_t bits, bit_align; 1348 1349 /* 1350 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1351 * therefore alignment must be a minimum of that many bytes. 1352 * An allocation may have internal fragmentation from rounding up 1353 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1354 */ 1355 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1356 align = PCPU_MIN_ALLOC_SIZE; 1357 1358 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1359 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1360 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1361 1362 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1363 !is_power_of_2(align))) { 1364 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1365 size, align); 1366 return NULL; 1367 } 1368 1369 if (!is_atomic) 1370 mutex_lock(&pcpu_alloc_mutex); 1371 1372 spin_lock_irqsave(&pcpu_lock, flags); 1373 1374 /* serve reserved allocations from the reserved chunk if available */ 1375 if (reserved && pcpu_reserved_chunk) { 1376 chunk = pcpu_reserved_chunk; 1377 1378 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1379 if (off < 0) { 1380 err = "alloc from reserved chunk failed"; 1381 goto fail_unlock; 1382 } 1383 1384 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1385 if (off >= 0) 1386 goto area_found; 1387 1388 err = "alloc from reserved chunk failed"; 1389 goto fail_unlock; 1390 } 1391 1392 restart: 1393 /* search through normal chunks */ 1394 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1395 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1396 off = pcpu_find_block_fit(chunk, bits, bit_align, 1397 is_atomic); 1398 if (off < 0) 1399 continue; 1400 1401 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1402 if (off >= 0) 1403 goto area_found; 1404 1405 } 1406 } 1407 1408 spin_unlock_irqrestore(&pcpu_lock, flags); 1409 1410 /* 1411 * No space left. Create a new chunk. We don't want multiple 1412 * tasks to create chunks simultaneously. Serialize and create iff 1413 * there's still no empty chunk after grabbing the mutex. 1414 */ 1415 if (is_atomic) { 1416 err = "atomic alloc failed, no space left"; 1417 goto fail; 1418 } 1419 1420 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1421 chunk = pcpu_create_chunk(); 1422 if (!chunk) { 1423 err = "failed to allocate new chunk"; 1424 goto fail; 1425 } 1426 1427 spin_lock_irqsave(&pcpu_lock, flags); 1428 pcpu_chunk_relocate(chunk, -1); 1429 } else { 1430 spin_lock_irqsave(&pcpu_lock, flags); 1431 } 1432 1433 goto restart; 1434 1435 area_found: 1436 pcpu_stats_area_alloc(chunk, size); 1437 spin_unlock_irqrestore(&pcpu_lock, flags); 1438 1439 /* populate if not all pages are already there */ 1440 if (!is_atomic) { 1441 int page_start, page_end, rs, re; 1442 1443 page_start = PFN_DOWN(off); 1444 page_end = PFN_UP(off + size); 1445 1446 pcpu_for_each_unpop_region(chunk->populated, rs, re, 1447 page_start, page_end) { 1448 WARN_ON(chunk->immutable); 1449 1450 ret = pcpu_populate_chunk(chunk, rs, re); 1451 1452 spin_lock_irqsave(&pcpu_lock, flags); 1453 if (ret) { 1454 pcpu_free_area(chunk, off); 1455 err = "failed to populate"; 1456 goto fail_unlock; 1457 } 1458 pcpu_chunk_populated(chunk, rs, re, true); 1459 spin_unlock_irqrestore(&pcpu_lock, flags); 1460 } 1461 1462 mutex_unlock(&pcpu_alloc_mutex); 1463 } 1464 1465 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1466 pcpu_schedule_balance_work(); 1467 1468 /* clear the areas and return address relative to base address */ 1469 for_each_possible_cpu(cpu) 1470 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1471 1472 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1473 kmemleak_alloc_percpu(ptr, size, gfp); 1474 1475 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1476 chunk->base_addr, off, ptr); 1477 1478 return ptr; 1479 1480 fail_unlock: 1481 spin_unlock_irqrestore(&pcpu_lock, flags); 1482 fail: 1483 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1484 1485 if (!is_atomic && warn_limit) { 1486 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1487 size, align, is_atomic, err); 1488 dump_stack(); 1489 if (!--warn_limit) 1490 pr_info("limit reached, disable warning\n"); 1491 } 1492 if (is_atomic) { 1493 /* see the flag handling in pcpu_blance_workfn() */ 1494 pcpu_atomic_alloc_failed = true; 1495 pcpu_schedule_balance_work(); 1496 } else { 1497 mutex_unlock(&pcpu_alloc_mutex); 1498 } 1499 return NULL; 1500 } 1501 1502 /** 1503 * __alloc_percpu_gfp - allocate dynamic percpu area 1504 * @size: size of area to allocate in bytes 1505 * @align: alignment of area (max PAGE_SIZE) 1506 * @gfp: allocation flags 1507 * 1508 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1509 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1510 * be called from any context but is a lot more likely to fail. 1511 * 1512 * RETURNS: 1513 * Percpu pointer to the allocated area on success, NULL on failure. 1514 */ 1515 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1516 { 1517 return pcpu_alloc(size, align, false, gfp); 1518 } 1519 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1520 1521 /** 1522 * __alloc_percpu - allocate dynamic percpu area 1523 * @size: size of area to allocate in bytes 1524 * @align: alignment of area (max PAGE_SIZE) 1525 * 1526 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1527 */ 1528 void __percpu *__alloc_percpu(size_t size, size_t align) 1529 { 1530 return pcpu_alloc(size, align, false, GFP_KERNEL); 1531 } 1532 EXPORT_SYMBOL_GPL(__alloc_percpu); 1533 1534 /** 1535 * __alloc_reserved_percpu - allocate reserved percpu area 1536 * @size: size of area to allocate in bytes 1537 * @align: alignment of area (max PAGE_SIZE) 1538 * 1539 * Allocate zero-filled percpu area of @size bytes aligned at @align 1540 * from reserved percpu area if arch has set it up; otherwise, 1541 * allocation is served from the same dynamic area. Might sleep. 