xref: /openbmc/linux/mm/percpu.c (revision 48d54403)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu.c - percpu memory allocator
4  *
5  * Copyright (C) 2009		SUSE Linux Products GmbH
6  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7  *
8  * Copyright (C) 2017		Facebook Inc.
9  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
10  *
11  * The percpu allocator handles both static and dynamic areas.  Percpu
12  * areas are allocated in chunks which are divided into units.  There is
13  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
14  * based on NUMA properties of the machine.
15  *
16  *  c0                           c1                         c2
17  *  -------------------          -------------------        ------------
18  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
19  *  -------------------  ......  -------------------  ....  ------------
20  *
21  * Allocation is done by offsets into a unit's address space.  Ie., an
22  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
24  * and even sparse.  Access is handled by configuring percpu base
25  * registers according to the cpu to unit mappings and offsetting the
26  * base address using pcpu_unit_size.
27  *
28  * There is special consideration for the first chunk which must handle
29  * the static percpu variables in the kernel image as allocation services
30  * are not online yet.  In short, the first chunk is structured like so:
31  *
32  *                  <Static | [Reserved] | Dynamic>
33  *
34  * The static data is copied from the original section managed by the
35  * linker.  The reserved section, if non-zero, primarily manages static
36  * percpu variables from kernel modules.  Finally, the dynamic section
37  * takes care of normal allocations.
38  *
39  * The allocator organizes chunks into lists according to free size and
40  * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41  * flag should be passed.  All memcg-aware allocations are sharing one set
42  * of chunks and all unaccounted allocations and allocations performed
43  * by processes belonging to the root memory cgroup are using the second set.
44  *
45  * The allocator tries to allocate from the fullest chunk first. Each chunk
46  * is managed by a bitmap with metadata blocks.  The allocation map is updated
47  * on every allocation and free to reflect the current state while the boundary
48  * map is only updated on allocation.  Each metadata block contains
49  * information to help mitigate the need to iterate over large portions
50  * of the bitmap.  The reverse mapping from page to chunk is stored in
51  * the page's index.  Lastly, units are lazily backed and grow in unison.
52  *
53  * There is a unique conversion that goes on here between bytes and bits.
54  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
55  * tracks the number of pages it is responsible for in nr_pages.  Helper
56  * functions are used to convert from between the bytes, bits, and blocks.
57  * All hints are managed in bits unless explicitly stated.
58  *
59  * To use this allocator, arch code should do the following:
60  *
61  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62  *   regular address to percpu pointer and back if they need to be
63  *   different from the default
64  *
65  * - use pcpu_setup_first_chunk() during percpu area initialization to
66  *   setup the first chunk containing the kernel static percpu area
67  */
68 
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/lcm.h>
76 #include <linux/list.h>
77 #include <linux/log2.h>
78 #include <linux/mm.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/percpu.h>
82 #include <linux/pfn.h>
83 #include <linux/slab.h>
84 #include <linux/spinlock.h>
85 #include <linux/vmalloc.h>
86 #include <linux/workqueue.h>
87 #include <linux/kmemleak.h>
88 #include <linux/sched.h>
89 #include <linux/sched/mm.h>
90 #include <linux/memcontrol.h>
91 
92 #include <asm/cacheflush.h>
93 #include <asm/sections.h>
94 #include <asm/tlbflush.h>
95 #include <asm/io.h>
96 
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/percpu.h>
99 
100 #include "percpu-internal.h"
101 
102 /*
103  * The slots are sorted by the size of the biggest continuous free area.
104  * 1-31 bytes share the same slot.
105  */
106 #define PCPU_SLOT_BASE_SHIFT		5
107 /* chunks in slots below this are subject to being sidelined on failed alloc */
108 #define PCPU_SLOT_FAIL_THRESHOLD	3
109 
110 #define PCPU_EMPTY_POP_PAGES_LOW	2
111 #define PCPU_EMPTY_POP_PAGES_HIGH	4
112 
113 #ifdef CONFIG_SMP
114 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
115 #ifndef __addr_to_pcpu_ptr
116 #define __addr_to_pcpu_ptr(addr)					\
117 	(void __percpu *)((unsigned long)(addr) -			\
118 			  (unsigned long)pcpu_base_addr	+		\
119 			  (unsigned long)__per_cpu_start)
120 #endif
121 #ifndef __pcpu_ptr_to_addr
122 #define __pcpu_ptr_to_addr(ptr)						\
123 	(void __force *)((unsigned long)(ptr) +				\
124 			 (unsigned long)pcpu_base_addr -		\
125 			 (unsigned long)__per_cpu_start)
126 #endif
127 #else	/* CONFIG_SMP */
128 /* on UP, it's always identity mapped */
129 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
130 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
131 #endif	/* CONFIG_SMP */
132 
133 static int pcpu_unit_pages __ro_after_init;
134 static int pcpu_unit_size __ro_after_init;
135 static int pcpu_nr_units __ro_after_init;
136 static int pcpu_atom_size __ro_after_init;
137 int pcpu_nr_slots __ro_after_init;
138 static int pcpu_free_slot __ro_after_init;
139 int pcpu_sidelined_slot __ro_after_init;
140 int pcpu_to_depopulate_slot __ro_after_init;
141 static size_t pcpu_chunk_struct_size __ro_after_init;
142 
143 /* cpus with the lowest and highest unit addresses */
144 static unsigned int pcpu_low_unit_cpu __ro_after_init;
145 static unsigned int pcpu_high_unit_cpu __ro_after_init;
146 
147 /* the address of the first chunk which starts with the kernel static area */
148 void *pcpu_base_addr __ro_after_init;
149 EXPORT_SYMBOL_GPL(pcpu_base_addr);
150 
151 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
152 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
153 
154 /* group information, used for vm allocation */
155 static int pcpu_nr_groups __ro_after_init;
156 static const unsigned long *pcpu_group_offsets __ro_after_init;
157 static const size_t *pcpu_group_sizes __ro_after_init;
158 
159 /*
160  * The first chunk which always exists.  Note that unlike other
161  * chunks, this one can be allocated and mapped in several different
162  * ways and thus often doesn't live in the vmalloc area.
163  */
164 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
165 
166 /*
167  * Optional reserved chunk.  This chunk reserves part of the first
168  * chunk and serves it for reserved allocations.  When the reserved
169  * region doesn't exist, the following variable is NULL.
170  */
171 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
172 
173 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
174 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
175 
176 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
177 
178 /* chunks which need their map areas extended, protected by pcpu_lock */
179 static LIST_HEAD(pcpu_map_extend_chunks);
180 
181 /*
182  * The number of empty populated pages, protected by pcpu_lock.
183  * The reserved chunk doesn't contribute to the count.
184  */
185 int pcpu_nr_empty_pop_pages;
186 
187 /*
188  * The number of populated pages in use by the allocator, protected by
189  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
190  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
191  * and increments/decrements this count by 1).
192  */
193 static unsigned long pcpu_nr_populated;
194 
195 /*
196  * Balance work is used to populate or destroy chunks asynchronously.  We
197  * try to keep the number of populated free pages between
198  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
199  * empty chunk.
200  */
201 static void pcpu_balance_workfn(struct work_struct *work);
202 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
203 static bool pcpu_async_enabled __read_mostly;
204 static bool pcpu_atomic_alloc_failed;
205 
206 static void pcpu_schedule_balance_work(void)
207 {
208 	if (pcpu_async_enabled)
209 		schedule_work(&pcpu_balance_work);
210 }
211 
212 /**
213  * pcpu_addr_in_chunk - check if the address is served from this chunk
214  * @chunk: chunk of interest
215  * @addr: percpu address
216  *
217  * RETURNS:
218  * True if the address is served from this chunk.
219  */
220 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
221 {
222 	void *start_addr, *end_addr;
223 
224 	if (!chunk)
225 		return false;
226 
227 	start_addr = chunk->base_addr + chunk->start_offset;
228 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
229 		   chunk->end_offset;
230 
231 	return addr >= start_addr && addr < end_addr;
232 }
233 
234 static int __pcpu_size_to_slot(int size)
235 {
236 	int highbit = fls(size);	/* size is in bytes */
237 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
238 }
239 
240 static int pcpu_size_to_slot(int size)
241 {
242 	if (size == pcpu_unit_size)
243 		return pcpu_free_slot;
244 	return __pcpu_size_to_slot(size);
245 }
246 
247 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
248 {
249 	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
250 
251 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
252 	    chunk_md->contig_hint == 0)
253 		return 0;
254 
255 	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
256 }
257 
258 /* set the pointer to a chunk in a page struct */
259 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
260 {
261 	page->index = (unsigned long)pcpu;
262 }
263 
264 /* obtain pointer to a chunk from a page struct */
265 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
266 {
267 	return (struct pcpu_chunk *)page->index;
268 }
269 
270 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
271 {
272 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
273 }
274 
275 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
276 {
277 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
278 }
279 
280 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
281 				     unsigned int cpu, int page_idx)
282 {
283 	return (unsigned long)chunk->base_addr +
284 	       pcpu_unit_page_offset(cpu, page_idx);
285 }
286 
287 /*
288  * The following are helper functions to help access bitmaps and convert
289  * between bitmap offsets to address offsets.
