1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * Copyright (C) 2017 Facebook Inc. 8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com> 9 * 10 * This file is released under the GPLv2 license. 11 * 12 * The percpu allocator handles both static and dynamic areas. Percpu 13 * areas are allocated in chunks which are divided into units. There is 14 * a 1-to-1 mapping for units to possible cpus. These units are grouped 15 * based on NUMA properties of the machine. 16 * 17 * c0 c1 c2 18 * ------------------- ------------------- ------------ 19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 20 * ------------------- ...... ------------------- .... ------------ 21 * 22 * Allocation is done by offsets into a unit's address space. Ie., an 23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 25 * and even sparse. Access is handled by configuring percpu base 26 * registers according to the cpu to unit mappings and offsetting the 27 * base address using pcpu_unit_size. 28 * 29 * There is special consideration for the first chunk which must handle 30 * the static percpu variables in the kernel image as allocation services 31 * are not online yet. In short, the first chunk is structured like so: 32 * 33 * <Static | [Reserved] | Dynamic> 34 * 35 * The static data is copied from the original section managed by the 36 * linker. The reserved section, if non-zero, primarily manages static 37 * percpu variables from kernel modules. Finally, the dynamic section 38 * takes care of normal allocations. 39 * 40 * The allocator organizes chunks into lists according to free size and 41 * tries to allocate from the fullest chunk first. Each chunk is managed 42 * by a bitmap with metadata blocks. The allocation map is updated on 43 * every allocation and free to reflect the current state while the boundary 44 * map is only updated on allocation. Each metadata block contains 45 * information to help mitigate the need to iterate over large portions 46 * of the bitmap. The reverse mapping from page to chunk is stored in 47 * the page's index. Lastly, units are lazily backed and grow in unison. 48 * 49 * There is a unique conversion that goes on here between bytes and bits. 50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 51 * tracks the number of pages it is responsible for in nr_pages. Helper 52 * functions are used to convert from between the bytes, bits, and blocks. 53 * All hints are managed in bits unless explicitly stated. 54 * 55 * To use this allocator, arch code should do the following: 56 * 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 58 * regular address to percpu pointer and back if they need to be 59 * different from the default 60 * 61 * - use pcpu_setup_first_chunk() during percpu area initialization to 62 * setup the first chunk containing the kernel static percpu area 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 67 #include <linux/bitmap.h> 68 #include <linux/memblock.h> 69 #include <linux/err.h> 70 #include <linux/lcm.h> 71 #include <linux/list.h> 72 #include <linux/log2.h> 73 #include <linux/mm.h> 74 #include <linux/module.h> 75 #include <linux/mutex.h> 76 #include <linux/percpu.h> 77 #include <linux/pfn.h> 78 #include <linux/slab.h> 79 #include <linux/spinlock.h> 80 #include <linux/vmalloc.h> 81 #include <linux/workqueue.h> 82 #include <linux/kmemleak.h> 83 #include <linux/sched.h> 84 85 #include <asm/cacheflush.h> 86 #include <asm/sections.h> 87 #include <asm/tlbflush.h> 88 #include <asm/io.h> 89 90 #define CREATE_TRACE_POINTS 91 #include <trace/events/percpu.h> 92 93 #include "percpu-internal.h" 94 95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 96 #define PCPU_SLOT_BASE_SHIFT 5 97 98 #define PCPU_EMPTY_POP_PAGES_LOW 2 99 #define PCPU_EMPTY_POP_PAGES_HIGH 4 100 101 #ifdef CONFIG_SMP 102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 103 #ifndef __addr_to_pcpu_ptr 104 #define __addr_to_pcpu_ptr(addr) \ 105 (void __percpu *)((unsigned long)(addr) - \ 106 (unsigned long)pcpu_base_addr + \ 107 (unsigned long)__per_cpu_start) 108 #endif 109 #ifndef __pcpu_ptr_to_addr 110 #define __pcpu_ptr_to_addr(ptr) \ 111 (void __force *)((unsigned long)(ptr) + \ 112 (unsigned long)pcpu_base_addr - \ 113 (unsigned long)__per_cpu_start) 114 #endif 115 #else /* CONFIG_SMP */ 116 /* on UP, it's always identity mapped */ 117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 119 #endif /* CONFIG_SMP */ 120 121 static int pcpu_unit_pages __ro_after_init; 122 static int pcpu_unit_size __ro_after_init; 123 static int pcpu_nr_units __ro_after_init; 124 static int pcpu_atom_size __ro_after_init; 125 int pcpu_nr_slots __ro_after_init; 126 static size_t pcpu_chunk_struct_size __ro_after_init; 127 128 /* cpus with the lowest and highest unit addresses */ 129 static unsigned int pcpu_low_unit_cpu __ro_after_init; 130 static unsigned int pcpu_high_unit_cpu __ro_after_init; 131 132 /* the address of the first chunk which starts with the kernel static area */ 133 void *pcpu_base_addr __ro_after_init; 134 EXPORT_SYMBOL_GPL(pcpu_base_addr); 135 136 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 137 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 138 139 /* group information, used for vm allocation */ 140 static int pcpu_nr_groups __ro_after_init; 141 static const unsigned long *pcpu_group_offsets __ro_after_init; 142 static const size_t *pcpu_group_sizes __ro_after_init; 143 144 /* 145 * The first chunk which always exists. Note that unlike other 146 * chunks, this one can be allocated and mapped in several different 147 * ways and thus often doesn't live in the vmalloc area. 148 */ 149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 150 151 /* 152 * Optional reserved chunk. This chunk reserves part of the first 153 * chunk and serves it for reserved allocations. When the reserved 154 * region doesn't exist, the following variable is NULL. 155 */ 156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 157 158 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 159 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 160 161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 162 163 /* chunks which need their map areas extended, protected by pcpu_lock */ 164 static LIST_HEAD(pcpu_map_extend_chunks); 165 166 /* 167 * The number of empty populated pages, protected by pcpu_lock. The 168 * reserved chunk doesn't contribute to the count. 169 */ 170 int pcpu_nr_empty_pop_pages; 171 172 /* 173 * The number of populated pages in use by the allocator, protected by 174 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 175 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 176 * and increments/decrements this count by 1). 177 */ 178 static unsigned long pcpu_nr_populated; 179 180 /* 181 * Balance work is used to populate or destroy chunks asynchronously. We 182 * try to keep the number of populated free pages between 183 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 184 * empty chunk. 185 */ 186 static void pcpu_balance_workfn(struct work_struct *work); 187 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 188 static bool pcpu_async_enabled __read_mostly; 189 static bool pcpu_atomic_alloc_failed; 190 191 static void pcpu_schedule_balance_work(void) 192 { 193 if (pcpu_async_enabled) 194 schedule_work(&pcpu_balance_work); 195 } 196 197 /** 198 * pcpu_addr_in_chunk - check if the address is served from this chunk 199 * @chunk: chunk of interest 200 * @addr: percpu address 201 * 202 * RETURNS: 203 * True if the address is served from this chunk. 204 */ 205 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 206 { 207 void *start_addr, *end_addr; 208 209 if (!chunk) 210 return false; 211 212 start_addr = chunk->base_addr + chunk->start_offset; 213 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 214 chunk->end_offset; 215 216 return addr >= start_addr && addr < end_addr; 217 } 218 219 static int __pcpu_size_to_slot(int size) 220 { 221 int highbit = fls(size); /* size is in bytes */ 222 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 223 } 224 225 static int pcpu_size_to_slot(int size) 226 { 227 if (size == pcpu_unit_size) 228 return pcpu_nr_slots - 1; 229 return __pcpu_size_to_slot(size); 230 } 231 232 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 233 { 234 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) 235 return 0; 236 237 return pcpu_size_to_slot(chunk->free_bytes); 238 } 239 240 /* set the pointer to a chunk in a page struct */ 241 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 242 { 243 page->index = (unsigned long)pcpu; 244 } 245 246 /* obtain pointer to a chunk from a page struct */ 247 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 248 { 249 return (struct pcpu_chunk *)page->index; 250 } 251 252 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 253 { 254 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 255 } 256 257 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 258 { 259 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 260 } 261 262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 263 unsigned int cpu, int page_idx) 264 { 265 return (unsigned long)chunk->base_addr + 266 pcpu_unit_page_offset(cpu, page_idx); 267 } 268 269 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) 270 { 271 *rs = find_next_zero_bit(bitmap, end, *rs); 272 *re = find_next_bit(bitmap, end, *rs + 1); 273 } 274 275 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) 276 { 277 *rs = find_next_bit(bitmap, end, *rs); 278 *re = find_next_zero_bit(bitmap, end, *rs + 1); 279 } 280 281 /* 282 * Bitmap region iterators. Iterates over the bitmap between 283 * [@start, @end) in @chunk. @rs and @re should be integer variables 284 * and will be set to start and end index of the current free region. 285 */ 286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ 287 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ 288 (rs) < (re); \ 289 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) 290 291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ 292 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ 293 (rs) < (re); \ 294 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) 295 296 /* 297 * The following are helper functions to help access bitmaps and convert 298 * between bitmap offsets to address offsets. 