1542 * Might trigger writeouts. 1543 * 1544 * CONTEXT: 1545 * Does GFP_KERNEL allocation. 1546 * 1547 * RETURNS: 1548 * Percpu pointer to the allocated area on success, NULL on failure. 1549 */ 1550 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1551 { 1552 return pcpu_alloc(size, align, true, GFP_KERNEL); 1553 } 1554 1555 /** 1556 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1557 * @work: unused 1558 * 1559 * Reclaim all fully free chunks except for the first one. 1560 */ 1561 static void pcpu_balance_workfn(struct work_struct *work) 1562 { 1563 LIST_HEAD(to_free); 1564 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1565 struct pcpu_chunk *chunk, *next; 1566 int slot, nr_to_pop, ret; 1567 1568 /* 1569 * There's no reason to keep around multiple unused chunks and VM 1570 * areas can be scarce. Destroy all free chunks except for one. 1571 */ 1572 mutex_lock(&pcpu_alloc_mutex); 1573 spin_lock_irq(&pcpu_lock); 1574 1575 list_for_each_entry_safe(chunk, next, free_head, list) { 1576 WARN_ON(chunk->immutable); 1577 1578 /* spare the first one */ 1579 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1580 continue; 1581 1582 list_move(&chunk->list, &to_free); 1583 } 1584 1585 spin_unlock_irq(&pcpu_lock); 1586 1587 list_for_each_entry_safe(chunk, next, &to_free, list) { 1588 int rs, re; 1589 1590 pcpu_for_each_pop_region(chunk->populated, rs, re, 0, 1591 chunk->nr_pages) { 1592 pcpu_depopulate_chunk(chunk, rs, re); 1593 spin_lock_irq(&pcpu_lock); 1594 pcpu_chunk_depopulated(chunk, rs, re); 1595 spin_unlock_irq(&pcpu_lock); 1596 } 1597 pcpu_destroy_chunk(chunk); 1598 } 1599 1600 /* 1601 * Ensure there are certain number of free populated pages for 1602 * atomic allocs. Fill up from the most packed so that atomic 1603 * allocs don't increase fragmentation. If atomic allocation 1604 * failed previously, always populate the maximum amount. This 1605 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1606 * failing indefinitely; however, large atomic allocs are not 1607 * something we support properly and can be highly unreliable and 1608 * inefficient. 1609 */ 1610 retry_pop: 1611 if (pcpu_atomic_alloc_failed) { 1612 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1613 /* best effort anyway, don't worry about synchronization */ 1614 pcpu_atomic_alloc_failed = false; 1615 } else { 1616 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1617 pcpu_nr_empty_pop_pages, 1618 0, PCPU_EMPTY_POP_PAGES_HIGH); 1619 } 1620 1621 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1622 int nr_unpop = 0, rs, re; 1623 1624 if (!nr_to_pop) 1625 break; 1626 1627 spin_lock_irq(&pcpu_lock); 1628 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1629 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1630 if (nr_unpop) 1631 break; 1632 } 1633 spin_unlock_irq(&pcpu_lock); 1634 1635 if (!nr_unpop) 1636 continue; 1637 1638 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1639 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, 1640 chunk->nr_pages) { 1641 int nr = min(re - rs, nr_to_pop); 1642 1643 ret = pcpu_populate_chunk(chunk, rs, rs + nr); 1644 if (!ret) { 1645 nr_to_pop -= nr; 1646 spin_lock_irq(&pcpu_lock); 1647 pcpu_chunk_populated(chunk, rs, rs + nr, false); 1648 spin_unlock_irq(&pcpu_lock); 1649 } else { 1650 nr_to_pop = 0; 1651 } 1652 1653 if (!nr_to_pop) 1654 break; 1655 } 1656 } 1657 1658 if (nr_to_pop) { 1659 /* ran out of chunks to populate, create a new one and retry */ 1660 chunk = pcpu_create_chunk(); 1661 if (chunk) { 1662 spin_lock_irq(&pcpu_lock); 1663 pcpu_chunk_relocate(chunk, -1); 1664 spin_unlock_irq(&pcpu_lock); 1665 goto retry_pop; 1666 } 1667 } 1668 1669 mutex_unlock(&pcpu_alloc_mutex); 1670 } 1671 1672 /** 1673 * free_percpu - free percpu area 1674 * @ptr: pointer to area to free 1675 * 1676 * Free percpu area @ptr. 1677 * 1678 * CONTEXT: 1679 * Can be called from atomic context. 1680 */ 1681 void free_percpu(void __percpu *ptr) 1682 { 1683 void *addr; 1684 struct pcpu_chunk *chunk; 1685 unsigned long flags; 1686 int off; 1687 1688 if (!ptr) 1689 return; 1690 1691 kmemleak_free_percpu(ptr); 1692 1693 addr = __pcpu_ptr_to_addr(ptr); 1694 1695 spin_lock_irqsave(&pcpu_lock, flags); 1696 1697 chunk = pcpu_chunk_addr_search(addr); 1698 off = addr - chunk->base_addr; 1699 1700 pcpu_free_area(chunk, off); 1701 1702 /* if there are more than one fully free chunks, wake up grim reaper */ 1703 if (chunk->free_bytes == pcpu_unit_size) { 1704 struct pcpu_chunk *pos; 1705 1706 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1707 if (pos != chunk) { 1708 pcpu_schedule_balance_work(); 1709 break; 1710 } 1711 } 1712 1713 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1714 1715 spin_unlock_irqrestore(&pcpu_lock, flags); 1716 } 1717 EXPORT_SYMBOL_GPL(free_percpu); 1718 1719 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1720 { 1721 #ifdef CONFIG_SMP 1722 const size_t static_size = __per_cpu_end - __per_cpu_start; 1723 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1724 unsigned int cpu; 1725 1726 for_each_possible_cpu(cpu) { 1727 void *start = per_cpu_ptr(base, cpu); 1728 void *va = (void *)addr; 1729 1730 if (va >= start && va < start + static_size) { 1731 if (can_addr) { 1732 *can_addr = (unsigned long) (va - start); 1733 *can_addr += (unsigned long) 1734 per_cpu_ptr(base, get_boot_cpu_id()); 1735 } 1736 return true; 1737 } 1738 } 1739 #endif 1740 /* on UP, can't distinguish from other static vars, always false */ 1741 return false; 1742 } 1743 1744 /** 1745 * is_kernel_percpu_address - test whether address is from static percpu area 1746 * @addr: address to test 1747 * 1748 * Test whether @addr belongs to in-kernel static percpu area. Module 1749 * static percpu areas are not considered. For those, use 1750 * is_module_percpu_address(). 