290  */
291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292 {
293 	return chunk->alloc_map +
294 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295 }
296 
297 static unsigned long pcpu_off_to_block_index(int off)
298 {
299 	return off / PCPU_BITMAP_BLOCK_BITS;
300 }
301 
302 static unsigned long pcpu_off_to_block_off(int off)
303 {
304 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305 }
306 
307 static unsigned long pcpu_block_off_to_off(int index, int off)
308 {
309 	return index * PCPU_BITMAP_BLOCK_BITS + off;
310 }
311 
312 /**
313  * pcpu_check_block_hint - check against the contig hint
314  * @block: block of interest
315  * @bits: size of allocation
316  * @align: alignment of area (max PAGE_SIZE)
317  *
318  * Check to see if the allocation can fit in the block's contig hint.
319  * Note, a chunk uses the same hints as a block so this can also check against
320  * the chunk's contig hint.
321  */
322 static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
323 				  size_t align)
324 {
325 	int bit_off = ALIGN(block->contig_hint_start, align) -
326 		block->contig_hint_start;
327 
328 	return bit_off + bits <= block->contig_hint;
329 }
330 
331 /*
332  * pcpu_next_hint - determine which hint to use
333  * @block: block of interest
334  * @alloc_bits: size of allocation
335  *
336  * This determines if we should scan based on the scan_hint or first_free.
337  * In general, we want to scan from first_free to fulfill allocations by
338  * first fit.  However, if we know a scan_hint at position scan_hint_start
339  * cannot fulfill an allocation, we can begin scanning from there knowing
340  * the contig_hint will be our fallback.
341  */
342 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
343 {
344 	/*
345 	 * The three conditions below determine if we can skip past the
346 	 * scan_hint.  First, does the scan hint exist.  Second, is the
347 	 * contig_hint after the scan_hint (possibly not true iff
348 	 * contig_hint == scan_hint).  Third, is the allocation request
349 	 * larger than the scan_hint.
350 	 */
351 	if (block->scan_hint &&
352 	    block->contig_hint_start > block->scan_hint_start &&
353 	    alloc_bits > block->scan_hint)
354 		return block->scan_hint_start + block->scan_hint;
355 
356 	return block->first_free;
357 }
358 
359 /**
360  * pcpu_next_md_free_region - finds the next hint free area
361  * @chunk: chunk of interest
362  * @bit_off: chunk offset
363  * @bits: size of free area
364  *
365  * Helper function for pcpu_for_each_md_free_region.  It checks
366  * block->contig_hint and performs aggregation across blocks to find the
367  * next hint.  It modifies bit_off and bits in-place to be consumed in the
368  * loop.
369  */
370 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
371 				     int *bits)
372 {
373 	int i = pcpu_off_to_block_index(*bit_off);
374 	int block_off = pcpu_off_to_block_off(*bit_off);
375 	struct pcpu_block_md *block;
376 
377 	*bits = 0;
378 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
379 	     block++, i++) {
380 		/* handles contig area across blocks */
381 		if (*bits) {
382 			*bits += block->left_free;
383 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
384 				continue;
385 			return;
386 		}
387 
388 		/*
389 		 * This checks three things.  First is there a contig_hint to
390 		 * check.  Second, have we checked this hint before by
391 		 * comparing the block_off.  Third, is this the same as the
392 		 * right contig hint.  In the last case, it spills over into
393 		 * the next block and should be handled by the contig area
394 		 * across blocks code.
395 		 */
396 		*bits = block->contig_hint;
397 		if (*bits && block->contig_hint_start >= block_off &&
398 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
399 			*bit_off = pcpu_block_off_to_off(i,
400 					block->contig_hint_start);
401 			return;
402 		}
403 		/* reset to satisfy the second predicate above */
404 		block_off = 0;
405 
406 		*bits = block->right_free;
407 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
408 	}
409 }
410 
411 /**
412  * pcpu_next_fit_region - finds fit areas for a given allocation request
413  * @chunk: chunk of interest
414  * @alloc_bits: size of allocation
415  * @align: alignment of area (max PAGE_SIZE)
416  * @bit_off: chunk offset
417  * @bits: size of free area
418  *
419  * Finds the next free region that is viable for use with a given size and
420  * alignment.  This only returns if there is a valid area to be used for this
421  * allocation.  block->first_free is returned if the allocation request fits
422  * within the block to see if the request can be fulfilled prior to the contig
423  * hint.
424  */
425 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
426 				 int align, int *bit_off, int *bits)
427 {
428 	int i = pcpu_off_to_block_index(*bit_off);
429 	int block_off = pcpu_off_to_block_off(*bit_off);
430 	struct pcpu_block_md *block;
431 
432 	*bits = 0;
433 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
434 	     block++, i++) {
435 		/* handles contig area across blocks */
436 		if (*bits) {
437 			*bits += block->left_free;
438 			if (*bits >= alloc_bits)
439 				return;
440 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
441 				continue;
442 		}
443 
444 		/* check block->contig_hint */
445 		*bits = ALIGN(block->contig_hint_start, align) -
446 			block->contig_hint_start;
447 		/*
448 		 * This uses the block offset to determine if this has been
449 		 * checked in the prior iteration.
450 		 */
451 		if (block->contig_hint &&
452 		    block->contig_hint_start >= block_off &&
453 		    block->contig_hint >= *bits + alloc_bits) {
454 			int start = pcpu_next_hint(block, alloc_bits);
455 
456 			*bits += alloc_bits + block->contig_hint_start -
457 				 start;
458 			*bit_off = pcpu_block_off_to_off(i, start);
459 			return;
460 		}
461 		/* reset to satisfy the second predicate above */
462 		block_off = 0;
463 
464 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
465 				 align);
466 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
467 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
468 		if (*bits >= alloc_bits)
469 			return;
470 	}
471 
472 	/* no valid offsets were found - fail condition */
473 	*bit_off = pcpu_chunk_map_bits(chunk);
474 }
475 
476 /*
477  * Metadata free area iterators.  These perform aggregation of free areas
478  * based on the metadata blocks and return the offset @bit_off and size in
479  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
480  * a fit is found for the allocation request.
481  */
482 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
483 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
484 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
485 	     (bit_off) += (bits) + 1,					\
486 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
487 
488 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
489 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
490 				  &(bits));				      \
491 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
492 	     (bit_off) += (bits),					      \
493 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
494 				  &(bits)))
495 
496 /**
497  * pcpu_mem_zalloc - allocate memory
498  * @size: bytes to allocate
499  * @gfp: allocation flags
500  *
501  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
502  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
503  * This is to facilitate passing through whitelisted flags.  The
504  * returned memory is always zeroed.
505  *
506  * RETURNS:
507  * Pointer to the allocated area on success, NULL on failure.
508  */
509 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
510 {
511 	if (WARN_ON_ONCE(!slab_is_available()))
512 		return NULL;
513 
514 	if (size <= PAGE_SIZE)
515 		return kzalloc(size, gfp);
516 	else
517 		return __vmalloc(size, gfp | __GFP_ZERO);
518 }
519 
520 /**
521  * pcpu_mem_free - free memory
522  * @ptr: memory to free
523  *
524  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
525  */
526 static void pcpu_mem_free(void *ptr)
527 {
528 	kvfree(ptr);
529 }
530 
531 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
532 			      bool move_front)
533 {
534 	if (chunk != pcpu_reserved_chunk) {
535 		if (move_front)
536 			list_move(&chunk->list, &pcpu_chunk_lists[slot]);
537 		else
538 			list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
539 	}
540 }
541 
542 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
543 {
544 	__pcpu_chunk_move(chunk, slot, true);
545 }
546 
547 /**
548  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
549  * @chunk: chunk of interest
550  * @oslot: the previous slot it was on
551  *
552  * This function is called after an allocation or free changed @chunk.
553  * New slot according to the changed state is determined and @chunk is
554  * moved to the slot.  Note that the reserved chunk is never put on
555  * chunk slots.
556  *
557  * CONTEXT:
558  * pcpu_lock.
559  */
560 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
561 {
562 	int nslot = pcpu_chunk_slot(chunk);
563 
564 	/* leave isolated chunks in-place */
565 	if (chunk->isolated)
566 		return;
567 
568 	if (oslot != nslot)
569 		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
570 }
571 
572 static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
573 {
574 	lockdep_assert_held(&pcpu_lock);
575 
576 	if (!chunk->isolated) {
577 		chunk->isolated = true;
578 		pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
579 	}
580 	list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
581 }
582 
583 static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
584 {
585 	lockdep_assert_held(&pcpu_lock);
586 
587 	if (chunk->isolated) {
588 		chunk->isolated = false;
589 		pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
590 		pcpu_chunk_relocate(chunk, -1);
591 	}
592 }
593 
594 /*
595  * pcpu_update_empty_pages - update empty page counters
596  * @chunk: chunk of interest
597  * @nr: nr of empty pages
598  *
599  * This is used to keep track of the empty pages now based on the premise
600  * a md_block covers a page.  The hint update functions recognize if a block
601  * is made full or broken to calculate deltas for keeping track of free pages.