299 */ 300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 301 { 302 return chunk->alloc_map + 303 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 304 } 305 306 static unsigned long pcpu_off_to_block_index(int off) 307 { 308 return off / PCPU_BITMAP_BLOCK_BITS; 309 } 310 311 static unsigned long pcpu_off_to_block_off(int off) 312 { 313 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 314 } 315 316 static unsigned long pcpu_block_off_to_off(int index, int off) 317 { 318 return index * PCPU_BITMAP_BLOCK_BITS + off; 319 } 320 321 /** 322 * pcpu_next_md_free_region - finds the next hint free area 323 * @chunk: chunk of interest 324 * @bit_off: chunk offset 325 * @bits: size of free area 326 * 327 * Helper function for pcpu_for_each_md_free_region. It checks 328 * block->contig_hint and performs aggregation across blocks to find the 329 * next hint. It modifies bit_off and bits in-place to be consumed in the 330 * loop. 331 */ 332 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 333 int *bits) 334 { 335 int i = pcpu_off_to_block_index(*bit_off); 336 int block_off = pcpu_off_to_block_off(*bit_off); 337 struct pcpu_block_md *block; 338 339 *bits = 0; 340 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 341 block++, i++) { 342 /* handles contig area across blocks */ 343 if (*bits) { 344 *bits += block->left_free; 345 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 346 continue; 347 return; 348 } 349 350 /* 351 * This checks three things. First is there a contig_hint to 352 * check. Second, have we checked this hint before by 353 * comparing the block_off. Third, is this the same as the 354 * right contig hint. In the last case, it spills over into 355 * the next block and should be handled by the contig area 356 * across blocks code. 357 */ 358 *bits = block->contig_hint; 359 if (*bits && block->contig_hint_start >= block_off && 360 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 361 *bit_off = pcpu_block_off_to_off(i, 362 block->contig_hint_start); 363 return; 364 } 365 /* reset to satisfy the second predicate above */ 366 block_off = 0; 367 368 *bits = block->right_free; 369 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 370 } 371 } 372 373 /** 374 * pcpu_next_fit_region - finds fit areas for a given allocation request 375 * @chunk: chunk of interest 376 * @alloc_bits: size of allocation 377 * @align: alignment of area (max PAGE_SIZE) 378 * @bit_off: chunk offset 379 * @bits: size of free area 380 * 381 * Finds the next free region that is viable for use with a given size and 382 * alignment. This only returns if there is a valid area to be used for this 383 * allocation. block->first_free is returned if the allocation request fits 384 * within the block to see if the request can be fulfilled prior to the contig 385 * hint. 386 */ 387 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 388 int align, int *bit_off, int *bits) 389 { 390 int i = pcpu_off_to_block_index(*bit_off); 391 int block_off = pcpu_off_to_block_off(*bit_off); 392 struct pcpu_block_md *block; 393 394 *bits = 0; 395 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 396 block++, i++) { 397 /* handles contig area across blocks */ 398 if (*bits) { 399 *bits += block->left_free; 400 if (*bits >= alloc_bits) 401 return; 402 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 403 continue; 404 } 405 406 /* check block->contig_hint */ 407 *bits = ALIGN(block->contig_hint_start, align) - 408 block->contig_hint_start; 409 /* 410 * This uses the block offset to determine if this has been 411 * checked in the prior iteration. 412 */ 413 if (block->contig_hint && 414 block->contig_hint_start >= block_off && 415 block->contig_hint >= *bits + alloc_bits) { 416 *bits += alloc_bits + block->contig_hint_start - 417 block->first_free; 418 *bit_off = pcpu_block_off_to_off(i, block->first_free); 419 return; 420 } 421 /* reset to satisfy the second predicate above */ 422 block_off = 0; 423 424 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 425 align); 426 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 427 *bit_off = pcpu_block_off_to_off(i, *bit_off); 428 if (*bits >= alloc_bits) 429 return; 430 } 431 432 /* no valid offsets were found - fail condition */ 433 *bit_off = pcpu_chunk_map_bits(chunk); 434 } 435 436 /* 437 * Metadata free area iterators. These perform aggregation of free areas 438 * based on the metadata blocks and return the offset @bit_off and size in 439 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 440 * a fit is found for the allocation request. 441 */ 442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 443 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 444 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 445 (bit_off) += (bits) + 1, \ 446 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 447 448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 449 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 450 &(bits)); \ 451 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 452 (bit_off) += (bits), \ 453 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 454 &(bits))) 455 456 /** 457 * pcpu_mem_zalloc - allocate memory 458 * @size: bytes to allocate 459 * @gfp: allocation flags 460 * 461 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 462 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 463 * This is to facilitate passing through whitelisted flags. The 464 * returned memory is always zeroed. 465 * 466 * RETURNS: 467 * Pointer to the allocated area on success, NULL on failure. 468 */ 469 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 470 { 471 if (WARN_ON_ONCE(!slab_is_available())) 472 return NULL; 473 474 if (size <= PAGE_SIZE) 475 return kzalloc(size, gfp); 476 else 477 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); 478 } 479 480 /** 481 * pcpu_mem_free - free memory 482 * @ptr: memory to free 483 * 484 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 485 */ 486 static void pcpu_mem_free(void *ptr) 487 { 488 kvfree(ptr); 489 } 490 491 /** 492 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 493 * @chunk: chunk of interest 494 * @oslot: the previous slot it was on 495 * 496 * This function is called after an allocation or free changed @chunk. 497 * New slot according to the changed state is determined and @chunk is 498 * moved to the slot. Note that the reserved chunk is never put on 499 * chunk slots. 500 * 501 * CONTEXT: 502 * pcpu_lock. 503 */ 504 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 505 { 506 int nslot = pcpu_chunk_slot(chunk); 507 508 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 509 if (oslot < nslot) 510 list_move(&chunk->list, &pcpu_slot[nslot]); 511 else 512 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 513 } 514 } 515 516 /** 517 * pcpu_cnt_pop_pages- counts populated backing pages in range 518 * @chunk: chunk of interest 519 * @bit_off: start offset 520 * @bits: size of area to check 521 * 522 * Calculates the number of populated pages in the region 523 * [page_start, page_end). This keeps track of how many empty populated 524 * pages are available and decide if async work should be scheduled. 525 * 526 * RETURNS: 527 * The nr of populated pages. 528 */ 529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, 530 int bits) 531 { 532 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); 533 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 534 535 if (page_start >= page_end) 536 return 0; 537 538 /* 539 * bitmap_weight counts the number of bits set in a bitmap up to 540 * the specified number of bits. This is counting the populated 541 * pages up to page_end and then subtracting the populated pages 542 * up to page_start to count the populated pages in 543 * [page_start, page_end). 544 */ 545 return bitmap_weight(chunk->populated, page_end) - 546 bitmap_weight(chunk->populated, page_start); 547 } 548 549 /** 550 * pcpu_chunk_update - updates the chunk metadata given a free area 551 * @chunk: chunk of interest 552 * @bit_off: chunk offset 553 * @bits: size of free area 554 * 555 * This updates the chunk's contig hint and starting offset given a free area. 556 * Choose the best starting offset if the contig hint is equal. 557 */ 558 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) 559 { 560 if (bits > chunk->contig_bits) { 561 chunk->contig_bits_start = bit_off; 562 chunk->contig_bits = bits; 563 } else if (bits == chunk->contig_bits && chunk->contig_bits_start && 564 (!bit_off || 565 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { 566 /* use the start with the best alignment */ 567 chunk->contig_bits_start = bit_off; 568 } 569 } 570 571 /** 572 * pcpu_chunk_refresh_hint - updates metadata about a chunk 573 * @chunk: chunk of interest 574 * 575 * Iterates over the metadata blocks to find the largest contig area. 576 * It also counts the populated pages and uses the delta to update the 577 * global count. 578 * 579 * Updates: 580 * chunk->contig_bits 581 * chunk->contig_bits_start 582 * nr_empty_pop_pages (chunk and global) 583 */ 584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) 585 { 586 int bit_off, bits, nr_empty_pop_pages; 587 588 /* clear metadata */ 589 chunk->contig_bits = 0; 590 591 bit_off = chunk->first_bit; 592 bits = nr_empty_pop_pages = 0; 593 pcpu_for_each_md_free_region(chunk, bit_off, bits) { 594 pcpu_chunk_update(chunk, bit_off, bits); 595 596 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); 597 } 598 599 /* 600 * Keep track of nr_empty_pop_pages. 601 * 602 * The chunk maintains the previous number of free pages it held, 603 * so the delta is used to update the global counter. The reserved 604 * chunk is not part of the free page count as they are populated 605 * at init and are special to serving reserved allocations. 606 */ 607 if (chunk != pcpu_reserved_chunk) 608 pcpu_nr_empty_pop_pages += 609 (nr_empty_pop_pages - chunk->nr_empty_pop_pages); 610 611 chunk->nr_empty_pop_pages = nr_empty_pop_pages; 612 } 613 614 /** 615 * pcpu_block_update - updates a block given a free area 616 * @block: block of interest 617 * @start: start offset in block 618 * @end: end offset in block 619 * 620 * Updates a block given a known free area. The region [start, end) is 621 * expected to be the entirety of the free area within a block. Chooses 622 * the best starting offset if the contig hints are equal. 623 */ 624 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 625 { 626 int contig = end - start; 627 628 block->first_free = min(block->first_free, start); 629 if (start == 0) 630 block->left_free = contig; 631 632 if (end == PCPU_BITMAP_BLOCK_BITS) 633 block->right_free = contig; 634 635 if (contig > block->contig_hint) { 636 block->contig_hint_start = start; 637 block->contig_hint = contig; 638 } else if (block->contig_hint_start && contig == block->contig_hint && 639 (!start || __ffs(start) > __ffs(block->contig_hint_start))) { 640 /* use the start with the best alignment */ 641 block->contig_hint_start = start; 642 } 643 } 644 645 /** 646 * pcpu_block_refresh_hint 647 * @chunk: chunk of interest 648 * @index: index of the metadata block 649 * 650 * Scans over the block beginning at first_free and updates the block 651 * metadata accordingly. 652 */ 653 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 654 { 655 struct pcpu_block_md *block = chunk->md_blocks + index; 656 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 657 int rs, re; /* region start, region end */ 658 659 /* clear hints */ 660 block->contig_hint = 0; 661 block->left_free = block->right_free = 0; 662 663 /* iterate over free areas and update the contig hints */ 664 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, 665 PCPU_BITMAP_BLOCK_BITS) { 666 pcpu_block_update(block, rs, re); 667 } 668 } 669 670 /** 671 * pcpu_block_update_hint_alloc - update hint on allocation path 672 * @chunk: chunk of interest 673 * @bit_off: chunk offset 674 * @bits: size of request 675 * 676 * Updates metadata for the allocation path. The metadata only has to be 677 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 678 * scans are required if the block's contig hint is broken. 679 */ 680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 681 int bits) 682 { 683 struct pcpu_block_md *s_block, *e_block, *block; 684 int s_index, e_index; /* block indexes of the freed allocation */ 685 int s_off, e_off; /* block offsets of the freed allocation */ 686 687 /* 688 * Calculate per block offsets. 689 * The calculation uses an inclusive range, but the resulting offsets 690 * are [start, end). e_index always points to the last block in the 691 * range. 692 */ 693 s_index = pcpu_off_to_block_index(bit_off); 694 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 695 s_off = pcpu_off_to_block_off(bit_off); 696 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 697 698 s_block = chunk->md_blocks + s_index; 699 e_block = chunk->md_blocks + e_index; 700 701 /* 702 * Update s_block. 