1751 * 1752 * RETURNS: 1753 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1754 */ 1755 bool is_kernel_percpu_address(unsigned long addr) 1756 { 1757 return __is_kernel_percpu_address(addr, NULL); 1758 } 1759 1760 /** 1761 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1762 * @addr: the address to be converted to physical address 1763 * 1764 * Given @addr which is dereferenceable address obtained via one of 1765 * percpu access macros, this function translates it into its physical 1766 * address. The caller is responsible for ensuring @addr stays valid 1767 * until this function finishes. 1768 * 1769 * percpu allocator has special setup for the first chunk, which currently 1770 * supports either embedding in linear address space or vmalloc mapping, 1771 * and, from the second one, the backing allocator (currently either vm or 1772 * km) provides translation. 1773 * 1774 * The addr can be translated simply without checking if it falls into the 1775 * first chunk. But the current code reflects better how percpu allocator 1776 * actually works, and the verification can discover both bugs in percpu 1777 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1778 * code. 1779 * 1780 * RETURNS: 1781 * The physical address for @addr. 1782 */ 1783 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1784 { 1785 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1786 bool in_first_chunk = false; 1787 unsigned long first_low, first_high; 1788 unsigned int cpu; 1789 1790 /* 1791 * The following test on unit_low/high isn't strictly 1792 * necessary but will speed up lookups of addresses which 1793 * aren't in the first chunk. 1794 * 1795 * The address check is against full chunk sizes. pcpu_base_addr 1796 * points to the beginning of the first chunk including the 1797 * static region. Assumes good intent as the first chunk may 1798 * not be full (ie. < pcpu_unit_pages in size). 1799 */ 1800 first_low = (unsigned long)pcpu_base_addr + 1801 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 1802 first_high = (unsigned long)pcpu_base_addr + 1803 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 1804 if ((unsigned long)addr >= first_low && 1805 (unsigned long)addr < first_high) { 1806 for_each_possible_cpu(cpu) { 1807 void *start = per_cpu_ptr(base, cpu); 1808 1809 if (addr >= start && addr < start + pcpu_unit_size) { 1810 in_first_chunk = true; 1811 break; 1812 } 1813 } 1814 } 1815 1816 if (in_first_chunk) { 1817 if (!is_vmalloc_addr(addr)) 1818 return __pa(addr); 1819 else 1820 return page_to_phys(vmalloc_to_page(addr)) + 1821 offset_in_page(addr); 1822 } else 1823 return page_to_phys(pcpu_addr_to_page(addr)) + 1824 offset_in_page(addr); 1825 } 1826 1827 /** 1828 * pcpu_alloc_alloc_info - allocate percpu allocation info 1829 * @nr_groups: the number of groups 1830 * @nr_units: the number of units 1831 * 1832 * Allocate ai which is large enough for @nr_groups groups containing 1833 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1834 * cpu_map array which is long enough for @nr_units and filled with 1835 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1836 * pointer of other groups. 1837 * 1838 * RETURNS: 1839 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1840 * failure. 1841 */ 1842 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1843 int nr_units) 1844 { 1845 struct pcpu_alloc_info *ai; 1846 size_t base_size, ai_size; 1847 void *ptr; 1848 int unit; 1849 1850 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1851 __alignof__(ai->groups[0].cpu_map[0])); 1852 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1853 1854 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1855 if (!ptr) 1856 return NULL; 1857 ai = ptr; 1858 ptr += base_size; 1859 1860 ai->groups[0].cpu_map = ptr; 1861 1862 for (unit = 0; unit < nr_units; unit++) 1863 ai->groups[0].cpu_map[unit] = NR_CPUS; 1864 1865 ai->nr_groups = nr_groups; 1866 ai->__ai_size = PFN_ALIGN(ai_size); 1867 1868 return ai; 1869 } 1870 1871 /** 1872 * pcpu_free_alloc_info - free percpu allocation info 1873 * @ai: pcpu_alloc_info to free 1874 * 1875 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1876 */ 1877 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1878 { 1879 memblock_free_early(__pa(ai), ai->__ai_size); 1880 } 1881 1882 /** 1883 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1884 * @lvl: loglevel 1885 * @ai: allocation info to dump 1886 * 1887 * Print out information about @ai using loglevel @lvl. 1888 */ 1889 static void pcpu_dump_alloc_info(const char *lvl, 1890 const struct pcpu_alloc_info *ai) 1891 { 1892 int group_width = 1, cpu_width = 1, width; 1893 char empty_str[] = "--------"; 1894 int alloc = 0, alloc_end = 0; 1895 int group, v; 1896 int upa, apl; /* units per alloc, allocs per line */ 1897 1898 v = ai->nr_groups; 1899 while (v /= 10) 1900 group_width++; 1901 1902 v = num_possible_cpus(); 1903 while (v /= 10) 1904 cpu_width++; 1905 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1906 1907 upa = ai->alloc_size / ai->unit_size; 1908 width = upa * (cpu_width + 1) + group_width + 3; 1909 apl = rounddown_pow_of_two(max(60 / width, 1)); 1910 1911 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1912 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1913 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1914 1915 for (group = 0; group < ai->nr_groups; group++) { 1916 const struct pcpu_group_info *gi = &ai->groups[group]; 1917 int unit = 0, unit_end = 0; 1918 1919 BUG_ON(gi->nr_units % upa); 1920 for (alloc_end += gi->nr_units / upa; 1921 alloc < alloc_end; alloc++) { 1922 if (!