602  */
603 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
604 {
605 	chunk->nr_empty_pop_pages += nr;
606 	if (chunk != pcpu_reserved_chunk && !chunk->isolated)
607 		pcpu_nr_empty_pop_pages += nr;
608 }
609 
610 /*
611  * pcpu_region_overlap - determines if two regions overlap
612  * @a: start of first region, inclusive
613  * @b: end of first region, exclusive
614  * @x: start of second region, inclusive
615  * @y: end of second region, exclusive
616  *
617  * This is used to determine if the hint region [a, b) overlaps with the
618  * allocated region [x, y).
619  */
620 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
621 {
622 	return (a < y) && (x < b);
623 }
624 
625 /**
626  * pcpu_block_update - updates a block given a free area
627  * @block: block of interest
628  * @start: start offset in block
629  * @end: end offset in block
630  *
631  * Updates a block given a known free area.  The region [start, end) is
632  * expected to be the entirety of the free area within a block.  Chooses
633  * the best starting offset if the contig hints are equal.
634  */
635 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
636 {
637 	int contig = end - start;
638 
639 	block->first_free = min(block->first_free, start);
640 	if (start == 0)
641 		block->left_free = contig;
642 
643 	if (end == block->nr_bits)
644 		block->right_free = contig;
645 
646 	if (contig > block->contig_hint) {
647 		/* promote the old contig_hint to be the new scan_hint */
648 		if (start > block->contig_hint_start) {
649 			if (block->contig_hint > block->scan_hint) {
650 				block->scan_hint_start =
651 					block->contig_hint_start;
652 				block->scan_hint = block->contig_hint;
653 			} else if (start < block->scan_hint_start) {
654 				/*
655 				 * The old contig_hint == scan_hint.  But, the
656 				 * new contig is larger so hold the invariant
657 				 * scan_hint_start < contig_hint_start.
658 				 */
659 				block->scan_hint = 0;
660 			}
661 		} else {
662 			block->scan_hint = 0;
663 		}
664 		block->contig_hint_start = start;
665 		block->contig_hint = contig;
666 	} else if (contig == block->contig_hint) {
667 		if (block->contig_hint_start &&
668 		    (!start ||
669 		     __ffs(start) > __ffs(block->contig_hint_start))) {
670 			/* start has a better alignment so use it */
671 			block->contig_hint_start = start;
672 			if (start < block->scan_hint_start &&
673 			    block->contig_hint > block->scan_hint)
674 				block->scan_hint = 0;
675 		} else if (start > block->scan_hint_start ||
676 			   block->contig_hint > block->scan_hint) {
677 			/*
678 			 * Knowing contig == contig_hint, update the scan_hint
679 			 * if it is farther than or larger than the current
680 			 * scan_hint.
681 			 */
682 			block->scan_hint_start = start;
683 			block->scan_hint = contig;
684 		}
685 	} else {
686 		/*
687 		 * The region is smaller than the contig_hint.  So only update
688 		 * the scan_hint if it is larger than or equal and farther than
689 		 * the current scan_hint.
690 		 */
691 		if ((start < block->contig_hint_start &&
692 		     (contig > block->scan_hint ||
693 		      (contig == block->scan_hint &&
694 		       start > block->scan_hint_start)))) {
695 			block->scan_hint_start = start;
696 			block->scan_hint = contig;
697 		}
698 	}
699 }
700 
701 /*
702  * pcpu_block_update_scan - update a block given a free area from a scan
703  * @chunk: chunk of interest
704  * @bit_off: chunk offset
705  * @bits: size of free area
706  *
707  * Finding the final allocation spot first goes through pcpu_find_block_fit()
708  * to find a block that can hold the allocation and then pcpu_alloc_area()
709  * where a scan is used.  When allocations require specific alignments,
710  * we can inadvertently create holes which will not be seen in the alloc
711  * or free paths.
712  *
713  * This takes a given free area hole and updates a block as it may change the
714  * scan_hint.  We need to scan backwards to ensure we don't miss free bits
715  * from alignment.
716  */
717 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
718 				   int bits)
719 {
720 	int s_off = pcpu_off_to_block_off(bit_off);
721 	int e_off = s_off + bits;
722 	int s_index, l_bit;
723 	struct pcpu_block_md *block;
724 
725 	if (e_off > PCPU_BITMAP_BLOCK_BITS)
726 		return;
727 
728 	s_index = pcpu_off_to_block_index(bit_off);
729 	block = chunk->md_blocks + s_index;
730 
731 	/* scan backwards in case of alignment skipping free bits */
732 	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
733 	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
734 
735 	pcpu_block_update(block, s_off, e_off);
736 }
737 
738 /**
739  * pcpu_chunk_refresh_hint - updates metadata about a chunk
740  * @chunk: chunk of interest
741  * @full_scan: if we should scan from the beginning
742  *
743  * Iterates over the metadata blocks to find the largest contig area.
744  * A full scan can be avoided on the allocation path as this is triggered
745  * if we broke the contig_hint.  In doing so, the scan_hint will be before
746  * the contig_hint or after if the scan_hint == contig_hint.  This cannot
747  * be prevented on freeing as we want to find the largest area possibly
748  * spanning blocks.
749  */
750 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
751 {
752 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
753 	int bit_off, bits;
754 
755 	/* promote scan_hint to contig_hint */
756 	if (!full_scan && chunk_md->scan_hint) {
757 		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
758 		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
759 		chunk_md->contig_hint = chunk_md->scan_hint;
760 		chunk_md->scan_hint = 0;
761 	} else {
762 		bit_off = chunk_md->first_free;
763 		chunk_md->contig_hint = 0;
764 	}
765 
766 	bits = 0;
767 	pcpu_for_each_md_free_region(chunk, bit_off, bits)
768 		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
769 }
770 
771 /**
772  * pcpu_block_refresh_hint
773  * @chunk: chunk of interest
774  * @index: index of the metadata block
775  *
776  * Scans over the block beginning at first_free and updates the block
777  * metadata accordingly.
778  */
779 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
780 {
781 	struct pcpu_block_md *block = chunk->md_blocks + index;
782 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
783 	unsigned int rs, re, start;	/* region start, region end */
784 
785 	/* promote scan_hint to contig_hint */
786 	if (block->scan_hint) {
787 		start = block->scan_hint_start + block->scan_hint;
788 		block->contig_hint_start = block->scan_hint_start;
789 		block->contig_hint = block->scan_hint;
790 		block->scan_hint = 0;
791 	} else {
792 		start = block->first_free;
793 		block->contig_hint = 0;
794 	}
795 
796 	block->right_free = 0;
797 
798 	/* iterate over free areas and update the contig hints */
799 	bitmap_for_each_clear_region(alloc_map, rs, re, start,
800 				     PCPU_BITMAP_BLOCK_BITS)
801 		pcpu_block_update(block, rs, re);
802 }
803 
804 /**
805  * pcpu_block_update_hint_alloc - update hint on allocation path
806  * @chunk: chunk of interest
807  * @bit_off: chunk offset
808  * @bits: size of request
809  *
810  * Updates metadata for the allocation path.  The metadata only has to be
811  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
812  * scans are required if the block's contig hint is broken.
813  */
814 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
815 					 int bits)
816 {
817 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
818 	int nr_empty_pages = 0;
819 	struct pcpu_block_md *s_block, *e_block, *block;
820 	int s_index, e_index;	/* block indexes of the freed allocation */
821 	int s_off, e_off;	/* block offsets of the freed allocation */
822 
823 	/*
824 	 * Calculate per block offsets.
825 	 * The calculation uses an inclusive range, but the resulting offsets
826 	 * are [start, end).  e_index always points to the last block in the
827 	 * range.
828 	 */
829 	s_index = pcpu_off_to_block_index(bit_off);
830 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
831 	s_off = pcpu_off_to_block_off(bit_off);
832 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
833 
834 	s_block = chunk->md_blocks + s_index;
835 	e_block = chunk->md_blocks + e_index;
836 
837 	/*
838 	 * Update s_block.
839 	 * block->first_free must be updated if the allocation takes its place.
840 	 * If the allocation breaks the contig_hint, a scan is required to
841 	 * restore this hint.