703 * block->first_free must be updated if the allocation takes its place. 704 * If the allocation breaks the contig_hint, a scan is required to 705 * restore this hint. 706 */ 707 if (s_off == s_block->first_free) 708 s_block->first_free = find_next_zero_bit( 709 pcpu_index_alloc_map(chunk, s_index), 710 PCPU_BITMAP_BLOCK_BITS, 711 s_off + bits); 712 713 if (s_off >= s_block->contig_hint_start && 714 s_off < s_block->contig_hint_start + s_block->contig_hint) { 715 /* block contig hint is broken - scan to fix it */ 716 pcpu_block_refresh_hint(chunk, s_index); 717 } else { 718 /* update left and right contig manually */ 719 s_block->left_free = min(s_block->left_free, s_off); 720 if (s_index == e_index) 721 s_block->right_free = min_t(int, s_block->right_free, 722 PCPU_BITMAP_BLOCK_BITS - e_off); 723 else 724 s_block->right_free = 0; 725 } 726 727 /* 728 * Update e_block. 729 */ 730 if (s_index != e_index) { 731 /* 732 * When the allocation is across blocks, the end is along 733 * the left part of the e_block. 734 */ 735 e_block->first_free = find_next_zero_bit( 736 pcpu_index_alloc_map(chunk, e_index), 737 PCPU_BITMAP_BLOCK_BITS, e_off); 738 739 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 740 /* reset the block */ 741 e_block++; 742 } else { 743 if (e_off > e_block->contig_hint_start) { 744 /* contig hint is broken - scan to fix it */ 745 pcpu_block_refresh_hint(chunk, e_index); 746 } else { 747 e_block->left_free = 0; 748 e_block->right_free = 749 min_t(int, e_block->right_free, 750 PCPU_BITMAP_BLOCK_BITS - e_off); 751 } 752 } 753 754 /* update in-between md_blocks */ 755 for (block = s_block + 1; block < e_block; block++) { 756 block->contig_hint = 0; 757 block->left_free = 0; 758 block->right_free = 0; 759 } 760 } 761 762 /* 763 * The only time a full chunk scan is required is if the chunk 764 * contig hint is broken. Otherwise, it means a smaller space 765 * was used and therefore the chunk contig hint is still correct. 766 */ 767 if (bit_off >= chunk->contig_bits_start && 768 bit_off < chunk->contig_bits_start + chunk->contig_bits) 769 pcpu_chunk_refresh_hint(chunk); 770 } 771 772 /** 773 * pcpu_block_update_hint_free - updates the block hints on the free path 774 * @chunk: chunk of interest 775 * @bit_off: chunk offset 776 * @bits: size of request 777 * 778 * Updates metadata for the allocation path. This avoids a blind block 779 * refresh by making use of the block contig hints. If this fails, it scans 780 * forward and backward to determine the extent of the free area. This is 781 * capped at the boundary of blocks. 782 * 783 * A chunk update is triggered if a page becomes free, a block becomes free, 784 * or the free spans across blocks. This tradeoff is to minimize iterating 785 * over the block metadata to update chunk->contig_bits. chunk->contig_bits 786 * may be off by up to a page, but it will never be more than the available 787 * space. If the contig hint is contained in one block, it will be accurate. 788 */ 789 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 790 int bits) 791 { 792 struct pcpu_block_md *s_block, *e_block, *block; 793 int s_index, e_index; /* block indexes of the freed allocation */ 794 int s_off, e_off; /* block offsets of the freed allocation */ 795 int start, end; /* start and end of the whole free area */ 796 797 /* 798 * Calculate per block offsets. 799 * The calculation uses an inclusive range, but the resulting offsets 800 * are [start, end). e_index always points to the last block in the 801 * range. 802 */ 803 s_index = pcpu_off_to_block_index(bit_off); 804 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 805 s_off = pcpu_off_to_block_off(bit_off); 806 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 807 808 s_block = chunk->md_blocks + s_index; 809 e_block = chunk->md_blocks + e_index; 810 811 /* 812 * Check if the freed area aligns with the block->contig_hint. 813 * If it does, then the scan to find the beginning/end of the 814 * larger free area can be avoided. 815 * 816 * start and end refer to beginning and end of the free area 817 * within each their respective blocks. This is not necessarily 818 * the entire free area as it may span blocks past the beginning 819 * or end of the block. 820 */ 821 start = s_off; 822 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 823 start = s_block->contig_hint_start; 824 } else { 825 /* 826 * Scan backwards to find the extent of the free area. 827 * find_last_bit returns the starting bit, so if the start bit 828 * is returned, that means there was no last bit and the 829 * remainder of the chunk is free. 830 */ 831 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 832 start); 833 start = (start == l_bit) ? 0 : l_bit + 1; 834 } 835 836 end = e_off; 837 if (e_off == e_block->contig_hint_start) 838 end = e_block->contig_hint_start + e_block->contig_hint; 839 else 840 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 841 PCPU_BITMAP_BLOCK_BITS, end); 842 843 /* update s_block */ 844 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 845 pcpu_block_update(s_block, start, e_off); 846 847 /* freeing in the same block */ 848 if (s_index != e_index) { 849 /* update e_block */ 850 pcpu_block_update(e_block, 0, end); 851 852 /* reset md_blocks in the middle */ 853 for (block = s_block + 1; block < e_block; block++) { 854 block->first_free = 0; 855 block->contig_hint_start = 0; 856 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 857 block->left_free = PCPU_BITMAP_BLOCK_BITS; 858 block->right_free = PCPU_BITMAP_BLOCK_BITS; 859 } 860 } 861 862 /* 863 * Refresh chunk metadata when the free makes a page free, a block 864 * free, or spans across blocks. The contig hint may be off by up to 865 * a page, but if the hint is contained in a block, it will be accurate 866 * with the else condition below. 867 */ 868 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > 869 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || 870 s_index != e_index) 871 pcpu_chunk_refresh_hint(chunk); 872 else 873 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), 874 s_block->contig_hint); 875 } 876 877 /** 878 * pcpu_is_populated - determines if the region is populated 879 * @chunk: chunk of interest 880 * @bit_off: chunk offset 881 * @bits: size of area 882 * @next_off: return value for the next offset to start searching 883 * 884 * For atomic allocations, check if the backing pages are populated. 885 * 886 * RETURNS: 887 * Bool if the backing pages are populated. 888 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 889 */ 890 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 891 int *next_off) 892 { 893 int page_start, page_end, rs, re; 894 895 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 896 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 897 898 rs = page_start; 899 pcpu_next_unpop(chunk->populated, &rs, &re, page_end); 900 if (rs >= page_end) 901 return true; 902 903 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 904 return false; 905 } 906 907 /** 908 * pcpu_find_block_fit - finds the block index to start searching 909 * @chunk: chunk of interest 910 * @alloc_bits: size of request in allocation units 911 * @align: alignment of area (max PAGE_SIZE bytes) 912 * @pop_only: use populated regions only 913 * 914 * Given a chunk and an allocation spec, find the offset to begin searching 915 * for a free region. This iterates over the bitmap metadata blocks to 916 * find an offset that will be guaranteed to fit the requirements. It is 917 * not quite first fit as if the allocation does not fit in the contig hint 918 * of a block or chunk, it is skipped. This errs on the side of caution 919 * to prevent excess iteration. Poor alignment can cause the allocator to 920 * skip over blocks and chunks that have valid free areas. 921 * 922 * RETURNS: 923 * The offset in the bitmap to begin searching. 924 * -1 if no offset is found. 925 */ 926 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 927 size_t align, bool pop_only) 928 { 929 int bit_off, bits, next_off; 930 931 /* 932 * Check to see if the allocation can fit in the chunk's contig hint. 933 * This is an optimization to prevent scanning by assuming if it 934 * cannot fit in the global hint, there is memory pressure and creating 935 * a new chunk would happen soon. 936 */ 937 bit_off = ALIGN(chunk->contig_bits_start, align) - 938 chunk->contig_bits_start; 939 if (bit_off + alloc_bits > chunk->contig_bits) 940 return -1; 941 942 bit_off = chunk->first_bit; 943 bits = 0; 944 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 945 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 946 &next_off)) 947 break; 948 949 bit_off = next_off; 950 bits = 0; 951 } 952 953 if (bit_off == pcpu_chunk_map_bits(chunk)) 954 return -1; 955 956 return bit_off; 957 } 958 959 /** 960 * pcpu_alloc_area - allocates an area from a pcpu_chunk 961 * @chunk: chunk of interest 962 * @alloc_bits: size of request in allocation units 963 * @align: alignment of area (max PAGE_SIZE) 964 * @start: bit_off to start searching 965 * 966 * This function takes in a @start offset to begin searching to fit an 967 * allocation of @alloc_bits with alignment @align. It needs to scan 968 * the allocation map because if it fits within the block's contig hint, 969 * @start will be block->first_free. This is an attempt to fill the 970 * allocation prior to breaking the contig hint. The allocation and 971 * boundary maps are updated accordingly if it confirms a valid 972 * free area. 973 * 974 * RETURNS: 975 * Allocated addr offset in @chunk on success. 976 * -1 if no matching area is found. 977 */ 978 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 979 size_t align, int start) 980 { 981 size_t align_mask = (align) ? (align - 1) : 0; 982 int bit_off, end, oslot; 983 984 lockdep_assert_held(&pcpu_lock); 985 986 oslot = pcpu_chunk_slot(chunk); 987 988 /* 989 * Search to find a fit. 990 */ 991 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; 992 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, 993 alloc_bits, align_mask); 994 if (bit_off >= end) 995 return -1; 996 997 /* update alloc map */ 998 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 999 1000 /* update boundary map */ 1001 set_bit(bit_off, chunk->bound_map); 1002 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1003 set_bit(bit_off + alloc_bits, chunk->bound_map); 1004 1005 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1006 1007 /* update first free bit */ 1008 if (bit_off == chunk->first_bit) 1009 chunk->first_bit = find_next_zero_bit( 1010 chunk->alloc_map, 1011 pcpu_chunk_map_bits(chunk), 1012 bit_off + alloc_bits); 1013 1014 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1015 1016 pcpu_chunk_relocate(chunk, oslot); 1017 1018 return bit_off * PCPU_MIN_ALLOC_SIZE; 1019 } 1020 1021 /** 1022 * pcpu_free_area - frees the corresponding offset 1023 * @chunk: chunk of interest 1024 * @off: addr offset into chunk 1025 * 1026 * This function determines the size of an allocation to free using 1027 * the boundary bitmap and clears the allocation map. 1028 */ 1029 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1030 { 1031 int bit_off, bits, end, oslot; 1032 1033 lockdep_assert_held(&pcpu_lock); 1034 pcpu_stats_area_dealloc(chunk); 1035 1036 oslot = pcpu_chunk_slot(chunk); 1037 1038 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1039 1040 /* find end index */ 1041 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1042 bit_off + 1); 1043 bits = end - bit_off; 1044 bitmap_clear(chunk->alloc_map, bit_off, bits); 1045 1046 /* update metadata */ 1047 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1048 1049 /* update first free bit */ 1050 chunk->first_bit = min(chunk->first_bit, bit_off); 1051 1052 pcpu_block_update_hint_free(chunk, bit_off, bits); 1053 1054 pcpu_chunk_relocate(chunk, oslot); 1055 } 1056 1057 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1058 { 1059 struct pcpu_block_md *md_block; 1060 1061 for (md_block = chunk->md_blocks; 1062 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1063 md_block++) { 1064 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1065 md_block->left_free = PCPU_BITMAP_BLOCK_BITS; 1066 md_block->right_free = PCPU_BITMAP_BLOCK_BITS; 1067 } 1068 } 1069 1070 /** 1071 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1072 * @tmp_addr: the start of the region served 1073 * @map_size: size of the region served 1074 * 1075 * This is responsible for creating the chunks that serve the first chunk. The 1076 * base_addr is page aligned down of @tmp_addr while the region end is page 1077 * aligned up. Offsets are kept track of to determine the region served. All 1078 * this is done to appease the bitmap allocator in avoiding partial blocks. 