(alloc % apl)) { 1923 pr_cont("\n"); 1924 printk("%spcpu-alloc: ", lvl); 1925 } 1926 pr_cont("[%0*d] ", group_width, group); 1927 1928 for (unit_end += upa; unit < unit_end; unit++) 1929 if (gi->cpu_map[unit] != NR_CPUS) 1930 pr_cont("%0*d ", 1931 cpu_width, gi->cpu_map[unit]); 1932 else 1933 pr_cont("%s ", empty_str); 1934 } 1935 } 1936 pr_cont("\n"); 1937 } 1938 1939 /** 1940 * pcpu_setup_first_chunk - initialize the first percpu chunk 1941 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1942 * @base_addr: mapped address 1943 * 1944 * Initialize the first percpu chunk which contains the kernel static 1945 * perpcu area. This function is to be called from arch percpu area 1946 * setup path. 1947 * 1948 * @ai contains all information necessary to initialize the first 1949 * chunk and prime the dynamic percpu allocator. 1950 * 1951 * @ai->static_size is the size of static percpu area. 1952 * 1953 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1954 * reserve after the static area in the first chunk. This reserves 1955 * the first chunk such that it's available only through reserved 1956 * percpu allocation. This is primarily used to serve module percpu 1957 * static areas on architectures where the addressing model has 1958 * limited offset range for symbol relocations to guarantee module 1959 * percpu symbols fall inside the relocatable range. 1960 * 1961 * @ai->dyn_size determines the number of bytes available for dynamic 1962 * allocation in the first chunk. The area between @ai->static_size + 1963 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1964 * 1965 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1966 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1967 * @ai->dyn_size. 1968 * 1969 * @ai->atom_size is the allocation atom size and used as alignment 1970 * for vm areas. 1971 * 1972 * @ai->alloc_size is the allocation size and always multiple of 1973 * @ai->atom_size. This is larger than @ai->atom_size if 1974 * @ai->unit_size is larger than @ai->atom_size. 1975 * 1976 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1977 * percpu areas. Units which should be colocated are put into the 1978 * same group. Dynamic VM areas will be allocated according to these 1979 * groupings. If @ai->nr_groups is zero, a single group containing 1980 * all units is assumed. 1981 * 1982 * The caller should have mapped the first chunk at @base_addr and 1983 * copied static data to each unit. 1984 * 1985 * The first chunk will always contain a static and a dynamic region. 1986 * However, the static region is not managed by any chunk. If the first 1987 * chunk also contains a reserved region, it is served by two chunks - 1988 * one for the reserved region and one for the dynamic region. They 1989 * share the same vm, but use offset regions in the area allocation map. 1990 * The chunk serving the dynamic region is circulated in the chunk slots 1991 * and available for dynamic allocation like any other chunk. 1992 * 1993 * RETURNS: 1994 * 0 on success, -errno on failure. 1995 */ 1996 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1997 void *base_addr) 1998 { 1999 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2000 size_t static_size, dyn_size; 2001 struct pcpu_chunk *chunk; 2002 unsigned long *group_offsets; 2003 size_t *group_sizes; 2004 unsigned long *unit_off; 2005 unsigned int cpu; 2006 int *unit_map; 2007 int group, unit, i; 2008 int map_size; 2009 unsigned long tmp_addr; 2010 2011 #define PCPU_SETUP_BUG_ON(cond) do { \ 2012 if (unlikely(cond)) { \ 2013 pr_emerg("failed to initialize, %s\n", #cond); \ 2014 pr_emerg("cpu_possible_mask=%*pb\n", \ 2015 cpumask_pr_args(cpu_possible_mask)); \ 2016 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2017 BUG(); \ 2018 } \ 2019 } while (0) 2020 2021 /* sanity checks */ 2022 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2023 #ifdef CONFIG_SMP 2024 PCPU_SETUP_BUG_ON(!ai->static_size); 2025 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2026 #endif 2027 PCPU_SETUP_BUG_ON(!base_addr); 2028 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2029 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2030 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2031 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2032 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2033 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2034 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2035 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2036 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2037 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2038 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2039 2040 /* process group information and build config tables accordingly */ 2041 group_offsets = memblock_virt_alloc(ai->nr_groups * 2042 sizeof(group_offsets[0]), 0); 2043 group_sizes = memblock_virt_alloc(ai->nr_groups * 2044 sizeof(group_sizes[0]), 0); 2045 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 2046 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 2047 2048 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2049 unit_map[cpu] = UINT_MAX; 2050 2051 pcpu_low_unit_cpu = NR_CPUS; 2052 pcpu_high_unit_cpu = NR_CPUS; 2053 2054 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2055 const struct pcpu_group_info *gi = &ai->groups[group]; 2056 2057 group_offsets[group] = gi->base_offset; 