842 	 */
843 	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
844 		nr_empty_pages++;
845 
846 	if (s_off == s_block->first_free)
847 		s_block->first_free = find_next_zero_bit(
848 					pcpu_index_alloc_map(chunk, s_index),
849 					PCPU_BITMAP_BLOCK_BITS,
850 					s_off + bits);
851 
852 	if (pcpu_region_overlap(s_block->scan_hint_start,
853 				s_block->scan_hint_start + s_block->scan_hint,
854 				s_off,
855 				s_off + bits))
856 		s_block->scan_hint = 0;
857 
858 	if (pcpu_region_overlap(s_block->contig_hint_start,
859 				s_block->contig_hint_start +
860 				s_block->contig_hint,
861 				s_off,
862 				s_off + bits)) {
863 		/* block contig hint is broken - scan to fix it */
864 		if (!s_off)
865 			s_block->left_free = 0;
866 		pcpu_block_refresh_hint(chunk, s_index);
867 	} else {
868 		/* update left and right contig manually */
869 		s_block->left_free = min(s_block->left_free, s_off);
870 		if (s_index == e_index)
871 			s_block->right_free = min_t(int, s_block->right_free,
872 					PCPU_BITMAP_BLOCK_BITS - e_off);
873 		else
874 			s_block->right_free = 0;
875 	}
876 
877 	/*
878 	 * Update e_block.
879 	 */
880 	if (s_index != e_index) {
881 		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
882 			nr_empty_pages++;
883 
884 		/*
885 		 * When the allocation is across blocks, the end is along
886 		 * the left part of the e_block.
887 		 */
888 		e_block->first_free = find_next_zero_bit(
889 				pcpu_index_alloc_map(chunk, e_index),
890 				PCPU_BITMAP_BLOCK_BITS, e_off);
891 
892 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
893 			/* reset the block */
894 			e_block++;
895 		} else {
896 			if (e_off > e_block->scan_hint_start)
897 				e_block->scan_hint = 0;
898 
899 			e_block->left_free = 0;
900 			if (e_off > e_block->contig_hint_start) {
901 				/* contig hint is broken - scan to fix it */
902 				pcpu_block_refresh_hint(chunk, e_index);
903 			} else {
904 				e_block->right_free =
905 					min_t(int, e_block->right_free,
906 					      PCPU_BITMAP_BLOCK_BITS - e_off);
907 			}
908 		}
909 
910 		/* update in-between md_blocks */
911 		nr_empty_pages += (e_index - s_index - 1);
912 		for (block = s_block + 1; block < e_block; block++) {
913 			block->scan_hint = 0;
914 			block->contig_hint = 0;
915 			block->left_free = 0;
916 			block->right_free = 0;
917 		}
918 	}
919 
920 	if (nr_empty_pages)
921 		pcpu_update_empty_pages(chunk, -nr_empty_pages);
922 
923 	if (pcpu_region_overlap(chunk_md->scan_hint_start,
924 				chunk_md->scan_hint_start +
925 				chunk_md->scan_hint,
926 				bit_off,
927 				bit_off + bits))
928 		chunk_md->scan_hint = 0;
929 
930 	/*
931 	 * The only time a full chunk scan is required is if the chunk
932 	 * contig hint is broken.  Otherwise, it means a smaller space
933 	 * was used and therefore the chunk contig hint is still correct.
934 	 */
935 	if (pcpu_region_overlap(chunk_md->contig_hint_start,
936 				chunk_md->contig_hint_start +
937 				chunk_md->contig_hint,
938 				bit_off,
939 				bit_off + bits))
940 		pcpu_chunk_refresh_hint(chunk, false);
941 }
942 
943 /**
944  * pcpu_block_update_hint_free - updates the block hints on the free path
945  * @chunk: chunk of interest
946  * @bit_off: chunk offset
947  * @bits: size of request
948  *
949  * Updates metadata for the allocation path.  This avoids a blind block
950  * refresh by making use of the block contig hints.  If this fails, it scans
951  * forward and backward to determine the extent of the free area.  This is
952  * capped at the boundary of blocks.
953  *
954  * A chunk update is triggered if a page becomes free, a block becomes free,
955  * or the free spans across blocks.  This tradeoff is to minimize iterating
956  * over the block metadata to update chunk_md->contig_hint.
957  * chunk_md->contig_hint may be off by up to a page, but it will never be more
958  * than the available space.  If the contig hint is contained in one block, it
959  * will be accurate.
960  */
961 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
962 					int bits)
963 {
964 	int nr_empty_pages = 0;
965 	struct pcpu_block_md *s_block, *e_block, *block;
966 	int s_index, e_index;	/* block indexes of the freed allocation */
967 	int s_off, e_off;	/* block offsets of the freed allocation */
968 	int start, end;		/* start and end of the whole free area */
969 
970 	/*
971 	 * Calculate per block offsets.
972 	 * The calculation uses an inclusive range, but the resulting offsets
973 	 * are [start, end).  e_index always points to the last block in the
974 	 * range.
975 	 */
976 	s_index = pcpu_off_to_block_index(bit_off);
977 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
978 	s_off = pcpu_off_to_block_off(bit_off);
979 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
980 
981 	s_block = chunk->md_blocks + s_index;
982 	e_block = chunk->md_blocks + e_index;
983 
984 	/*
985 	 * Check if the freed area aligns with the block->contig_hint.
986 	 * If it does, then the scan to find the beginning/end of the
987 	 * larger free area can be avoided.
988 	 *
989 	 * start and end refer to beginning and end of the free area
990 	 * within each their respective blocks.  This is not necessarily
991 	 * the entire free area as it may span blocks past the beginning
992 	 * or end of the block.
993 	 */
994 	start = s_off;
995 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
996 		start = s_block->contig_hint_start;
997 	} else {
998 		/*
999 		 * Scan backwards to find the extent of the free area.
1000 		 * find_last_bit returns the starting bit, so if the start bit
1001 		 * is returned, that means there was no last bit and the
1002 		 * remainder of the chunk is free.
1003 		 */
1004 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1005 					  start);
1006 		start = (start == l_bit) ? 0 : l_bit + 1;
1007 	}
1008 
1009 	end = e_off;
1010 	if (e_off == e_block->contig_hint_start)
1011 		end = e_block->contig_hint_start + e_block->contig_hint;
1012 	else
1013 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1014 				    PCPU_BITMAP_BLOCK_BITS, end);
1015 
1016 	/* update s_block */
1017 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1018 	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1019 		nr_empty_pages++;
1020 	pcpu_block_update(s_block, start, e_off);
1021 
1022 	/* freeing in the same block */
1023 	if (s_index != e_index) {
1024 		/* update e_block */
1025 		if (end == PCPU_BITMAP_BLOCK_BITS)
1026 			nr_empty_pages++;
1027 		pcpu_block_update(e_block, 0, end);
1028 
1029 		/* reset md_blocks in the middle */
1030 		nr_empty_pages += (e_index - s_index - 1);
1031 		for (block = s_block + 1; block < e_block; block++) {
1032 			block->first_free = 0;
1033 			block->scan_hint = 0;
1034 			block->contig_hint_start = 0;
1035 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1036 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1037 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1038 		}
1039 	}
1040 
1041 	if (nr_empty_pages)
1042 		pcpu_update_empty_pages(chunk, nr_empty_pages);
1043 
1044 	/*
1045 	 * Refresh chunk metadata when the free makes a block free or spans
1046 	 * across blocks.  The contig_hint may be off by up to a page, but if
1047 	 * the contig_hint is contained in a block, it will be accurate with
1048 	 * the else condition below.
1049 	 */
1050 	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1051 		pcpu_chunk_refresh_hint(chunk, true);
1052 	else
1053 		pcpu_block_update(&chunk->chunk_md,
1054 				  pcpu_block_off_to_off(s_index, start),
1055 				  end);
1056 }
1057 
1058 /**
1059  * pcpu_is_populated - determines if the region is populated
1060  * @chunk: chunk of interest
1061  * @bit_off: chunk offset
1062  * @bits: size of area
1063  * @next_off: return value for the next offset to start searching
1064  *
1065  * For atomic allocations, check if the backing pages are populated.
1066  *
1067  * RETURNS:
1068  * Bool if the backing pages are populated.
1069  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1070  */
1071 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1072 			      int *next_off)
1073 {
1074 	unsigned int page_start, page_end, rs, re;
1075 
1076 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1077 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1078 
1079 	rs = page_start;
1080 	bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1081 	if (rs >= page_end)
1082 		return true;
1083 
1084 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1085 	return false;
1086 }
1087 
1088 /**
1089  * pcpu_find_block_fit - finds the block index to start searching
1090  * @chunk: chunk of interest
1091  * @alloc_bits: size of request in allocation units
1092  * @align: alignment of area (max PAGE_SIZE bytes)
1093  * @pop_only: use populated regions only
1094  *
1095  * Given a chunk and an allocation spec, find the offset to begin searching
1096  * for a free region.  This iterates over the bitmap metadata blocks to
1097  * find an offset that will be guaranteed to fit the requirements.  It is
1098  * not quite first fit as if the allocation does not fit in the contig hint
1099  * of a block or chunk, it is skipped.  This errs on the side of caution
1100  * to prevent excess iteration.  Poor alignment can cause the allocator to
1101  * skip over blocks and chunks that have valid free areas.
1102  *
1103  * RETURNS:
1104  * The offset in the bitmap to begin searching.
1105  * -1 if no offset is found.
1106  */
1107 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1108 			       size_t align, bool pop_only)
1109 {
1110 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1111 	int bit_off, bits, next_off;
1112 
1113 	/*
1114 	 * This is an optimization to prevent scanning by assuming if the
1115 	 * allocation cannot fit in the global hint, there is memory pressure
1116 	 * and creating a new chunk would happen soon.