1079 * 1080 * RETURNS: 1081 * Chunk serving the region at @tmp_addr of @map_size. 1082 */ 1083 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1084 int map_size) 1085 { 1086 struct pcpu_chunk *chunk; 1087 unsigned long aligned_addr, lcm_align; 1088 int start_offset, offset_bits, region_size, region_bits; 1089 1090 /* region calculations */ 1091 aligned_addr = tmp_addr & PAGE_MASK; 1092 1093 start_offset = tmp_addr - aligned_addr; 1094 1095 /* 1096 * Align the end of the region with the LCM of PAGE_SIZE and 1097 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1098 * the other. 1099 */ 1100 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1101 region_size = ALIGN(start_offset + map_size, lcm_align); 1102 1103 /* allocate chunk */ 1104 chunk = memblock_alloc(sizeof(struct pcpu_chunk) + 1105 BITS_TO_LONGS(region_size >> PAGE_SHIFT), 1106 SMP_CACHE_BYTES); 1107 1108 INIT_LIST_HEAD(&chunk->list); 1109 1110 chunk->base_addr = (void *)aligned_addr; 1111 chunk->start_offset = start_offset; 1112 chunk->end_offset = region_size - chunk->start_offset - map_size; 1113 1114 chunk->nr_pages = region_size >> PAGE_SHIFT; 1115 region_bits = pcpu_chunk_map_bits(chunk); 1116 1117 chunk->alloc_map = memblock_alloc(BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]), 1118 SMP_CACHE_BYTES); 1119 chunk->bound_map = memblock_alloc(BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]), 1120 SMP_CACHE_BYTES); 1121 chunk->md_blocks = memblock_alloc(pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]), 1122 SMP_CACHE_BYTES); 1123 pcpu_init_md_blocks(chunk); 1124 1125 /* manage populated page bitmap */ 1126 chunk->immutable = true; 1127 bitmap_fill(chunk->populated, chunk->nr_pages); 1128 chunk->nr_populated = chunk->nr_pages; 1129 chunk->nr_empty_pop_pages = 1130 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, 1131 map_size / PCPU_MIN_ALLOC_SIZE); 1132 1133 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; 1134 chunk->free_bytes = map_size; 1135 1136 if (chunk->start_offset) { 1137 /* hide the beginning of the bitmap */ 1138 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1139 bitmap_set(chunk->alloc_map, 0, offset_bits); 1140 set_bit(0, chunk->bound_map); 1141 set_bit(offset_bits, chunk->bound_map); 1142 1143 chunk->first_bit = offset_bits; 1144 1145 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1146 } 1147 1148 if (chunk->end_offset) { 1149 /* hide the end of the bitmap */ 1150 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1151 bitmap_set(chunk->alloc_map, 1152 pcpu_chunk_map_bits(chunk) - offset_bits, 1153 offset_bits); 1154 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1155 chunk->bound_map); 1156 set_bit(region_bits, chunk->bound_map); 1157 1158 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1159 - offset_bits, offset_bits); 1160 } 1161 1162 return chunk; 1163 } 1164 1165 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1166 { 1167 struct pcpu_chunk *chunk; 1168 int region_bits; 1169 1170 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1171 if (!chunk) 1172 return NULL; 1173 1174 INIT_LIST_HEAD(&chunk->list); 1175 chunk->nr_pages = pcpu_unit_pages; 1176 region_bits = pcpu_chunk_map_bits(chunk); 1177 1178 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1179 sizeof(chunk->alloc_map[0]), gfp); 1180 if (!chunk->alloc_map) 1181 goto alloc_map_fail; 1182 1183 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1184 sizeof(chunk->bound_map[0]), gfp); 1185 if (!chunk->bound_map) 1186 goto bound_map_fail; 1187 1188 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1189 sizeof(chunk->md_blocks[0]), gfp); 1190 if (!chunk->md_blocks) 1191 goto md_blocks_fail; 1192 1193 pcpu_init_md_blocks(chunk); 1194 1195 /* init metadata */ 1196 chunk->contig_bits = region_bits; 1197 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1198 1199 return chunk; 1200 1201 md_blocks_fail: 1202 pcpu_mem_free(chunk->bound_map); 1203 bound_map_fail: 1204 pcpu_mem_free(chunk->alloc_map); 1205 alloc_map_fail: 1206 pcpu_mem_free(chunk); 1207 1208 return NULL; 1209 } 1210 1211 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1212 { 1213 if (!chunk) 1214 return; 1215 pcpu_mem_free(chunk->md_blocks); 1216 pcpu_mem_free(chunk->bound_map); 1217 pcpu_mem_free(chunk->alloc_map); 1218 pcpu_mem_free(chunk); 1219 } 1220 1221 /** 1222 * pcpu_chunk_populated - post-population bookkeeping 1223 * @chunk: pcpu_chunk which got populated 1224 * @page_start: the start page 1225 * @page_end: the end page 1226 * @for_alloc: if this is to populate for allocation 1227 * 1228 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1229 * the bookkeeping information accordingly. Must be called after each 1230 * successful population. 1231 * 1232 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1233 * is to serve an allocation in that area. 1234 */ 1235 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1236 int page_end, bool for_alloc) 1237 { 1238 int nr = page_end - page_start; 1239 1240 lockdep_assert_held(&pcpu_lock); 1241 1242 bitmap_set(chunk->populated, page_start, nr); 1243 chunk->nr_populated += nr; 1244 pcpu_nr_populated += nr; 1245 1246 if (!for_alloc) { 1247 chunk->nr_empty_pop_pages += nr; 1248 pcpu_nr_empty_pop_pages += nr; 1249 } 1250 } 1251 1252 /** 1253 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1254 * @chunk: pcpu_chunk which got depopulated 1255 * @page_start: the start page 1256 * @page_end: the end page 1257 * 1258 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1259 * Update the bookkeeping information accordingly. Must be called after 1260 * each successful depopulation. 1261 */ 1262 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1263 int page_start, int page_end) 1264 { 1265 int nr = page_end - page_start; 1266 1267 lockdep_assert_held(&pcpu_lock); 1268 1269 bitmap_clear(chunk->populated, page_start, nr); 1270 chunk->nr_populated -= nr; 1271 chunk->nr_empty_pop_pages -= nr; 1272 pcpu_nr_empty_pop_pages -= nr; 1273 pcpu_nr_populated -= nr; 1274 } 1275 1276 /* 1277 * Chunk management implementation. 1278 * 1279 * To allow different implementations, chunk alloc/free and 1280 * [de]population are implemented in a separate file which is pulled 1281 * into this file and compiled together. The following functions 1282 * should be implemented. 1283 * 1284 * pcpu_populate_chunk - populate the specified range of a chunk 1285 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1286 * pcpu_create_chunk - create a new chunk 1287 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1288 * pcpu_addr_to_page - translate address to physical address 1289 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1290 */ 1291 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1292 int page_start, int page_end, gfp_t gfp); 1293 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1294 int page_start, int page_end); 1295 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1296 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1297 static struct page *pcpu_addr_to_page(void *addr); 1298 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1299 1300 #ifdef CONFIG_NEED_PER_CPU_KM 1301 #include "percpu-km.c" 1302 #else 1303 #include "percpu-vm.c" 1304 #endif 1305 1306 /** 1307 * pcpu_chunk_addr_search - determine chunk containing specified address 1308 * @addr: address for which the chunk needs to be determined. 1309 * 1310 * This is an internal function that handles all but static allocations. 1311 * Static percpu address values should never be passed into the allocator. 1312 * 1313 * RETURNS: 1314 * The address of the found chunk. 1315 */ 1316 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1317 { 1318 /* is it in the dynamic region (first chunk)? */ 1319 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1320 return pcpu_first_chunk; 1321 1322 /* is it in the reserved region? */ 1323 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1324 return pcpu_reserved_chunk; 1325 1326 /* 1327 * The address is relative to unit0 which might be unused and 1328 * thus unmapped. Offset the address to the unit space of the 1329 * current processor before looking it up in the vmalloc 1330 * space. Note that any possible cpu id can be used here, so 1331 * there's no need to worry about preemption or cpu hotplug. 1332 */ 1333 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1334 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1335 } 1336 1337 /** 1338 * pcpu_alloc - the percpu allocator 1339 * @size: size of area to allocate in bytes 1340 * @align: alignment of area (max PAGE_SIZE) 1341 * @reserved: allocate from the reserved chunk if available 1342 * @gfp: allocation flags 1343 * 1344 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1345 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1346 * then no warning will be triggered on invalid or failed allocation 1347 * requests. 1348 * 1349 * RETURNS: 1350 * Percpu pointer to the allocated area on success, NULL on failure. 1351 */ 1352 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1353 gfp_t gfp) 1354 { 1355 /* whitelisted flags that can be passed to the backing allocators */ 1356 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1357 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1358 bool do_warn = !(gfp & __GFP_NOWARN); 1359 static int warn_limit = 10; 1360 struct pcpu_chunk *chunk; 1361 const char *err; 1362 int slot, off, cpu, ret; 1363 unsigned long flags; 1364 void __percpu *ptr; 1365 size_t bits, bit_align; 1366 1367 /* 1368 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1369 * therefore alignment must be a minimum of that many bytes. 1370 * An allocation may have internal fragmentation from rounding up 1371 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1372 */ 1373 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1374 align = PCPU_MIN_ALLOC_SIZE; 1375 1376 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1377 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1378 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1379 1380 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1381 !is_power_of_2(align))) { 1382 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1383 size, align); 1384 return NULL; 1385 } 1386 1387 if (!is_atomic) { 1388 /* 1389 * pcpu_balance_workfn() allocates memory under this mutex, 1390 * and it may wait for memory reclaim. Allow current task 1391 * to become OOM victim, in case of memory pressure. 