2058 group_sizes[group] = gi->nr_units * ai->unit_size; 2059 2060 for (i = 0; i < gi->nr_units; i++) { 2061 cpu = gi->cpu_map[i]; 2062 if (cpu == NR_CPUS) 2063 continue; 2064 2065 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2066 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2067 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2068 2069 unit_map[cpu] = unit + i; 2070 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2071 2072 /* determine low/high unit_cpu */ 2073 if (pcpu_low_unit_cpu == NR_CPUS || 2074 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2075 pcpu_low_unit_cpu = cpu; 2076 if (pcpu_high_unit_cpu == NR_CPUS || 2077 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2078 pcpu_high_unit_cpu = cpu; 2079 } 2080 } 2081 pcpu_nr_units = unit; 2082 2083 for_each_possible_cpu(cpu) 2084 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2085 2086 /* we're done parsing the input, undefine BUG macro and dump config */ 2087 #undef PCPU_SETUP_BUG_ON 2088 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2089 2090 pcpu_nr_groups = ai->nr_groups; 2091 pcpu_group_offsets = group_offsets; 2092 pcpu_group_sizes = group_sizes; 2093 pcpu_unit_map = unit_map; 2094 pcpu_unit_offsets = unit_off; 2095 2096 /* determine basic parameters */ 2097 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2098 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2099 pcpu_atom_size = ai->atom_size; 2100 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2101 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2102 2103 pcpu_stats_save_ai(ai); 2104 2105 /* 2106 * Allocate chunk slots. The additional last slot is for 2107 * empty chunks. 2108 */ 2109 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2110 pcpu_slot = memblock_virt_alloc( 2111 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 2112 for (i = 0; i < pcpu_nr_slots; i++) 2113 INIT_LIST_HEAD(&pcpu_slot[i]); 2114 2115 /* 2116 * The end of the static region needs to be aligned with the 2117 * minimum allocation size as this offsets the reserved and 2118 * dynamic region. The first chunk ends page aligned by 2119 * expanding the dynamic region, therefore the dynamic region 2120 * can be shrunk to compensate while still staying above the 2121 * configured sizes. 2122 */ 2123 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2124 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2125 2126 /* 2127 * Initialize first chunk. 2128 * If the reserved_size is non-zero, this initializes the reserved 2129 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2130 * and the dynamic region is initialized here. The first chunk, 2131 * pcpu_first_chunk, will always point to the chunk that serves 2132 * the dynamic region. 2133 */ 2134 tmp_addr = (unsigned long)base_addr + static_size; 2135 map_size = ai->reserved_size ?: dyn_size; 2136 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2137 2138 /* init dynamic chunk if necessary */ 2139 if (ai->reserved_size) { 2140 pcpu_reserved_chunk = chunk; 2141 2142 tmp_addr = (unsigned long)base_addr + static_size + 2143 ai->reserved_size; 2144 map_size = dyn_size; 2145 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2146 } 2147 2148 /* link the first chunk in */ 2149 pcpu_first_chunk = chunk; 2150 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2151 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2152 2153 pcpu_stats_chunk_alloc(); 2154 trace_percpu_create_chunk(base_addr); 2155 2156 /* we're done */ 2157 pcpu_base_addr = base_addr; 2158 return 0; 2159 } 2160 2161 #ifdef CONFIG_SMP 2162 2163 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2164 [PCPU_FC_AUTO] = "auto", 2165 [PCPU_FC_EMBED] = "embed", 2166 [PCPU_FC_PAGE] = "page", 2167 }; 2168 2169 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2170 2171 static int __init percpu_alloc_setup(char *str) 2172 { 2173 if (!str) 2174 return -EINVAL; 2175 2176 if (0) 2177 /* nada */; 2178 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2179 else if (!strcmp(str, "embed")) 2180 pcpu_chosen_fc = PCPU_FC_EMBED; 2181 #endif 2182 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2183 else if (!strcmp(str, "page")) 2184 pcpu_chosen_fc = PCPU_FC_PAGE; 2185 #endif 2186 else 2187 pr_warn("unknown allocator %s specified\n", str); 2188 2189 return 0; 2190 } 2191 early_param("percpu_alloc", percpu_alloc_setup); 2192 2193 /* 2194 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2195 * Build it if needed by the arch config or the generic setup is going 2196 * to be used. 2197 */ 2198 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2199 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2200 #define BUILD_EMBED_FIRST_CHUNK 2201 #endif 2202 2203 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2204 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2205 #define BUILD_PAGE_FIRST_CHUNK 2206 #endif 2207 2208 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2209 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2210 /** 2211 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2212 * @reserved_size: the size of reserved percpu area in bytes 2213 * @dyn_size: minimum free size for dynamic allocation in bytes 2214 * @atom_size: allocation atom size 2215 * @cpu_distance_fn: callback to determine distance between cpus, optional 2216 * 2217 * This function determines grouping of units, their mappings to cpus 2218 * and other parameters considering needed percpu size, allocation 2219 * atom size and distances between CPUs. 2220 * 2221 * Groups are always multiples of atom size and CPUs which are of 2222 * LOCAL_DISTANCE both ways are grouped together and share space for 2223 * units in the same group. The returned configuration is guaranteed 2224 * to have CPUs on different nodes on different groups and >=75% usage 2225 * of allocated virtual address space. 