1117 	 */
1118 	if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1119 		return -1;
1120 
1121 	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1122 	bits = 0;
1123 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1124 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1125 						   &next_off))
1126 			break;
1127 
1128 		bit_off = next_off;
1129 		bits = 0;
1130 	}
1131 
1132 	if (bit_off == pcpu_chunk_map_bits(chunk))
1133 		return -1;
1134 
1135 	return bit_off;
1136 }
1137 
1138 /*
1139  * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1140  * @map: the address to base the search on
1141  * @size: the bitmap size in bits
1142  * @start: the bitnumber to start searching at
1143  * @nr: the number of zeroed bits we're looking for
1144  * @align_mask: alignment mask for zero area
1145  * @largest_off: offset of the largest area skipped
1146  * @largest_bits: size of the largest area skipped
1147  *
1148  * The @align_mask should be one less than a power of 2.
1149  *
1150  * This is a modified version of bitmap_find_next_zero_area_off() to remember
1151  * the largest area that was skipped.  This is imperfect, but in general is
1152  * good enough.  The largest remembered region is the largest failed region
1153  * seen.  This does not include anything we possibly skipped due to alignment.
1154  * pcpu_block_update_scan() does scan backwards to try and recover what was
1155  * lost to alignment.  While this can cause scanning to miss earlier possible
1156  * free areas, smaller allocations will eventually fill those holes.
1157  */
1158 static unsigned long pcpu_find_zero_area(unsigned long *map,
1159 					 unsigned long size,
1160 					 unsigned long start,
1161 					 unsigned long nr,
1162 					 unsigned long align_mask,
1163 					 unsigned long *largest_off,
1164 					 unsigned long *largest_bits)
1165 {
1166 	unsigned long index, end, i, area_off, area_bits;
1167 again:
1168 	index = find_next_zero_bit(map, size, start);
1169 
1170 	/* Align allocation */
1171 	index = __ALIGN_MASK(index, align_mask);
1172 	area_off = index;
1173 
1174 	end = index + nr;
1175 	if (end > size)
1176 		return end;
1177 	i = find_next_bit(map, end, index);
1178 	if (i < end) {
1179 		area_bits = i - area_off;
1180 		/* remember largest unused area with best alignment */
1181 		if (area_bits > *largest_bits ||
1182 		    (area_bits == *largest_bits && *largest_off &&
1183 		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1184 			*largest_off = area_off;
1185 			*largest_bits = area_bits;
1186 		}
1187 
1188 		start = i + 1;
1189 		goto again;
1190 	}
1191 	return index;
1192 }
1193 
1194 /**
1195  * pcpu_alloc_area - allocates an area from a pcpu_chunk
1196  * @chunk: chunk of interest
1197  * @alloc_bits: size of request in allocation units
1198  * @align: alignment of area (max PAGE_SIZE)
1199  * @start: bit_off to start searching
1200  *
1201  * This function takes in a @start offset to begin searching to fit an
1202  * allocation of @alloc_bits with alignment @align.  It needs to scan
1203  * the allocation map because if it fits within the block's contig hint,
1204  * @start will be block->first_free. This is an attempt to fill the
1205  * allocation prior to breaking the contig hint.  The allocation and
1206  * boundary maps are updated accordingly if it confirms a valid
1207  * free area.
1208  *
1209  * RETURNS:
1210  * Allocated addr offset in @chunk on success.
1211  * -1 if no matching area is found.
1212  */
1213 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1214 			   size_t align, int start)
1215 {
1216 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1217 	size_t align_mask = (align) ? (align - 1) : 0;
1218 	unsigned long area_off = 0, area_bits = 0;
1219 	int bit_off, end, oslot;
1220 
1221 	lockdep_assert_held(&pcpu_lock);
1222 
1223 	oslot = pcpu_chunk_slot(chunk);
1224 
1225 	/*
1226 	 * Search to find a fit.
1227 	 */
1228 	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1229 		    pcpu_chunk_map_bits(chunk));
1230 	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1231 				      align_mask, &area_off, &area_bits);
1232 	if (bit_off >= end)
1233 		return -1;
1234 
1235 	if (area_bits)
1236 		pcpu_block_update_scan(chunk, area_off, area_bits);
1237 
1238 	/* update alloc map */
1239 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1240 
1241 	/* update boundary map */
1242 	set_bit(bit_off, chunk->bound_map);
1243 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1244 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1245 
1246 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1247 
1248 	/* update first free bit */
1249 	if (bit_off == chunk_md->first_free)
1250 		chunk_md->first_free = find_next_zero_bit(
1251 					chunk->alloc_map,
1252 					pcpu_chunk_map_bits(chunk),
1253 					bit_off + alloc_bits);
1254 
1255 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1256 
1257 	pcpu_chunk_relocate(chunk, oslot);
1258 
1259 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1260 }
1261 
1262 /**
1263  * pcpu_free_area - frees the corresponding offset
1264  * @chunk: chunk of interest
1265  * @off: addr offset into chunk
1266  *
1267  * This function determines the size of an allocation to free using
1268  * the boundary bitmap and clears the allocation map.
1269  *
1270  * RETURNS:
1271  * Number of freed bytes.
1272  */
1273 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1274 {
1275 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1276 	int bit_off, bits, end, oslot, freed;
1277 
1278 	lockdep_assert_held(&pcpu_lock);
1279 	pcpu_stats_area_dealloc(chunk);
1280 
1281 	oslot = pcpu_chunk_slot(chunk);
1282 
1283 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1284 
1285 	/* find end index */
1286 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1287 			    bit_off + 1);
1288 	bits = end - bit_off;
1289 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1290 
1291 	freed = bits * PCPU_MIN_ALLOC_SIZE;
1292 
1293 	/* update metadata */
1294 	chunk->free_bytes += freed;
1295 
1296 	/* update first free bit */
1297 	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1298 
1299 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1300 
1301 	pcpu_chunk_relocate(chunk, oslot);
1302 
1303 	return freed;
1304 }
1305 
1306 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1307 {
1308 	block->scan_hint = 0;
1309 	block->contig_hint = nr_bits;
1310 	block->left_free = nr_bits;
1311 	block->right_free = nr_bits;
1312 	block->first_free = 0;
1313 	block->nr_bits = nr_bits;
1314 }
1315 
1316 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1317 {
1318 	struct pcpu_block_md *md_block;
1319 
1320 	/* init the chunk's block */
1321 	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1322 
1323 	for (md_block = chunk->md_blocks;
1324 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1325 	     md_block++)
1326 		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1327 }
1328 
1329 /**
1330  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1331  * @tmp_addr: the start of the region served
1332  * @map_size: size of the region served
1333  *
1334  * This is responsible for creating the chunks that serve the first chunk.  The
1335  * base_addr is page aligned down of @tmp_addr while the region end is page
1336  * aligned up.  Offsets are kept track of to determine the region served. All
1337  * this is done to appease the bitmap allocator in avoiding partial blocks.
1338  *
1339  * RETURNS:
1340  * Chunk serving the region at @tmp_addr of @map_size.
1341  */
1342 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1343 							 int map_size)
1344 {
1345 	struct pcpu_chunk *chunk;
1346 	unsigned long aligned_addr, lcm_align;
1347 	int start_offset, offset_bits, region_size, region_bits;
1348 	size_t alloc_size;
1349 
1350 	/* region calculations */
1351 	aligned_addr = tmp_addr & PAGE_MASK;
1352 
1353 	start_offset = tmp_addr - aligned_addr;
1354 
1355 	/*
1356 	 * Align the end of the region with the LCM of PAGE_SIZE and
1357 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1358 	 * the other.