1392 */ 1393 if (gfp & __GFP_NOFAIL) 1394 mutex_lock(&pcpu_alloc_mutex); 1395 else if (mutex_lock_killable(&pcpu_alloc_mutex)) 1396 return NULL; 1397 } 1398 1399 spin_lock_irqsave(&pcpu_lock, flags); 1400 1401 /* serve reserved allocations from the reserved chunk if available */ 1402 if (reserved && pcpu_reserved_chunk) { 1403 chunk = pcpu_reserved_chunk; 1404 1405 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1406 if (off < 0) { 1407 err = "alloc from reserved chunk failed"; 1408 goto fail_unlock; 1409 } 1410 1411 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1412 if (off >= 0) 1413 goto area_found; 1414 1415 err = "alloc from reserved chunk failed"; 1416 goto fail_unlock; 1417 } 1418 1419 restart: 1420 /* search through normal chunks */ 1421 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1422 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1423 off = pcpu_find_block_fit(chunk, bits, bit_align, 1424 is_atomic); 1425 if (off < 0) 1426 continue; 1427 1428 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1429 if (off >= 0) 1430 goto area_found; 1431 1432 } 1433 } 1434 1435 spin_unlock_irqrestore(&pcpu_lock, flags); 1436 1437 /* 1438 * No space left. Create a new chunk. We don't want multiple 1439 * tasks to create chunks simultaneously. Serialize and create iff 1440 * there's still no empty chunk after grabbing the mutex. 1441 */ 1442 if (is_atomic) { 1443 err = "atomic alloc failed, no space left"; 1444 goto fail; 1445 } 1446 1447 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1448 chunk = pcpu_create_chunk(pcpu_gfp); 1449 if (!chunk) { 1450 err = "failed to allocate new chunk"; 1451 goto fail; 1452 } 1453 1454 spin_lock_irqsave(&pcpu_lock, flags); 1455 pcpu_chunk_relocate(chunk, -1); 1456 } else { 1457 spin_lock_irqsave(&pcpu_lock, flags); 1458 } 1459 1460 goto restart; 1461 1462 area_found: 1463 pcpu_stats_area_alloc(chunk, size); 1464 spin_unlock_irqrestore(&pcpu_lock, flags); 1465 1466 /* populate if not all pages are already there */ 1467 if (!is_atomic) { 1468 int page_start, page_end, rs, re; 1469 1470 page_start = PFN_DOWN(off); 1471 page_end = PFN_UP(off + size); 1472 1473 pcpu_for_each_unpop_region(chunk->populated, rs, re, 1474 page_start, page_end) { 1475 WARN_ON(chunk->immutable); 1476 1477 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1478 1479 spin_lock_irqsave(&pcpu_lock, flags); 1480 if (ret) { 1481 pcpu_free_area(chunk, off); 1482 err = "failed to populate"; 1483 goto fail_unlock; 1484 } 1485 pcpu_chunk_populated(chunk, rs, re, true); 1486 spin_unlock_irqrestore(&pcpu_lock, flags); 1487 } 1488 1489 mutex_unlock(&pcpu_alloc_mutex); 1490 } 1491 1492 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1493 pcpu_schedule_balance_work(); 1494 1495 /* clear the areas and return address relative to base address */ 1496 for_each_possible_cpu(cpu) 1497 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1498 1499 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1500 kmemleak_alloc_percpu(ptr, size, gfp); 1501 1502 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1503 chunk->base_addr, off, ptr); 1504 1505 return ptr; 1506 1507 fail_unlock: 1508 spin_unlock_irqrestore(&pcpu_lock, flags); 1509 fail: 1510 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1511 1512 if (!is_atomic && do_warn && warn_limit) { 1513 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1514 size, align, is_atomic, err); 1515 dump_stack(); 1516 if (!--warn_limit) 1517 pr_info("limit reached, disable warning\n"); 1518 } 1519 if (is_atomic) { 1520 /* see the flag handling in pcpu_blance_workfn() */ 1521 pcpu_atomic_alloc_failed = true; 1522 pcpu_schedule_balance_work(); 1523 } else { 1524 mutex_unlock(&pcpu_alloc_mutex); 1525 } 1526 return NULL; 1527 } 1528 1529 /** 1530 * __alloc_percpu_gfp - allocate dynamic percpu area 1531 * @size: size of area to allocate in bytes 1532 * @align: alignment of area (max PAGE_SIZE) 1533 * @gfp: allocation flags 1534 * 1535 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1536 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1537 * be called from any context but is a lot more likely to fail. If @gfp 1538 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1539 * allocation requests. 1540 * 1541 * RETURNS: 1542 * Percpu pointer to the allocated area on success, NULL on failure. 1543 */ 1544 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1545 { 1546 return pcpu_alloc(size, align, false, gfp); 1547 } 1548 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1549 1550 /** 1551 * __alloc_percpu - allocate dynamic percpu area 1552 * @size: size of area to allocate in bytes 1553 * @align: alignment of area (max PAGE_SIZE) 1554 * 1555 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1556 */ 1557 void __percpu *__alloc_percpu(size_t size, size_t align) 1558 { 1559 return pcpu_alloc(size, align, false, GFP_KERNEL); 1560 } 1561 EXPORT_SYMBOL_GPL(__alloc_percpu); 1562 1563 /** 1564 * __alloc_reserved_percpu - allocate reserved percpu area 1565 * @size: size of area to allocate in bytes 1566 * @align: alignment of area (max PAGE_SIZE) 1567 * 1568 * Allocate zero-filled percpu area of @size bytes aligned at @align 1569 * from reserved percpu area if arch has set it up; otherwise, 1570 * allocation is served from the same dynamic area. Might sleep. 1571 * Might trigger writeouts. 1572 * 1573 * CONTEXT: 1574 * Does GFP_KERNEL allocation. 1575 * 1576 * RETURNS: 1577 * Percpu pointer to the allocated area on success, NULL on failure. 1578 */ 1579 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1580 { 1581 return pcpu_alloc(size, align, true, GFP_KERNEL); 1582 } 1583 1584 /** 1585 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1586 * @work: unused 1587 * 1588 * Reclaim all fully free chunks except for the first one. This is also 1589 * responsible for maintaining the pool of empty populated pages. However, 1590 * it is possible that this is called when physical memory is scarce causing 1591 * OOM killer to be triggered. We should avoid doing so until an actual 1592 * allocation causes the failure as it is possible that requests can be 1593 * serviced from already backed regions. 1594 */ 1595 static void pcpu_balance_workfn(struct work_struct *work) 1596 { 1597 /* gfp flags passed to underlying allocators */ 1598 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1599 LIST_HEAD(to_free); 1600 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1601 struct pcpu_chunk *chunk, *next; 1602 int slot, nr_to_pop, ret; 1603 1604 /* 1605 * There's no reason to keep around multiple unused chunks and VM 1606 * areas can be scarce. Destroy all free chunks except for one. 1607 */ 1608 mutex_lock(&pcpu_alloc_mutex); 1609 spin_lock_irq(&pcpu_lock); 1610 1611 list_for_each_entry_safe(chunk, next, free_head, list) { 1612 WARN_ON(chunk->immutable); 1613 1614 /* spare the first one */ 1615 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1616 continue; 1617 1618 list_move(&chunk->list, &to_free); 1619 } 1620 1621 spin_unlock_irq(&pcpu_lock); 1622 1623 list_for_each_entry_safe(chunk, next, &to_free, list) { 1624 int rs, re; 1625 1626 pcpu_for_each_pop_region(chunk->populated, rs, re, 0, 1627 chunk->nr_pages) { 1628 pcpu_depopulate_chunk(chunk, rs, re); 1629 spin_lock_irq(&pcpu_lock); 1630 pcpu_chunk_depopulated(chunk, rs, re); 1631 spin_unlock_irq(&pcpu_lock); 1632 } 1633 pcpu_destroy_chunk(chunk); 1634 cond_resched(); 1635 } 1636 1637 /* 1638 * Ensure there are certain number of free populated pages for 1639 * atomic allocs. Fill up from the most packed so that atomic 1640 * allocs don't increase fragmentation. If atomic allocation 1641 * failed previously, always populate the maximum amount. This 1642 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1643 * failing indefinitely; however, large atomic allocs are not 1644 * something we support properly and can be highly unreliable and 1645 * inefficient. 1646 */ 1647 retry_pop: 1648 if (pcpu_atomic_alloc_failed) { 1649 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1650 /* best effort anyway, don't worry about synchronization */ 1651 pcpu_atomic_alloc_failed = false; 1652 } else { 1653 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1654 pcpu_nr_empty_pop_pages, 1655 0, PCPU_EMPTY_POP_PAGES_HIGH); 1656 } 1657 1658 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1659 int nr_unpop = 0, rs, re; 1660 1661 if (!nr_to_pop) 1662 break; 1663 1664 spin_lock_irq(&pcpu_lock); 1665 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1666 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1667 if (nr_unpop) 1668 break; 1669 } 1670 spin_unlock_irq(&pcpu_lock); 1671 1672 if (!nr_unpop) 1673 continue; 1674 1675 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1676 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, 1677 chunk->nr_pages) { 1678 int nr = min(re - rs, nr_to_pop); 1679 1680 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 1681 if (!ret) { 1682 nr_to_pop -= nr; 1683 spin_lock_irq(&pcpu_lock); 1684 pcpu_chunk_populated(chunk, rs, rs + nr, false); 1685 spin_unlock_irq(&pcpu_lock); 1686 } else { 1687 nr_to_pop = 0; 1688 } 1689 1690 if (!nr_to_pop) 1691 break; 1692 } 1693 } 1694 1695 if (nr_to_pop) { 1696 /* ran out of chunks to populate, create a new one and retry */ 1697 chunk = pcpu_create_chunk(gfp); 1698 if (chunk) { 1699 spin_lock_irq(&pcpu_lock); 1700 pcpu_chunk_relocate(chunk, -1); 1701 spin_unlock_irq(&pcpu_lock); 1702 goto retry_pop; 1703 } 1704 } 1705 1706 mutex_unlock(&pcpu_alloc_mutex); 1707 } 1708 1709 /** 1710 * free_percpu - free percpu area 1711 * @ptr: pointer to area to free 1712 * 1713 * Free percpu area @ptr. 1714 * 1715 * CONTEXT: 1716 * Can be called from atomic context. 1717 */ 1718 void free_percpu(void __percpu *ptr) 1719 { 1720 void *addr; 1721 struct pcpu_chunk *chunk; 1722 unsigned long flags; 1723 int off; 1724 1725 if (!ptr) 1726 return; 1727 1728 kmemleak_free_percpu(ptr); 1729 1730 addr = __pcpu_ptr_to_addr(ptr); 1731 1732 spin_lock_irqsave(&pcpu_lock, flags); 1733 1734 chunk = pcpu_chunk_addr_search(addr); 1735 off = addr - chunk->base_addr; 1736 1737 pcpu_free_area(chunk, off); 1738 1739 /* if there are more than one fully free chunks, wake up grim reaper */ 1740 if (chunk->free_bytes == pcpu_unit_size) { 1741 struct pcpu_chunk *pos; 1742 1743 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1744 if (pos != chunk) { 1745 pcpu_schedule_balance_work(); 1746 break; 1747 } 1748 } 1749 1750 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1751 1752 spin_unlock_irqrestore(&pcpu_lock, flags); 1753 } 1754 EXPORT_SYMBOL_GPL(free_percpu); 1755 1756 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1757 { 1758 #ifdef CONFIG_SMP 1759 const size_t static_size = __per_cpu_end - __per_cpu_start; 1760 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1761 unsigned int cpu; 1762 1763 for_each_possible_cpu(cpu) { 1764 void *start = per_cpu_ptr(base, cpu); 1765 void *va = (void *)addr; 1766 1767 if (va >= start && va < start + static_size) { 1768 if (can_addr) { 1769 *can_addr = (unsigned long) (va - start); 1770 *can_addr += (unsigned long) 1771 per_cpu_ptr(base, get_boot_cpu_id()); 1772 } 1773 return true; 1774 } 1775 } 1776 #endif 1777 /* on UP, can't distinguish from other static vars, always false */ 1778 return false; 1779 } 1780 1781 /** 1782 * is_kernel_percpu_address - test whether address is from static percpu area 1783 * @addr: address to test 1784 * 1785 * Test whether @addr belongs to in-kernel static percpu area. Module 1786 * static percpu areas are not considered. For those, use 1787 * is_module_percpu_address(). 