2226 * 2227 * RETURNS: 2228 * On success, pointer to the new allocation_info is returned. On 2229 * failure, ERR_PTR value is returned. 2230 */ 2231 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2232 size_t reserved_size, size_t dyn_size, 2233 size_t atom_size, 2234 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2235 { 2236 static int group_map[NR_CPUS] __initdata; 2237 static int group_cnt[NR_CPUS] __initdata; 2238 const size_t static_size = __per_cpu_end - __per_cpu_start; 2239 int nr_groups = 1, nr_units = 0; 2240 size_t size_sum, min_unit_size, alloc_size; 2241 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2242 int last_allocs, group, unit; 2243 unsigned int cpu, tcpu; 2244 struct pcpu_alloc_info *ai; 2245 unsigned int *cpu_map; 2246 2247 /* this function may be called multiple times */ 2248 memset(group_map, 0, sizeof(group_map)); 2249 memset(group_cnt, 0, sizeof(group_cnt)); 2250 2251 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2252 size_sum = PFN_ALIGN(static_size + reserved_size + 2253 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2254 dyn_size = size_sum - static_size - reserved_size; 2255 2256 /* 2257 * Determine min_unit_size, alloc_size and max_upa such that 2258 * alloc_size is multiple of atom_size and is the smallest 2259 * which can accommodate 4k aligned segments which are equal to 2260 * or larger than min_unit_size. 2261 */ 2262 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2263 2264 /* determine the maximum # of units that can fit in an allocation */ 2265 alloc_size = roundup(min_unit_size, atom_size); 2266 upa = alloc_size / min_unit_size; 2267 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2268 upa--; 2269 max_upa = upa; 2270 2271 /* group cpus according to their proximity */ 2272 for_each_possible_cpu(cpu) { 2273 group = 0; 2274 next_group: 2275 for_each_possible_cpu(tcpu) { 2276 if (cpu == tcpu) 2277 break; 2278 if (group_map[tcpu] == group && cpu_distance_fn && 2279 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2280 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2281 group++; 2282 nr_groups = max(nr_groups, group + 1); 2283 goto next_group; 2284 } 2285 } 2286 group_map[cpu] = group; 2287 group_cnt[group]++; 2288 } 2289 2290 /* 2291 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2292 * Expand the unit_size until we use >= 75% of the units allocated. 2293 * Related to atom_size, which could be much larger than the unit_size. 2294 */ 2295 last_allocs = INT_MAX; 2296 for (upa = max_upa; upa; upa--) { 2297 int allocs = 0, wasted = 0; 2298 2299 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2300 continue; 2301 2302 for (group = 0; group < nr_groups; group++) { 2303 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2304 allocs += this_allocs; 2305 wasted += this_allocs * upa - group_cnt[group]; 2306 } 2307 2308 /* 2309 * Don't accept if wastage is over 1/3. The 2310 * greater-than comparison ensures upa==1 always 2311 * passes the following check. 2312 */ 2313 if (wasted > num_possible_cpus() / 3) 2314 continue; 2315 2316 /* and then don't consume more memory */ 2317 if (allocs > last_allocs) 2318 break; 2319 last_allocs = allocs; 2320 best_upa = upa; 2321 } 2322 upa = best_upa; 2323 2324 /* allocate and fill alloc_info */ 2325 for (group = 0; group < nr_groups; group++) 2326 nr_units += roundup(group_cnt[group], upa); 2327 2328 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2329 if (!ai) 2330 return ERR_PTR(-ENOMEM); 2331 cpu_map = ai->groups[0].cpu_map; 2332 2333 for (group = 0; group < nr_groups; group++) { 2334 ai->groups[group].cpu_map = cpu_map; 2335 cpu_map += roundup(group_cnt[group], upa); 2336 } 2337 2338 ai->static_size = static_size; 2339 ai->reserved_size = reserved_size; 2340 ai->dyn_size = dyn_size; 2341 ai->unit_size = alloc_size / upa; 2342 ai->atom_size = atom_size; 2343 ai->alloc_size = alloc_size; 2344 2345 for (group = 0, unit = 0; group_cnt[group]; group++) { 2346 struct pcpu_group_info *gi = &ai->groups[group]; 2347 2348 /* 2349 * Initialize base_offset as if all groups are located 2350 * back-to-back. The caller should update this to 2351 * reflect actual allocation. 2352 */ 2353 gi->base_offset = unit * ai->unit_size; 2354 2355 for_each_possible_cpu(cpu) 2356 if (group_map[cpu] == group) 2357 gi->cpu_map[gi->nr_units++] = cpu; 2358 gi->nr_units = roundup(gi->nr_units, upa); 2359 unit += gi->nr_units; 2360 } 2361 BUG_ON(unit != nr_units); 2362 2363 return ai; 2364 } 2365 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2366 2367 #if defined(BUILD_EMBED_FIRST_CHUNK) 2368 /** 2369 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2370 * @reserved_size: the size of reserved percpu area in bytes 2371 * @dyn_size: minimum free size for dynamic allocation in bytes 2372 * @atom_size: allocation atom size 2373 * @cpu_distance_fn: callback to determine distance between cpus, optional 2374 * @alloc_fn: function to allocate percpu page 2375 * @free_fn: function to free percpu page 2376 * 2377 * This is a helper to ease setting up embedded first percpu chunk and 2378 * can be called where pcpu_setup_first_chunk() is expected. 