1359 	 */
1360 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1361 	region_size = ALIGN(start_offset + map_size, lcm_align);
1362 
1363 	/* allocate chunk */
1364 	alloc_size = struct_size(chunk, populated,
1365 				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1366 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1367 	if (!chunk)
1368 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1369 		      alloc_size);
1370 
1371 	INIT_LIST_HEAD(&chunk->list);
1372 
1373 	chunk->base_addr = (void *)aligned_addr;
1374 	chunk->start_offset = start_offset;
1375 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1376 
1377 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1378 	region_bits = pcpu_chunk_map_bits(chunk);
1379 
1380 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1381 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1382 	if (!chunk->alloc_map)
1383 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1384 		      alloc_size);
1385 
1386 	alloc_size =
1387 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1388 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1389 	if (!chunk->bound_map)
1390 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1391 		      alloc_size);
1392 
1393 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1394 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1395 	if (!chunk->md_blocks)
1396 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1397 		      alloc_size);
1398 
1399 #ifdef CONFIG_MEMCG_KMEM
1400 	/* first chunk is free to use */
1401 	chunk->obj_cgroups = NULL;
1402 #endif
1403 	pcpu_init_md_blocks(chunk);
1404 
1405 	/* manage populated page bitmap */
1406 	chunk->immutable = true;
1407 	bitmap_fill(chunk->populated, chunk->nr_pages);
1408 	chunk->nr_populated = chunk->nr_pages;
1409 	chunk->nr_empty_pop_pages = chunk->nr_pages;
1410 
1411 	chunk->free_bytes = map_size;
1412 
1413 	if (chunk->start_offset) {
1414 		/* hide the beginning of the bitmap */
1415 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1416 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1417 		set_bit(0, chunk->bound_map);
1418 		set_bit(offset_bits, chunk->bound_map);
1419 
1420 		chunk->chunk_md.first_free = offset_bits;
1421 
1422 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1423 	}
1424 
1425 	if (chunk->end_offset) {
1426 		/* hide the end of the bitmap */
1427 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1428 		bitmap_set(chunk->alloc_map,
1429 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1430 			   offset_bits);
1431 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1432 			chunk->bound_map);
1433 		set_bit(region_bits, chunk->bound_map);
1434 
1435 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1436 					     - offset_bits, offset_bits);
1437 	}
1438 
1439 	return chunk;
1440 }
1441 
1442 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1443 {
1444 	struct pcpu_chunk *chunk;
1445 	int region_bits;
1446 
1447 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1448 	if (!chunk)
1449 		return NULL;
1450 
1451 	INIT_LIST_HEAD(&chunk->list);
1452 	chunk->nr_pages = pcpu_unit_pages;
1453 	region_bits = pcpu_chunk_map_bits(chunk);
1454 
1455 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1456 					   sizeof(chunk->alloc_map[0]), gfp);
1457 	if (!chunk->alloc_map)
1458 		goto alloc_map_fail;
1459 
1460 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1461 					   sizeof(chunk->bound_map[0]), gfp);
1462 	if (!chunk->bound_map)
1463 		goto bound_map_fail;
1464 
1465 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1466 					   sizeof(chunk->md_blocks[0]), gfp);
1467 	if (!chunk->md_blocks)
1468 		goto md_blocks_fail;
1469 
1470 #ifdef CONFIG_MEMCG_KMEM
1471 	if (!mem_cgroup_kmem_disabled()) {
1472 		chunk->obj_cgroups =
1473 			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1474 					sizeof(struct obj_cgroup *), gfp);
1475 		if (!chunk->obj_cgroups)
1476 			goto objcg_fail;
1477 	}
1478 #endif
1479 
1480 	pcpu_init_md_blocks(chunk);
1481 
1482 	/* init metadata */
1483 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1484 
1485 	return chunk;
1486 
1487 #ifdef CONFIG_MEMCG_KMEM
1488 objcg_fail:
1489 	pcpu_mem_free(chunk->md_blocks);
1490 #endif
1491 md_blocks_fail:
1492 	pcpu_mem_free(chunk->bound_map);
1493 bound_map_fail:
1494 	pcpu_mem_free(chunk->alloc_map);
1495 alloc_map_fail:
1496 	pcpu_mem_free(chunk);
1497 
1498 	return NULL;
1499 }
1500 
1501 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1502 {
1503 	if (!chunk)
1504 		return;
1505 #ifdef CONFIG_MEMCG_KMEM
1506 	pcpu_mem_free(chunk->obj_cgroups);
1507 #endif
1508 	pcpu_mem_free(chunk->md_blocks);
1509 	pcpu_mem_free(chunk->bound_map);
1510 	pcpu_mem_free(chunk->alloc_map);
1511 	pcpu_mem_free(chunk);
1512 }
1513 
1514 /**
1515  * pcpu_chunk_populated - post-population bookkeeping
1516  * @chunk: pcpu_chunk which got populated
1517  * @page_start: the start page
1518  * @page_end: the end page
1519  *
1520  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1521  * the bookkeeping information accordingly.  Must be called after each
1522  * successful population.
1523  *
1524  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1525  * is to serve an allocation in that area.
1526  */
1527 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1528 				 int page_end)
1529 {
1530 	int nr = page_end - page_start;
1531 
1532 	lockdep_assert_held(&pcpu_lock);
1533 
1534 	bitmap_set(chunk->populated, page_start, nr);
1535 	chunk->nr_populated += nr;
1536 	pcpu_nr_populated += nr;
1537 
1538 	pcpu_update_empty_pages(chunk, nr);
1539 }
1540 
1541 /**
1542  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1543  * @chunk: pcpu_chunk which got depopulated
1544  * @page_start: the start page
1545  * @page_end: the end page
1546  *
1547  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1548  * Update the bookkeeping information accordingly.  Must be called after
1549  * each successful depopulation.
1550  */
1551 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1552 				   int page_start, int page_end)
1553 {
1554 	int nr = page_end - page_start;
1555 
1556 	lockdep_assert_held(&pcpu_lock);
1557 
1558 	bitmap_clear(chunk->populated, page_start, nr);
1559 	chunk->nr_populated -= nr;
1560 	pcpu_nr_populated -= nr;
1561 
1562 	pcpu_update_empty_pages(chunk, -nr);
1563 }
1564 
1565 /*
1566  * Chunk management implementation.
1567  *
1568  * To allow different implementations, chunk alloc/free and
1569  * [de]population are implemented in a separate file which is pulled
1570  * into this file and compiled together.  The following functions
1571  * should be implemented.
1572  *
1573  * pcpu_populate_chunk		- populate the specified range of a chunk
1574  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1575  * pcpu_post_unmap_tlb_flush	- flush tlb for the specified range of a chunk
1576  * pcpu_create_chunk		- create a new chunk
1577  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1578  * pcpu_addr_to_page		- translate address to physical address
1579  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1580  */
1581 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1582 			       int page_start, int page_end, gfp_t gfp);
1583 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1584 				  int page_start, int page_end);
1585 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1586 				      int page_start, int page_end);
1587 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1588 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1589 static struct page *pcpu_addr_to_page(void *addr);
1590 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1591 
1592 #ifdef CONFIG_NEED_PER_CPU_KM
1593 #include "percpu-km.c"
1594 #else
1595 #include "percpu-vm.c"
1596 #endif
1597 
1598 /**
1599  * pcpu_chunk_addr_search - determine chunk containing specified address
1600  * @addr: address for which the chunk needs to be determined.
1601  *
1602  * This is an internal function that handles all but static allocations.
1603  * Static percpu address values should never be passed into the allocator.
1604  *
1605  * RETURNS:
1606  * The address of the found chunk.
1607  */
1608 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1609 {
1610 	/* is it in the dynamic region (first chunk)? */
1611 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1612 		return pcpu_first_chunk;
1613 
1614 	/* is it in the reserved region? */
1615 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1616 		return pcpu_reserved_chunk;
1617 
1618 	/*
1619 	 * The address is relative to unit0 which might be unused and
1620 	 * thus unmapped.  Offset the address to the unit space of the
1621 	 * current processor before looking it up in the vmalloc
1622 	 * space.  Note that any possible cpu id can be used here, so
1623 	 * there's no need to worry about preemption or cpu hotplug.
1624 	 */
1625 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1626 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1627 }
1628 
1629 #ifdef CONFIG_MEMCG_KMEM
1630 static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1631 				      struct obj_cgroup **objcgp)
1632 {
1633 	struct obj_cgroup *objcg;
1634 
1635 	if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1636 		return true;
1637 
1638 	objcg = get_obj_cgroup_from_current();
1639 	if (!objcg)
1640 		return true;
1641 
1642 	if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1643 		obj_cgroup_put(objcg);
1644 		return false;
1645 	}
1646 
1647 	*objcgp = objcg;
1648 	return true;
1649 }
1650 
1651 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1652 				       struct pcpu_chunk *chunk, int off,
1653 				       size_t size)
1654 {
1655 	if (!objcg)
1656 		return;
1657 
1658 	if (likely(chunk && chunk->obj_cgroups)) {
1659 		chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1660 
1661 		rcu_read_lock();
1662 		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1663 				size * num_possible_cpus());
1664 		rcu_read_unlock();
1665 	} else {
1666 		obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1667 		obj_cgroup_put(objcg);
1668 	}
1669 }
1670 
1671 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1672 {
1673 	struct obj_cgroup *objcg;
1674 
1675 	if (unlikely(!chunk->obj_cgroups))
1676 		return;
1677 
1678 	objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1679 	if (!objcg)
1680 		return;
1681 	chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1682 
1683 	obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1684 
1685 	rcu_read_lock();
1686 	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1687 			-(size * num_possible_cpus()));
1688 	rcu_read_unlock();
1689 
1690 	obj_cgroup_put(objcg);
1691 }
1692 
1693 #else /* CONFIG_MEMCG_KMEM */
1694 static bool
1695 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1696 {
1697 	return true;
1698 }
1699 
1700 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1701 				       struct pcpu_chunk *chunk, int off,
1702 				       size_t size)
1703 {
1704 }
1705 
1706 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1707 {
1708 }
1709 #endif /* CONFIG_MEMCG_KMEM */
1710 
1711 /**
1712  * pcpu_alloc - the percpu allocator
1713  * @size: size of area to allocate in bytes
1714  * @align: alignment of area (max PAGE_SIZE)
1715  * @reserved: allocate from the reserved chunk if available
1716  * @gfp: allocation flags
1717  *
1718  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1719  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1720  * then no warning will be triggered on invalid or failed allocation
1721  * requests.