1788 * 1789 * RETURNS: 1790 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1791 */ 1792 bool is_kernel_percpu_address(unsigned long addr) 1793 { 1794 return __is_kernel_percpu_address(addr, NULL); 1795 } 1796 1797 /** 1798 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1799 * @addr: the address to be converted to physical address 1800 * 1801 * Given @addr which is dereferenceable address obtained via one of 1802 * percpu access macros, this function translates it into its physical 1803 * address. The caller is responsible for ensuring @addr stays valid 1804 * until this function finishes. 1805 * 1806 * percpu allocator has special setup for the first chunk, which currently 1807 * supports either embedding in linear address space or vmalloc mapping, 1808 * and, from the second one, the backing allocator (currently either vm or 1809 * km) provides translation. 1810 * 1811 * The addr can be translated simply without checking if it falls into the 1812 * first chunk. But the current code reflects better how percpu allocator 1813 * actually works, and the verification can discover both bugs in percpu 1814 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1815 * code. 1816 * 1817 * RETURNS: 1818 * The physical address for @addr. 1819 */ 1820 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1821 { 1822 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1823 bool in_first_chunk = false; 1824 unsigned long first_low, first_high; 1825 unsigned int cpu; 1826 1827 /* 1828 * The following test on unit_low/high isn't strictly 1829 * necessary but will speed up lookups of addresses which 1830 * aren't in the first chunk. 1831 * 1832 * The address check is against full chunk sizes. pcpu_base_addr 1833 * points to the beginning of the first chunk including the 1834 * static region. Assumes good intent as the first chunk may 1835 * not be full (ie. < pcpu_unit_pages in size). 1836 */ 1837 first_low = (unsigned long)pcpu_base_addr + 1838 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 1839 first_high = (unsigned long)pcpu_base_addr + 1840 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 1841 if ((unsigned long)addr >= first_low && 1842 (unsigned long)addr < first_high) { 1843 for_each_possible_cpu(cpu) { 1844 void *start = per_cpu_ptr(base, cpu); 1845 1846 if (addr >= start && addr < start + pcpu_unit_size) { 1847 in_first_chunk = true; 1848 break; 1849 } 1850 } 1851 } 1852 1853 if (in_first_chunk) { 1854 if (!is_vmalloc_addr(addr)) 1855 return __pa(addr); 1856 else 1857 return page_to_phys(vmalloc_to_page(addr)) + 1858 offset_in_page(addr); 1859 } else 1860 return page_to_phys(pcpu_addr_to_page(addr)) + 1861 offset_in_page(addr); 1862 } 1863 1864 /** 1865 * pcpu_alloc_alloc_info - allocate percpu allocation info 1866 * @nr_groups: the number of groups 1867 * @nr_units: the number of units 1868 * 1869 * Allocate ai which is large enough for @nr_groups groups containing 1870 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1871 * cpu_map array which is long enough for @nr_units and filled with 1872 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1873 * pointer of other groups. 1874 * 1875 * RETURNS: 1876 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1877 * failure. 1878 */ 1879 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1880 int nr_units) 1881 { 1882 struct pcpu_alloc_info *ai; 1883 size_t base_size, ai_size; 1884 void *ptr; 1885 int unit; 1886 1887 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1888 __alignof__(ai->groups[0].cpu_map[0])); 1889 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1890 1891 ptr = memblock_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE); 1892 if (!ptr) 1893 return NULL; 1894 ai = ptr; 1895 ptr += base_size; 1896 1897 ai->groups[0].cpu_map = ptr; 1898 1899 for (unit = 0; unit < nr_units; unit++) 1900 ai->groups[0].cpu_map[unit] = NR_CPUS; 1901 1902 ai->nr_groups = nr_groups; 1903 ai->__ai_size = PFN_ALIGN(ai_size); 1904 1905 return ai; 1906 } 1907 1908 /** 1909 * pcpu_free_alloc_info - free percpu allocation info 1910 * @ai: pcpu_alloc_info to free 1911 * 1912 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1913 */ 1914 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1915 { 1916 memblock_free_early(__pa(ai), ai->__ai_size); 1917 } 1918 1919 /** 1920 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1921 * @lvl: loglevel 1922 * @ai: allocation info to dump 1923 * 1924 * Print out information about @ai using loglevel @lvl. 1925 */ 1926 static void pcpu_dump_alloc_info(const char *lvl, 1927 const struct pcpu_alloc_info *ai) 1928 { 1929 int group_width = 1, cpu_width = 1, width; 1930 char empty_str[] = "--------"; 1931 int alloc = 0, alloc_end = 0; 1932 int group, v; 1933 int upa, apl; /* units per alloc, allocs per line */ 1934 1935 v = ai->nr_groups; 1936 while (v /= 10) 1937 group_width++; 1938 1939 v = num_possible_cpus(); 1940 while (v /= 10) 1941 cpu_width++; 1942 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1943 1944 upa = ai->alloc_size / ai->unit_size; 1945 width = upa * (cpu_width + 1) + group_width + 3; 1946 apl = rounddown_pow_of_two(max(60 / width, 1)); 1947 1948 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1949 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1950 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1951 1952 for (group = 0; group < ai->nr_groups; group++) { 1953 const struct pcpu_group_info *gi = &ai->groups[group]; 1954 int unit = 0, unit_end = 0; 1955 1956 BUG_ON(gi->nr_units % upa); 1957 for (alloc_end += gi->nr_units / upa; 1958 alloc < alloc_end; alloc++) { 1959 if (!(alloc % apl)) { 1960 pr_cont("\n"); 1961 printk("%spcpu-alloc: ", lvl); 1962 } 1963 pr_cont("[%0*d] ", group_width, group); 1964 1965 for (unit_end += upa; unit < unit_end; unit++) 1966 if (gi->cpu_map[unit] != NR_CPUS) 1967 pr_cont("%0*d ", 1968 cpu_width, gi->cpu_map[unit]); 1969 else 1970 pr_cont("%s ", empty_str); 1971 } 1972 } 1973 pr_cont("\n"); 1974 } 1975 1976 /** 1977 * pcpu_setup_first_chunk - initialize the first percpu chunk 1978 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1979 * @base_addr: mapped address 1980 * 1981 * Initialize the first percpu chunk which contains the kernel static 1982 * perpcu area. This function is to be called from arch percpu area 1983 * setup path. 1984 * 1985 * @ai contains all information necessary to initialize the first 1986 * chunk and prime the dynamic percpu allocator. 1987 * 1988 * @ai->static_size is the size of static percpu area. 1989 * 1990 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1991 * reserve after the static area in the first chunk. This reserves 1992 * the first chunk such that it's available only through reserved 1993 * percpu allocation. This is primarily used to serve module percpu 1994 * static areas on architectures where the addressing model has 1995 * limited offset range for symbol relocations to guarantee module 1996 * percpu symbols fall inside the relocatable range. 1997 * 1998 * @ai->dyn_size determines the number of bytes available for dynamic 1999 * allocation in the first chunk. The area between @ai->static_size + 2000 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2001 * 2002 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2003 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2004 * @ai->dyn_size. 2005 * 2006 * @ai->atom_size is the allocation atom size and used as alignment 2007 * for vm areas. 2008 * 2009 * @ai->alloc_size is the allocation size and always multiple of 2010 * @ai->atom_size. This is larger than @ai->atom_size if 2011 * @ai->unit_size is larger than @ai->atom_size. 2012 * 2013 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2014 * percpu areas. Units which should be colocated are put into the 2015 * same group. Dynamic VM areas will be allocated according to these 2016 * groupings. If @ai->nr_groups is zero, a single group containing 2017 * all units is assumed. 2018 * 2019 * The caller should have mapped the first chunk at @base_addr and 2020 * copied static data to each unit. 2021 * 2022 * The first chunk will always contain a static and a dynamic region. 2023 * However, the static region is not managed by any chunk. If the first 2024 * chunk also contains a reserved region, it is served by two chunks - 2025 * one for the reserved region and one for the dynamic region. They 2026 * share the same vm, but use offset regions in the area allocation map. 2027 * The chunk serving the dynamic region is circulated in the chunk slots 2028 * and available for dynamic allocation like any other chunk. 2029 * 2030 * RETURNS: 2031 * 0 on success, -errno on failure. 2032 */ 2033 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2034 void *base_addr) 2035 { 2036 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2037 size_t static_size, dyn_size; 2038 struct pcpu_chunk *chunk; 2039 unsigned long *group_offsets; 2040 size_t *group_sizes; 2041 unsigned long *unit_off; 2042 unsigned int cpu; 2043 int *unit_map; 2044 int group, unit, i; 2045 int map_size; 2046 unsigned long tmp_addr; 2047 2048 #define PCPU_SETUP_BUG_ON(cond) do { \ 2049 if (unlikely(cond)) { \ 2050 pr_emerg("failed to initialize, %s\n", #cond); \ 2051 pr_emerg("cpu_possible_mask=%*pb\n", \ 2052 cpumask_pr_args(cpu_possible_mask)); \ 2053 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2054 BUG(); \ 2055 } \ 2056 } while (0) 2057 2058 /* sanity checks */ 2059 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2060 #ifdef CONFIG_SMP 2061 PCPU_SETUP_BUG_ON(!ai->static_size); 2062 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2063 #endif 2064 PCPU_SETUP_BUG_ON(!base_addr); 2065 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2066 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2067 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2068 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2069 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2070 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2071 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2072 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2073 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2074 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2075 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2076 2077 /* process group information and build config tables accordingly */ 2078 group_offsets = memblock_alloc(ai->nr_groups * sizeof(group_offsets[0]), 2079 SMP_CACHE_BYTES); 2080 group_sizes = memblock_alloc(ai->nr_groups * sizeof(group_sizes[0]), 2081 SMP_CACHE_BYTES); 2082 unit_map = memblock_alloc(nr_cpu_ids * sizeof(unit_map[0]), 2083 SMP_CACHE_BYTES); 2084 unit_off = memblock_alloc(nr_cpu_ids * sizeof(unit_off[0]), 2085 SMP_CACHE_BYTES); 2086 2087 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2088 unit_map[cpu] = UINT_MAX; 2089 2090 pcpu_low_unit_cpu = NR_CPUS; 2091 pcpu_high_unit_cpu = NR_CPUS; 2092 2093 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2094 const struct pcpu_group_info *gi = &ai->groups[group]; 2095 2096 group_offsets[group] = gi->base_offset; 2097 group_sizes[group] = gi->nr_units * ai->unit_size; 2098 2099 for (i = 0; i < gi->nr_units; i++) { 2100 cpu = gi->cpu_map[i]; 2101 if (cpu == NR_CPUS) 2102 continue; 2103 2104 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2105 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2106 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2107 2108 unit_map[cpu] = unit + i; 2109 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2110 2111 /* determine low/high unit_cpu */ 2112 if (pcpu_low_unit_cpu == NR_CPUS || 2113 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2114 pcpu_low_unit_cpu = cpu; 2115 if (pcpu_high_unit_cpu == NR_CPUS || 2116 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2117 pcpu_high_unit_cpu = cpu; 2118 } 2119 } 2120 pcpu_nr_units = unit; 2121 2122 for_each_possible_cpu(cpu) 2123 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2124 2125 /* we're done parsing the input, undefine BUG macro and dump config */ 2126 #undef PCPU_SETUP_BUG_ON 2127 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2128 2129 pcpu_nr_groups = ai->nr_groups; 2130 pcpu_group_offsets = group_offsets; 2131 pcpu_group_sizes = group_sizes; 2132 pcpu_unit_map = unit_map; 2133 pcpu_unit_offsets = unit_off; 2134 2135 /* determine basic parameters */ 2136 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2137 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2138 pcpu_atom_size = ai->atom_size; 2139 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2140 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2141 2142 pcpu_stats_save_ai(ai); 2143 2144 /* 2145 * Allocate chunk slots. The additional last slot is for 2146 * empty chunks. 