2379 * 2380 * If this function is used to setup the first chunk, it is allocated 2381 * by calling @alloc_fn and used as-is without being mapped into 2382 * vmalloc area. Allocations are always whole multiples of @atom_size 2383 * aligned to @atom_size. 2384 * 2385 * This enables the first chunk to piggy back on the linear physical 2386 * mapping which often uses larger page size. Please note that this 2387 * can result in very sparse cpu->unit mapping on NUMA machines thus 2388 * requiring large vmalloc address space. Don't use this allocator if 2389 * vmalloc space is not orders of magnitude larger than distances 2390 * between node memory addresses (ie. 32bit NUMA machines). 2391 * 2392 * @dyn_size specifies the minimum dynamic area size. 2393 * 2394 * If the needed size is smaller than the minimum or specified unit 2395 * size, the leftover is returned using @free_fn. 2396 * 2397 * RETURNS: 2398 * 0 on success, -errno on failure. 2399 */ 2400 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2401 size_t atom_size, 2402 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2403 pcpu_fc_alloc_fn_t alloc_fn, 2404 pcpu_fc_free_fn_t free_fn) 2405 { 2406 void *base = (void *)ULONG_MAX; 2407 void **areas = NULL; 2408 struct pcpu_alloc_info *ai; 2409 size_t size_sum, areas_size; 2410 unsigned long max_distance; 2411 int group, i, highest_group, rc; 2412 2413 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2414 cpu_distance_fn); 2415 if (IS_ERR(ai)) 2416 return PTR_ERR(ai); 2417 2418 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2419 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2420 2421 areas = memblock_virt_alloc_nopanic(areas_size, 0); 2422 if (!areas) { 2423 rc = -ENOMEM; 2424 goto out_free; 2425 } 2426 2427 /* allocate, copy and determine base address & max_distance */ 2428 highest_group = 0; 2429 for (group = 0; group < ai->nr_groups; group++) { 2430 struct pcpu_group_info *gi = &ai->groups[group]; 2431 unsigned int cpu = NR_CPUS; 2432 void *ptr; 2433 2434 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2435 cpu = gi->cpu_map[i]; 2436 BUG_ON(cpu == NR_CPUS); 2437 2438 /* allocate space for the whole group */ 2439 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2440 if (!ptr) { 2441 rc = -ENOMEM; 2442 goto out_free_areas; 2443 } 2444 /* kmemleak tracks the percpu allocations separately */ 2445 kmemleak_free(ptr); 2446 areas[group] = ptr; 2447 2448 base = min(ptr, base); 2449 if (ptr > areas[highest_group]) 2450 highest_group = group; 2451 } 2452 max_distance = areas[highest_group] - base; 2453 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2454 2455 /* warn if maximum distance is further than 75% of vmalloc space */ 2456 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2457 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2458 max_distance, VMALLOC_TOTAL); 2459 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2460 /* and fail if we have fallback */ 2461 rc = -EINVAL; 2462 goto out_free_areas; 2463 #endif 2464 } 2465 2466 /* 2467 * Copy data and free unused parts. This should happen after all 2468 * allocations are complete; otherwise, we may end up with 2469 * overlapping groups. 2470 */ 2471 for (group = 0; group < ai->nr_groups; group++) { 2472 struct pcpu_group_info *gi = &ai->groups[group]; 2473 void *ptr = areas[group]; 2474 2475 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2476 if (gi->cpu_map[i] == NR_CPUS) { 2477 /* unused unit, free whole */ 2478 free_fn(ptr, ai->unit_size); 2479 continue; 2480 } 2481 /* copy and return the unused part */ 2482 memcpy(ptr, __per_cpu_load, ai->static_size); 2483 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2484 } 2485 } 2486 2487 /* base address is now known, determine group base offsets */ 2488 for (group = 0; group < ai->nr_groups; group++) { 2489 ai->groups[group].base_offset = areas[group] - base; 2490 } 2491 2492 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2493 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2494 ai->dyn_size, ai->unit_size); 2495 2496 rc = pcpu_setup_first_chunk(ai, base); 2497 goto out_free; 2498 2499 out_free_areas: 2500 for (group = 0; group < ai->nr_groups; group++) 2501 if (areas[group]) 2502 free_fn(areas[group], 2503 ai->groups[group].nr_units * ai->unit_size); 2504 out_free: 2505 pcpu_free_alloc_info(ai); 2506 if (areas) 2507 memblock_free_early(__pa(areas), areas_size); 2508 return rc; 2509 } 2510 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2511 2512 #ifdef BUILD_PAGE_FIRST_CHUNK 2513 /** 2514 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2515 * @reserved_size: the size of reserved percpu area in bytes 2516 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2517 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2518 * @populate_pte_fn: function to populate pte 2519 * 2520 * This is a helper to ease setting up page-remapped first percpu 2521 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2522 * 2523 * This is the basic allocator. Static percpu area is allocated 2524 * page-by-page into vmalloc area. 2525 * 2526 * RETURNS: 2527 * 0 on success, -errno on failure. 