1722  *
1723  * RETURNS:
1724  * Percpu pointer to the allocated area on success, NULL on failure.
1725  */
1726 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1727 				 gfp_t gfp)
1728 {
1729 	gfp_t pcpu_gfp;
1730 	bool is_atomic;
1731 	bool do_warn;
1732 	struct obj_cgroup *objcg = NULL;
1733 	static int warn_limit = 10;
1734 	struct pcpu_chunk *chunk, *next;
1735 	const char *err;
1736 	int slot, off, cpu, ret;
1737 	unsigned long flags;
1738 	void __percpu *ptr;
1739 	size_t bits, bit_align;
1740 
1741 	gfp = current_gfp_context(gfp);
1742 	/* whitelisted flags that can be passed to the backing allocators */
1743 	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1744 	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1745 	do_warn = !(gfp & __GFP_NOWARN);
1746 
1747 	/*
1748 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1749 	 * therefore alignment must be a minimum of that many bytes.
1750 	 * An allocation may have internal fragmentation from rounding up
1751 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1752 	 */
1753 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1754 		align = PCPU_MIN_ALLOC_SIZE;
1755 
1756 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1757 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1758 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1759 
1760 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1761 		     !is_power_of_2(align))) {
1762 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1763 		     size, align);
1764 		return NULL;
1765 	}
1766 
1767 	if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
1768 		return NULL;
1769 
1770 	if (!is_atomic) {
1771 		/*
1772 		 * pcpu_balance_workfn() allocates memory under this mutex,
1773 		 * and it may wait for memory reclaim. Allow current task
1774 		 * to become OOM victim, in case of memory pressure.
1775 		 */
1776 		if (gfp & __GFP_NOFAIL) {
1777 			mutex_lock(&pcpu_alloc_mutex);
1778 		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1779 			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1780 			return NULL;
1781 		}
1782 	}
1783 
1784 	spin_lock_irqsave(&pcpu_lock, flags);
1785 
1786 	/* serve reserved allocations from the reserved chunk if available */
1787 	if (reserved && pcpu_reserved_chunk) {
1788 		chunk = pcpu_reserved_chunk;
1789 
1790 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1791 		if (off < 0) {
1792 			err = "alloc from reserved chunk failed";
1793 			goto fail_unlock;
1794 		}
1795 
1796 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1797 		if (off >= 0)
1798 			goto area_found;
1799 
1800 		err = "alloc from reserved chunk failed";
1801 		goto fail_unlock;
1802 	}
1803 
1804 restart:
1805 	/* search through normal chunks */
1806 	for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1807 		list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1808 					 list) {
1809 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1810 						  is_atomic);
1811 			if (off < 0) {
1812 				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1813 					pcpu_chunk_move(chunk, 0);
1814 				continue;
1815 			}
1816 
1817 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1818 			if (off >= 0) {
1819 				pcpu_reintegrate_chunk(chunk);
1820 				goto area_found;
1821 			}
1822 		}
1823 	}
1824 
1825 	spin_unlock_irqrestore(&pcpu_lock, flags);
1826 
1827 	/*
1828 	 * No space left.  Create a new chunk.  We don't want multiple
1829 	 * tasks to create chunks simultaneously.  Serialize and create iff
1830 	 * there's still no empty chunk after grabbing the mutex.
1831 	 */
1832 	if (is_atomic) {
1833 		err = "atomic alloc failed, no space left";
1834 		goto fail;
1835 	}
1836 
1837 	if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1838 		chunk = pcpu_create_chunk(pcpu_gfp);
1839 		if (!chunk) {
1840 			err = "failed to allocate new chunk";
1841 			goto fail;
1842 		}
1843 
1844 		spin_lock_irqsave(&pcpu_lock, flags);
1845 		pcpu_chunk_relocate(chunk, -1);
1846 	} else {
1847 		spin_lock_irqsave(&pcpu_lock, flags);
1848 	}
1849 
1850 	goto restart;
1851 
1852 area_found:
1853 	pcpu_stats_area_alloc(chunk, size);
1854 	spin_unlock_irqrestore(&pcpu_lock, flags);
1855 
1856 	/* populate if not all pages are already there */
1857 	if (!is_atomic) {
1858 		unsigned int page_start, page_end, rs, re;
1859 
1860 		page_start = PFN_DOWN(off);
1861 		page_end = PFN_UP(off + size);
1862 
1863 		bitmap_for_each_clear_region(chunk->populated, rs, re,
1864 					     page_start, page_end) {
1865 			WARN_ON(chunk->immutable);
1866 
1867 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1868 
1869 			spin_lock_irqsave(&pcpu_lock, flags);
1870 			if (ret) {
1871 				pcpu_free_area(chunk, off);
1872 				err = "failed to populate";
1873 				goto fail_unlock;
1874 			}
1875 			pcpu_chunk_populated(chunk, rs, re);
1876 			spin_unlock_irqrestore(&pcpu_lock, flags);
1877 		}
1878 
1879 		mutex_unlock(&pcpu_alloc_mutex);
1880 	}
1881 
1882 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1883 		pcpu_schedule_balance_work();
1884 
1885 	/* clear the areas and return address relative to base address */
1886 	for_each_possible_cpu(cpu)
1887 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1888 
1889 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1890 	kmemleak_alloc_percpu(ptr, size, gfp);
1891 
1892 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1893 			chunk->base_addr, off, ptr);
1894 
1895 	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1896 
1897 	return ptr;
1898 
1899 fail_unlock:
1900 	spin_unlock_irqrestore(&pcpu_lock, flags);
1901 fail:
1902 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1903 
1904 	if (!is_atomic && do_warn && warn_limit) {
1905 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1906 			size, align, is_atomic, err);
1907 		dump_stack();
1908 		if (!--warn_limit)
1909 			pr_info("limit reached, disable warning\n");
1910 	}
1911 	if (is_atomic) {
1912 		/* see the flag handling in pcpu_balance_workfn() */
1913 		pcpu_atomic_alloc_failed = true;
1914 		pcpu_schedule_balance_work();
1915 	} else {
1916 		mutex_unlock(&pcpu_alloc_mutex);
1917 	}
1918 
1919 	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1920 
1921 	return NULL;
1922 }
1923 
1924 /**
1925  * __alloc_percpu_gfp - allocate dynamic percpu area
1926  * @size: size of area to allocate in bytes
1927  * @align: alignment of area (max PAGE_SIZE)
1928  * @gfp: allocation flags
1929  *
1930  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1931  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1932  * be called from any context but is a lot more likely to fail. If @gfp
1933  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1934  * allocation requests.
1935  *
1936  * RETURNS:
1937  * Percpu pointer to the allocated area on success, NULL on failure.
1938  */
1939 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1940 {
1941 	return pcpu_alloc(size, align, false, gfp);
1942 }
1943 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1944 
1945 /**
1946  * __alloc_percpu - allocate dynamic percpu area
1947  * @size: size of area to allocate in bytes
1948  * @align: alignment of area (max PAGE_SIZE)
1949  *
1950  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1951  */
1952 void __percpu *__alloc_percpu(size_t size, size_t align)
1953 {
1954 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1955 }
1956 EXPORT_SYMBOL_GPL(__alloc_percpu);
1957 
1958 /**
1959  * __alloc_reserved_percpu - allocate reserved percpu area
1960  * @size: size of area to allocate in bytes
1961  * @align: alignment of area (max PAGE_SIZE)
1962  *
1963  * Allocate zero-filled percpu area of @size bytes aligned at @align
1964  * from reserved percpu area if arch has set it up; otherwise,
1965  * allocation is served from the same dynamic area.  Might sleep.
1966  * Might trigger writeouts.
1967  *
1968  * CONTEXT:
1969  * Does GFP_KERNEL allocation.
1970  *
1971  * RETURNS:
1972  * Percpu pointer to the allocated area on success, NULL on failure.
1973  */
1974 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1975 {
1976 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1977 }
1978 
1979 /**
1980  * pcpu_balance_free - manage the amount of free chunks
1981  * @empty_only: free chunks only if there are no populated pages
1982  *
1983  * If empty_only is %false, reclaim all fully free chunks regardless of the
1984  * number of populated pages.  Otherwise, only reclaim chunks that have no
1985  * populated pages.
1986  *
1987  * CONTEXT:
1988  * pcpu_lock (can be dropped temporarily)
1989  */
1990 static void pcpu_balance_free(bool empty_only)
1991 {
1992 	LIST_HEAD(to_free);
1993 	struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1994 	struct pcpu_chunk *chunk, *next;
1995 
1996 	lockdep_assert_held(&pcpu_lock);
1997 
1998 	/*
1999 	 * There's no reason to keep around multiple unused chunks and VM
2000 	 * areas can be scarce.  Destroy all free chunks except for one.