2147 */ 2148 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2149 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]), 2150 SMP_CACHE_BYTES); 2151 for (i = 0; i < pcpu_nr_slots; i++) 2152 INIT_LIST_HEAD(&pcpu_slot[i]); 2153 2154 /* 2155 * The end of the static region needs to be aligned with the 2156 * minimum allocation size as this offsets the reserved and 2157 * dynamic region. The first chunk ends page aligned by 2158 * expanding the dynamic region, therefore the dynamic region 2159 * can be shrunk to compensate while still staying above the 2160 * configured sizes. 2161 */ 2162 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2163 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2164 2165 /* 2166 * Initialize first chunk. 2167 * If the reserved_size is non-zero, this initializes the reserved 2168 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2169 * and the dynamic region is initialized here. The first chunk, 2170 * pcpu_first_chunk, will always point to the chunk that serves 2171 * the dynamic region. 2172 */ 2173 tmp_addr = (unsigned long)base_addr + static_size; 2174 map_size = ai->reserved_size ?: dyn_size; 2175 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2176 2177 /* init dynamic chunk if necessary */ 2178 if (ai->reserved_size) { 2179 pcpu_reserved_chunk = chunk; 2180 2181 tmp_addr = (unsigned long)base_addr + static_size + 2182 ai->reserved_size; 2183 map_size = dyn_size; 2184 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2185 } 2186 2187 /* link the first chunk in */ 2188 pcpu_first_chunk = chunk; 2189 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2190 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2191 2192 /* include all regions of the first chunk */ 2193 pcpu_nr_populated += PFN_DOWN(size_sum); 2194 2195 pcpu_stats_chunk_alloc(); 2196 trace_percpu_create_chunk(base_addr); 2197 2198 /* we're done */ 2199 pcpu_base_addr = base_addr; 2200 return 0; 2201 } 2202 2203 #ifdef CONFIG_SMP 2204 2205 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2206 [PCPU_FC_AUTO] = "auto", 2207 [PCPU_FC_EMBED] = "embed", 2208 [PCPU_FC_PAGE] = "page", 2209 }; 2210 2211 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2212 2213 static int __init percpu_alloc_setup(char *str) 2214 { 2215 if (!str) 2216 return -EINVAL; 2217 2218 if (0) 2219 /* nada */; 2220 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2221 else if (!strcmp(str, "embed")) 2222 pcpu_chosen_fc = PCPU_FC_EMBED; 2223 #endif 2224 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2225 else if (!strcmp(str, "page")) 2226 pcpu_chosen_fc = PCPU_FC_PAGE; 2227 #endif 2228 else 2229 pr_warn("unknown allocator %s specified\n", str); 2230 2231 return 0; 2232 } 2233 early_param("percpu_alloc", percpu_alloc_setup); 2234 2235 /* 2236 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2237 * Build it if needed by the arch config or the generic setup is going 2238 * to be used. 2239 */ 2240 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2241 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2242 #define BUILD_EMBED_FIRST_CHUNK 2243 #endif 2244 2245 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2246 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2247 #define BUILD_PAGE_FIRST_CHUNK 2248 #endif 2249 2250 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2251 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2252 /** 2253 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2254 * @reserved_size: the size of reserved percpu area in bytes 2255 * @dyn_size: minimum free size for dynamic allocation in bytes 2256 * @atom_size: allocation atom size 2257 * @cpu_distance_fn: callback to determine distance between cpus, optional 2258 * 2259 * This function determines grouping of units, their mappings to cpus 2260 * and other parameters considering needed percpu size, allocation 2261 * atom size and distances between CPUs. 2262 * 2263 * Groups are always multiples of atom size and CPUs which are of 2264 * LOCAL_DISTANCE both ways are grouped together and share space for 2265 * units in the same group. The returned configuration is guaranteed 2266 * to have CPUs on different nodes on different groups and >=75% usage 2267 * of allocated virtual address space. 2268 * 2269 * RETURNS: 2270 * On success, pointer to the new allocation_info is returned. On 2271 * failure, ERR_PTR value is returned. 2272 */ 2273 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2274 size_t reserved_size, size_t dyn_size, 2275 size_t atom_size, 2276 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2277 { 2278 static int group_map[NR_CPUS] __initdata; 2279 static int group_cnt[NR_CPUS] __initdata; 2280 const size_t static_size = __per_cpu_end - __per_cpu_start; 2281 int nr_groups = 1, nr_units = 0; 2282 size_t size_sum, min_unit_size, alloc_size; 2283 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2284 int last_allocs, group, unit; 2285 unsigned int cpu, tcpu; 2286 struct pcpu_alloc_info *ai; 2287 unsigned int *cpu_map; 2288 2289 /* this function may be called multiple times */ 2290 memset(group_map, 0, sizeof(group_map)); 2291 memset(group_cnt, 0, sizeof(group_cnt)); 2292 2293 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2294 size_sum = PFN_ALIGN(static_size + reserved_size + 2295 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2296 dyn_size = size_sum - static_size - reserved_size; 2297 2298 /* 2299 * Determine min_unit_size, alloc_size and max_upa such that 2300 * alloc_size is multiple of atom_size and is the smallest 2301 * which can accommodate 4k aligned segments which are equal to 2302 * or larger than min_unit_size. 2303 */ 2304 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2305 2306 /* determine the maximum # of units that can fit in an allocation */ 2307 alloc_size = roundup(min_unit_size, atom_size); 2308 upa = alloc_size / min_unit_size; 2309 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2310 upa--; 2311 max_upa = upa; 2312 2313 /* group cpus according to their proximity */ 2314 for_each_possible_cpu(cpu) { 2315 group = 0; 2316 next_group: 2317 for_each_possible_cpu(tcpu) { 2318 if (cpu == tcpu) 2319 break; 2320 if (group_map[tcpu] == group && cpu_distance_fn && 2321 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2322 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2323 group++; 2324 nr_groups = max(nr_groups, group + 1); 2325 goto next_group; 2326 } 2327 } 2328 group_map[cpu] = group; 2329 group_cnt[group]++; 2330 } 2331 2332 /* 2333 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2334 * Expand the unit_size until we use >= 75% of the units allocated. 2335 * Related to atom_size, which could be much larger than the unit_size. 2336 */ 2337 last_allocs = INT_MAX; 2338 for (upa = max_upa; upa; upa--) { 2339 int allocs = 0, wasted = 0; 2340 2341 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2342 continue; 2343 2344 for (group = 0; group < nr_groups; group++) { 2345 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2346 allocs += this_allocs; 2347 wasted += this_allocs * upa - group_cnt[group]; 2348 } 2349 2350 /* 2351 * Don't accept if wastage is over 1/3. The 2352 * greater-than comparison ensures upa==1 always 2353 * passes the following check. 2354 */ 2355 if (wasted > num_possible_cpus() / 3) 2356 continue; 2357 2358 /* and then don't consume more memory */ 2359 if (allocs > last_allocs) 2360 break; 2361 last_allocs = allocs; 2362 best_upa = upa; 2363 } 2364 upa = best_upa; 2365 2366 /* allocate and fill alloc_info */ 2367 for (group = 0; group < nr_groups; group++) 2368 nr_units += roundup(group_cnt[group], upa); 2369 2370 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2371 if (!ai) 2372 return ERR_PTR(-ENOMEM); 2373 cpu_map = ai->groups[0].cpu_map; 2374 2375 for (group = 0; group < nr_groups; group++) { 2376 ai->groups[group].cpu_map = cpu_map; 2377 cpu_map += roundup(group_cnt[group], upa); 2378 } 2379 2380 ai->static_size = static_size; 2381 ai->reserved_size = reserved_size; 2382 ai->dyn_size = dyn_size; 2383 ai->unit_size = alloc_size / upa; 2384 ai->atom_size = atom_size; 2385 ai->alloc_size = alloc_size; 2386 2387 for (group = 0, unit = 0; group_cnt[group]; group++) { 2388 struct pcpu_group_info *gi = &ai->groups[group]; 2389 2390 /* 2391 * Initialize base_offset as if all groups are located 2392 * back-to-back. The caller should update this to 2393 * reflect actual allocation. 2394 */ 2395 gi->base_offset = unit * ai->unit_size; 2396 2397 for_each_possible_cpu(cpu) 2398 if (group_map[cpu] == group) 2399 gi->cpu_map[gi->nr_units++] = cpu; 2400 gi->nr_units = roundup(gi->nr_units, upa); 2401 unit += gi->nr_units; 2402 } 2403 BUG_ON(unit != nr_units); 2404 2405 return ai; 2406 } 2407 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2408 2409 #if defined(BUILD_EMBED_FIRST_CHUNK) 2410 /** 2411 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2412 * @reserved_size: the size of reserved percpu area in bytes 2413 * @dyn_size: minimum free size for dynamic allocation in bytes 2414 * @atom_size: allocation atom size 2415 * @cpu_distance_fn: callback to determine distance between cpus, optional 2416 * @alloc_fn: function to allocate percpu page 2417 * @free_fn: function to free percpu page 2418 * 2419 * This is a helper to ease setting up embedded first percpu chunk and 2420 * can be called where pcpu_setup_first_chunk() is expected. 2421 * 2422 * If this function is used to setup the first chunk, it is allocated 2423 * by calling @alloc_fn and used as-is without being mapped into 2424 * vmalloc area. Allocations are always whole multiples of @atom_size 2425 * aligned to @atom_size. 2426 * 2427 * This enables the first chunk to piggy back on the linear physical 2428 * mapping which often uses larger page size. Please note that this 2429 * can result in very sparse cpu->unit mapping on NUMA machines thus 2430 * requiring large vmalloc address space. Don't use this allocator if 2431 * vmalloc space is not orders of magnitude larger than distances 2432 * between node memory addresses (ie. 32bit NUMA machines). 