2528 */ 2529 int __init pcpu_page_first_chunk(size_t reserved_size, 2530 pcpu_fc_alloc_fn_t alloc_fn, 2531 pcpu_fc_free_fn_t free_fn, 2532 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2533 { 2534 static struct vm_struct vm; 2535 struct pcpu_alloc_info *ai; 2536 char psize_str[16]; 2537 int unit_pages; 2538 size_t pages_size; 2539 struct page **pages; 2540 int unit, i, j, rc; 2541 int upa; 2542 int nr_g0_units; 2543 2544 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2545 2546 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2547 if (IS_ERR(ai)) 2548 return PTR_ERR(ai); 2549 BUG_ON(ai->nr_groups != 1); 2550 upa = ai->alloc_size/ai->unit_size; 2551 nr_g0_units = roundup(num_possible_cpus(), upa); 2552 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) { 2553 pcpu_free_alloc_info(ai); 2554 return -EINVAL; 2555 } 2556 2557 unit_pages = ai->unit_size >> PAGE_SHIFT; 2558 2559 /* unaligned allocations can't be freed, round up to page size */ 2560 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2561 sizeof(pages[0])); 2562 pages = memblock_virt_alloc(pages_size, 0); 2563 2564 /* allocate pages */ 2565 j = 0; 2566 for (unit = 0; unit < num_possible_cpus(); unit++) { 2567 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2568 for (i = 0; i < unit_pages; i++) { 2569 void *ptr; 2570 2571 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2572 if (!ptr) { 2573 pr_warn("failed to allocate %s page for cpu%u\n", 2574 psize_str, cpu); 2575 goto enomem; 2576 } 2577 /* kmemleak tracks the percpu allocations separately */ 2578 kmemleak_free(ptr); 2579 pages[j++] = virt_to_page(ptr); 2580 } 2581 } 2582 2583 /* allocate vm area, map the pages and copy static data */ 2584 vm.flags = VM_ALLOC; 2585 vm.size = num_possible_cpus() * ai->unit_size; 2586 vm_area_register_early(&vm, PAGE_SIZE); 2587 2588 for (unit = 0; unit < num_possible_cpus(); unit++) { 2589 unsigned long unit_addr = 2590 (unsigned long)vm.addr + unit * ai->unit_size; 2591 2592 for (i = 0; i < unit_pages; i++) 2593 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2594 2595 /* pte already populated, the following shouldn't fail */ 2596 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2597 unit_pages); 2598 if (rc < 0) 2599 panic("failed to map percpu area, err=%d\n", rc); 2600 2601 /* 2602 * FIXME: Archs with virtual cache should flush local 2603 * cache for the linear mapping here - something 2604 * equivalent to flush_cache_vmap() on the local cpu. 2605 * flush_cache_vmap() can't be used as most supporting 2606 * data structures are not set up yet. 2607 */ 2608 2609 /* copy static data */ 2610 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2611 } 2612 2613 /* we're ready, commit */ 2614 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2615 unit_pages, psize_str, vm.addr, ai->static_size, 2616 ai->reserved_size, ai->dyn_size); 2617 2618 rc = pcpu_setup_first_chunk(ai, vm.addr); 2619 goto out_free_ar; 2620 2621 enomem: 2622 while (--j >= 0) 2623 free_fn(page_address(pages[j]), PAGE_SIZE); 2624 rc = -ENOMEM; 2625 out_free_ar: 2626 memblock_free_early(__pa(pages), pages_size); 2627 pcpu_free_alloc_info(ai); 2628 return rc; 2629 } 2630 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2631 2632 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2633 /* 2634 * Generic SMP percpu area setup. 2635 * 2636 * The embedding helper is used because its behavior closely resembles 2637 * the original non-dynamic generic percpu area setup. This is 2638 * important because many archs have addressing restrictions and might 2639 * fail if the percpu area is located far away from the previous 2640 * location. As an added bonus, in non-NUMA cases, embedding is 2641 * generally a good idea TLB-wise because percpu area can piggy back 2642 * on the physical linear memory mapping which uses large page 2643 * mappings on applicable archs. 2644 */ 2645 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2646 EXPORT_SYMBOL(__per_cpu_offset); 2647 2648 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2649 size_t align) 2650 { 2651 return memblock_virt_alloc_from_nopanic( 2652 size, align, __pa(MAX_DMA_ADDRESS)); 2653 } 2654 2655 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2656 { 2657 memblock_free_early(__pa(ptr), size); 2658 } 2659 2660 void __init setup_per_cpu_areas(void) 2661 { 2662 unsigned long delta; 2663 unsigned int cpu; 2664 int rc; 2665 2666 /* 2667 * Always reserve area for module percpu variables. That's 2668 * what the legacy allocator did. 2669 */ 2670 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2671 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2672 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2673 if (rc < 0) 2674 panic("Failed to initialize percpu areas."); 2675 2676 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2677 for_each_possible_cpu(cpu) 2678 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2679 } 2680 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2681 2682 #else /* CONFIG_SMP */ 2683 2684 /* 2685 * UP percpu area setup. 2686 * 2687 * UP always uses km-based percpu allocator with identity mapping. 2688 * Static percpu variables are indistinguishable from the usual static 2689 * variables and don't require any special preparation. 2690 */ 2691 void __init setup_per_cpu_areas(void) 2692 { 2693 const size_t unit_size = 2694 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2695 PERCPU_DYNAMIC_RESERVE)); 2696 struct pcpu_alloc_info *ai; 2697 void *fc; 2698 2699 ai = pcpu_alloc_alloc_info(1, 1); 2700 fc = memblock_virt_alloc_from_nopanic(unit_size, 2701 PAGE_SIZE, 2702 __pa(MAX_DMA_ADDRESS)); 2703 if (!ai || !fc) 2704 panic("Failed to allocate memory for percpu areas."); 2705 /* kmemleak tracks the percpu allocations separately */ 2706 kmemleak_free(fc); 2707 2708 ai->dyn_size = unit_size; 2709 ai->unit_size = unit_size; 2710 ai->atom_size = unit_size; 2711 ai->alloc_size = unit_size; 2712 ai->groups[0].nr_units = 1; 2713 ai->groups[0].cpu_map[0] = 0; 2714 2715 if (pcpu_setup_first_chunk(ai, fc) < 0) 2716 panic("Failed to initialize percpu areas."); 2717 } 2718 2719 #endif /* CONFIG_SMP */ 2720 2721 /* 2722 * Percpu allocator is initialized early during boot when neither slab or 2723 * workqueue is available. Plug async management until everything is up 2724 * and running. 2725 */ 2726 static int __init percpu_enable_async(void) 2727 { 2728 pcpu_async_enabled = true; 2729 return 0; 2730 } 2731 subsys_initcall(percpu_enable_async); 2732