2433 * 2434 * @dyn_size specifies the minimum dynamic area size. 2435 * 2436 * If the needed size is smaller than the minimum or specified unit 2437 * size, the leftover is returned using @free_fn. 2438 * 2439 * RETURNS: 2440 * 0 on success, -errno on failure. 2441 */ 2442 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2443 size_t atom_size, 2444 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2445 pcpu_fc_alloc_fn_t alloc_fn, 2446 pcpu_fc_free_fn_t free_fn) 2447 { 2448 void *base = (void *)ULONG_MAX; 2449 void **areas = NULL; 2450 struct pcpu_alloc_info *ai; 2451 size_t size_sum, areas_size; 2452 unsigned long max_distance; 2453 int group, i, highest_group, rc; 2454 2455 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2456 cpu_distance_fn); 2457 if (IS_ERR(ai)) 2458 return PTR_ERR(ai); 2459 2460 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2461 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2462 2463 areas = memblock_alloc_nopanic(areas_size, SMP_CACHE_BYTES); 2464 if (!areas) { 2465 rc = -ENOMEM; 2466 goto out_free; 2467 } 2468 2469 /* allocate, copy and determine base address & max_distance */ 2470 highest_group = 0; 2471 for (group = 0; group < ai->nr_groups; group++) { 2472 struct pcpu_group_info *gi = &ai->groups[group]; 2473 unsigned int cpu = NR_CPUS; 2474 void *ptr; 2475 2476 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2477 cpu = gi->cpu_map[i]; 2478 BUG_ON(cpu == NR_CPUS); 2479 2480 /* allocate space for the whole group */ 2481 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2482 if (!ptr) { 2483 rc = -ENOMEM; 2484 goto out_free_areas; 2485 } 2486 /* kmemleak tracks the percpu allocations separately */ 2487 kmemleak_free(ptr); 2488 areas[group] = ptr; 2489 2490 base = min(ptr, base); 2491 if (ptr > areas[highest_group]) 2492 highest_group = group; 2493 } 2494 max_distance = areas[highest_group] - base; 2495 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2496 2497 /* warn if maximum distance is further than 75% of vmalloc space */ 2498 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2499 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2500 max_distance, VMALLOC_TOTAL); 2501 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2502 /* and fail if we have fallback */ 2503 rc = -EINVAL; 2504 goto out_free_areas; 2505 #endif 2506 } 2507 2508 /* 2509 * Copy data and free unused parts. This should happen after all 2510 * allocations are complete; otherwise, we may end up with 2511 * overlapping groups. 2512 */ 2513 for (group = 0; group < ai->nr_groups; group++) { 2514 struct pcpu_group_info *gi = &ai->groups[group]; 2515 void *ptr = areas[group]; 2516 2517 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2518 if (gi->cpu_map[i] == NR_CPUS) { 2519 /* unused unit, free whole */ 2520 free_fn(ptr, ai->unit_size); 2521 continue; 2522 } 2523 /* copy and return the unused part */ 2524 memcpy(ptr, __per_cpu_load, ai->static_size); 2525 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2526 } 2527 } 2528 2529 /* base address is now known, determine group base offsets */ 2530 for (group = 0; group < ai->nr_groups; group++) { 2531 ai->groups[group].base_offset = areas[group] - base; 2532 } 2533 2534 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2535 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2536 ai->dyn_size, ai->unit_size); 2537 2538 rc = pcpu_setup_first_chunk(ai, base); 2539 goto out_free; 2540 2541 out_free_areas: 2542 for (group = 0; group < ai->nr_groups; group++) 2543 if (areas[group]) 2544 free_fn(areas[group], 2545 ai->groups[group].nr_units * ai->unit_size); 2546 out_free: 2547 pcpu_free_alloc_info(ai); 2548 if (areas) 2549 memblock_free_early(__pa(areas), areas_size); 2550 return rc; 2551 } 2552 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2553 2554 #ifdef BUILD_PAGE_FIRST_CHUNK 2555 /** 2556 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2557 * @reserved_size: the size of reserved percpu area in bytes 2558 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2559 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2560 * @populate_pte_fn: function to populate pte 2561 * 2562 * This is a helper to ease setting up page-remapped first percpu 2563 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2564 * 2565 * This is the basic allocator. Static percpu area is allocated 2566 * page-by-page into vmalloc area. 2567 * 2568 * RETURNS: 2569 * 0 on success, -errno on failure. 2570 */ 2571 int __init pcpu_page_first_chunk(size_t reserved_size, 2572 pcpu_fc_alloc_fn_t alloc_fn, 2573 pcpu_fc_free_fn_t free_fn, 2574 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2575 { 2576 static struct vm_struct vm; 2577 struct pcpu_alloc_info *ai; 2578 char psize_str[16]; 2579 int unit_pages; 2580 size_t pages_size; 2581 struct page **pages; 2582 int unit, i, j, rc; 2583 int upa; 2584 int nr_g0_units; 2585 2586 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2587 2588 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2589 if (IS_ERR(ai)) 2590 return PTR_ERR(ai); 2591 BUG_ON(ai->nr_groups != 1); 2592 upa = ai->alloc_size/ai->unit_size; 2593 nr_g0_units = roundup(num_possible_cpus(), upa); 2594 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2595 pcpu_free_alloc_info(ai); 2596 return -EINVAL; 2597 } 2598 2599 unit_pages = ai->unit_size >> PAGE_SHIFT; 2600 2601 /* unaligned allocations can't be freed, round up to page size */ 2602 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2603 sizeof(pages[0])); 2604 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 2605 2606 /* allocate pages */ 2607 j = 0; 2608 for (unit = 0; unit < num_possible_cpus(); unit++) { 2609 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2610 for (i = 0; i < unit_pages; i++) { 2611 void *ptr; 2612 2613 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2614 if (!ptr) { 2615 pr_warn("failed to allocate %s page for cpu%u\n", 2616 psize_str, cpu); 2617 goto enomem; 2618 } 2619 /* kmemleak tracks the percpu allocations separately */ 2620 kmemleak_free(ptr); 2621 pages[j++] = virt_to_page(ptr); 2622 } 2623 } 2624 2625 /* allocate vm area, map the pages and copy static data */ 2626 vm.flags = VM_ALLOC; 2627 vm.size = num_possible_cpus() * ai->unit_size; 2628 vm_area_register_early(&vm, PAGE_SIZE); 2629 2630 for (unit = 0; unit < num_possible_cpus(); unit++) { 2631 unsigned long unit_addr = 2632 (unsigned long)vm.addr + unit * ai->unit_size; 2633 2634 for (i = 0; i < unit_pages; i++) 2635 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2636 2637 /* pte already populated, the following shouldn't fail */ 2638 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2639 unit_pages); 2640 if (rc < 0) 2641 panic("failed to map percpu area, err=%d\n", rc); 2642 2643 /* 2644 * FIXME: Archs with virtual cache should flush local 2645 * cache for the linear mapping here - something 2646 * equivalent to flush_cache_vmap() on the local cpu. 2647 * flush_cache_vmap() can't be used as most supporting 2648 * data structures are not set up yet. 2649 */ 2650 2651 /* copy static data */ 2652 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2653 } 2654 2655 /* we're ready, commit */ 2656 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2657 unit_pages, psize_str, vm.addr, ai->static_size, 2658 ai->reserved_size, ai->dyn_size); 2659 2660 rc = pcpu_setup_first_chunk(ai, vm.addr); 2661 goto out_free_ar; 2662 2663 enomem: 2664 while (--j >= 0) 2665 free_fn(page_address(pages[j]), PAGE_SIZE); 2666 rc = -ENOMEM; 2667 out_free_ar: 2668 memblock_free_early(__pa(pages), pages_size); 2669 pcpu_free_alloc_info(ai); 2670 return rc; 2671 } 2672 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2673 2674 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2675 /* 2676 * Generic SMP percpu area setup. 2677 * 2678 * The embedding helper is used because its behavior closely resembles 2679 * the original non-dynamic generic percpu area setup. This is 2680 * important because many archs have addressing restrictions and might 2681 * fail if the percpu area is located far away from the previous 2682 * location. As an added bonus, in non-NUMA cases, embedding is 2683 * generally a good idea TLB-wise because percpu area can piggy back 2684 * on the physical linear memory mapping which uses large page 2685 * mappings on applicable archs. 2686 */ 2687 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2688 EXPORT_SYMBOL(__per_cpu_offset); 2689 2690 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2691 size_t align) 2692 { 2693 return memblock_alloc_from_nopanic( 2694 size, align, __pa(MAX_DMA_ADDRESS)); 2695 } 2696 2697 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2698 { 2699 memblock_free_early(__pa(ptr), size); 2700 } 2701 2702 void __init setup_per_cpu_areas(void) 2703 { 2704 unsigned long delta; 2705 unsigned int cpu; 2706 int rc; 2707 2708 /* 2709 * Always reserve area for module percpu variables. That's 2710 * what the legacy allocator did. 2711 */ 2712 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2713 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2714 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2715 if (rc < 0) 2716 panic("Failed to initialize percpu areas."); 2717 2718 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2719 for_each_possible_cpu(cpu) 2720 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2721 } 2722 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2723 2724 #else /* CONFIG_SMP */ 2725 2726 /* 2727 * UP percpu area setup. 2728 * 2729 * UP always uses km-based percpu allocator with identity mapping. 2730 * Static percpu variables are indistinguishable from the usual static 2731 * variables and don't require any special preparation. 2732 */ 2733 void __init setup_per_cpu_areas(void) 2734 { 2735 const size_t unit_size = 2736 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2737 PERCPU_DYNAMIC_RESERVE)); 2738 struct pcpu_alloc_info *ai; 2739 void *fc; 2740 2741 ai = pcpu_alloc_alloc_info(1, 1); 2742 fc = memblock_alloc_from_nopanic(unit_size, 2743 PAGE_SIZE, 2744 __pa(MAX_DMA_ADDRESS)); 2745 if (!ai || !fc) 2746 panic("Failed to allocate memory for percpu areas."); 2747 /* kmemleak tracks the percpu allocations separately */ 2748 kmemleak_free(fc); 2749 2750 ai->dyn_size = unit_size; 2751 ai->unit_size = unit_size; 2752 ai->atom_size = unit_size; 2753 ai->alloc_size = unit_size; 2754 ai->groups[0].nr_units = 1; 2755 ai->groups[0].cpu_map[0] = 0; 2756 2757 if (pcpu_setup_first_chunk(ai, fc) < 0) 2758 panic("Failed to initialize percpu areas."); 2759 pcpu_free_alloc_info(ai); 2760 } 2761 2762 #endif /* CONFIG_SMP */ 2763 2764 /* 2765 * pcpu_nr_pages - calculate total number of populated backing pages 2766 * 2767 * This reflects the number of pages populated to back chunks. Metadata is 2768 * excluded in the number exposed in meminfo as the number of backing pages 2769 * scales with the number of cpus and can quickly outweigh the memory used for 2770 * metadata. It also keeps this calculation nice and simple. 2771 * 2772 * RETURNS: 2773 * Total number of populated backing pages in use by the allocator. 2774 */ 2775 unsigned long pcpu_nr_pages(void) 2776 { 2777 return pcpu_nr_populated * pcpu_nr_units; 2778 } 2779 2780 /* 2781 * Percpu allocator is initialized early during boot when neither slab or 2782 * workqueue is available. Plug async management until everything is up 2783 * and running. 2784 */ 2785 static int __init percpu_enable_async(void) 2786 { 2787 pcpu_async_enabled = true; 2788 return 0; 2789 } 2790 subsys_initcall(percpu_enable_async); 2791