2001 	 */
2002 	list_for_each_entry_safe(chunk, next, free_head, list) {
2003 		WARN_ON(chunk->immutable);
2004 
2005 		/* spare the first one */
2006 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
2007 			continue;
2008 
2009 		if (!empty_only || chunk->nr_empty_pop_pages == 0)
2010 			list_move(&chunk->list, &to_free);
2011 	}
2012 
2013 	if (list_empty(&to_free))
2014 		return;
2015 
2016 	spin_unlock_irq(&pcpu_lock);
2017 	list_for_each_entry_safe(chunk, next, &to_free, list) {
2018 		unsigned int rs, re;
2019 
2020 		bitmap_for_each_set_region(chunk->populated, rs, re, 0,
2021 					   chunk->nr_pages) {
2022 			pcpu_depopulate_chunk(chunk, rs, re);
2023 			spin_lock_irq(&pcpu_lock);
2024 			pcpu_chunk_depopulated(chunk, rs, re);
2025 			spin_unlock_irq(&pcpu_lock);
2026 		}
2027 		pcpu_destroy_chunk(chunk);
2028 		cond_resched();
2029 	}
2030 	spin_lock_irq(&pcpu_lock);
2031 }
2032 
2033 /**
2034  * pcpu_balance_populated - manage the amount of populated pages
2035  *
2036  * Maintain a certain amount of populated pages to satisfy atomic allocations.
2037  * It is possible that this is called when physical memory is scarce causing
2038  * OOM killer to be triggered.  We should avoid doing so until an actual
2039  * allocation causes the failure as it is possible that requests can be
2040  * serviced from already backed regions.
2041  *
2042  * CONTEXT:
2043  * pcpu_lock (can be dropped temporarily)
2044  */
2045 static void pcpu_balance_populated(void)
2046 {
2047 	/* gfp flags passed to underlying allocators */
2048 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2049 	struct pcpu_chunk *chunk;
2050 	int slot, nr_to_pop, ret;
2051 
2052 	lockdep_assert_held(&pcpu_lock);
2053 
2054 	/*
2055 	 * Ensure there are certain number of free populated pages for
2056 	 * atomic allocs.  Fill up from the most packed so that atomic
2057 	 * allocs don't increase fragmentation.  If atomic allocation
2058 	 * failed previously, always populate the maximum amount.  This
2059 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2060 	 * failing indefinitely; however, large atomic allocs are not
2061 	 * something we support properly and can be highly unreliable and
2062 	 * inefficient.
2063 	 */
2064 retry_pop:
2065 	if (pcpu_atomic_alloc_failed) {
2066 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2067 		/* best effort anyway, don't worry about synchronization */
2068 		pcpu_atomic_alloc_failed = false;
2069 	} else {
2070 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2071 				  pcpu_nr_empty_pop_pages,
2072 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2073 	}
2074 
2075 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2076 		unsigned int nr_unpop = 0, rs, re;
2077 
2078 		if (!nr_to_pop)
2079 			break;
2080 
2081 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2082 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2083 			if (nr_unpop)
2084 				break;
2085 		}
2086 
2087 		if (!nr_unpop)
2088 			continue;
2089 
2090 		/* @chunk can't go away while pcpu_alloc_mutex is held */
2091 		bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2092 					     chunk->nr_pages) {
2093 			int nr = min_t(int, re - rs, nr_to_pop);
2094 
2095 			spin_unlock_irq(&pcpu_lock);
2096 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2097 			cond_resched();
2098 			spin_lock_irq(&pcpu_lock);
2099 			if (!ret) {
2100 				nr_to_pop -= nr;
2101 				pcpu_chunk_populated(chunk, rs, rs + nr);
2102 			} else {
2103 				nr_to_pop = 0;
2104 			}
2105 
2106 			if (!nr_to_pop)
2107 				break;
2108 		}
2109 	}
2110 
2111 	if (nr_to_pop) {
2112 		/* ran out of chunks to populate, create a new one and retry */
2113 		spin_unlock_irq(&pcpu_lock);
2114 		chunk = pcpu_create_chunk(gfp);
2115 		cond_resched();
2116 		spin_lock_irq(&pcpu_lock);
2117 		if (chunk) {
2118 			pcpu_chunk_relocate(chunk, -1);
2119 			goto retry_pop;
2120 		}
2121 	}
2122 }
2123 
2124 /**
2125  * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2126  *
2127  * Scan over chunks in the depopulate list and try to release unused populated
2128  * pages back to the system.  Depopulated chunks are sidelined to prevent
2129  * repopulating these pages unless required.  Fully free chunks are reintegrated
2130  * and freed accordingly (1 is kept around).  If we drop below the empty
2131  * populated pages threshold, reintegrate the chunk if it has empty free pages.
2132  * Each chunk is scanned in the reverse order to keep populated pages close to
2133  * the beginning of the chunk.
2134  *
2135  * CONTEXT:
2136  * pcpu_lock (can be dropped temporarily)
2137  *
2138  */
2139 static void pcpu_reclaim_populated(void)
2140 {
2141 	struct pcpu_chunk *chunk;
2142 	struct pcpu_block_md *block;
2143 	int freed_page_start, freed_page_end;
2144 	int i, end;
2145 	bool reintegrate;
2146 
2147 	lockdep_assert_held(&pcpu_lock);
2148 
2149 	/*
2150 	 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2151 	 * longer discoverable to allocations whom may populate pages.  The only
2152 	 * other accessor is the free path which only returns area back to the
2153 	 * allocator not touching the populated bitmap.
2154 	 */
2155 	while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) {
2156 		chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2157 					 struct pcpu_chunk, list);
2158 		WARN_ON(chunk->immutable);
2159 
2160 		/*
2161 		 * Scan chunk's pages in the reverse order to keep populated
2162 		 * pages close to the beginning of the chunk.
2163 		 */
2164 		freed_page_start = chunk->nr_pages;
2165 		freed_page_end = 0;
2166 		reintegrate = false;
2167 		for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2168 			/* no more work to do */
2169 			if (chunk->nr_empty_pop_pages == 0)
2170 				break;
2171 
2172 			/* reintegrate chunk to prevent atomic alloc failures */
2173 			if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2174 				reintegrate = true;
2175 				goto end_chunk;
2176 			}
2177 
2178 			/*
2179 			 * If the page is empty and populated, start or
2180 			 * extend the (i, end) range.  If i == 0, decrease
2181 			 * i and perform the depopulation to cover the last
2182 			 * (first) page in the chunk.
2183 			 */
2184 			block = chunk->md_blocks + i;
2185 			if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2186 			    test_bit(i, chunk->populated)) {
2187 				if (end == -1)
2188 					end = i;
2189 				if (i > 0)
2190 					continue;
2191 				i--;
2192 			}
2193 
2194 			/* depopulate if there is an active range */
2195 			if (end == -1)
2196 				continue;
2197 
2198 			spin_unlock_irq(&pcpu_lock);
2199 			pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2200 			cond_resched();
2201 			spin_lock_irq(&pcpu_lock);
2202 
2203 			pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2204 			freed_page_start = min(freed_page_start, i + 1);
2205 			freed_page_end = max(freed_page_end, end + 1);
2206 
2207 			/* reset the range and continue */
2208 			end = -1;
2209 		}
2210 
2211 end_chunk:
2212 		/* batch tlb flush per chunk to amortize cost */
2213 		if (freed_page_start < freed_page_end) {
2214 			spin_unlock_irq(&pcpu_lock);
2215 			pcpu_post_unmap_tlb_flush(chunk,
2216 						  freed_page_start,
2217 						  freed_page_end);
2218 			cond_resched();
2219 			spin_lock_irq(&pcpu_lock);
2220 		}
2221 
2222 		if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2223 			pcpu_reintegrate_chunk(chunk);
2224 		else
2225 			list_move_tail(&chunk->list,
2226 				       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2227 	}
2228 }
2229 
2230 /**
2231  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2232  * @work: unused
2233  *
2234  * For each chunk type, manage the number of fully free chunks and the number of
2235  * populated pages.  An important thing to consider is when pages are freed and
2236  * how they contribute to the global counts.
2237  */
2238 static void pcpu_balance_workfn(struct work_struct *work)
2239 {
2240 	/*
2241 	 * pcpu_balance_free() is called twice because the first time we may
2242 	 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2243 	 * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2244 	 * to move fully free chunks to the active list to be freed if
2245 	 * appropriate.
2246 	 */
2247 	mutex_lock(&pcpu_alloc_mutex);
2248 	spin_lock_irq(&pcpu_lock);
2249 
2250 	pcpu_balance_free(false);
2251 	pcpu_reclaim_populated();
2252 	pcpu_balance_populated();
2253 	pcpu_balance_free(true);
2254 
2255 	spin_unlock_irq(&pcpu_lock);
2256 	mutex_unlock(&pcpu_alloc_mutex);
2257 }
2258 
2259 /**
2260  * free_percpu - free percpu area
2261  * @ptr: pointer to area to free
2262  *
2263  * Free percpu area @ptr.
2264  *
2265  * CONTEXT:
2266  * Can be called from atomic context.
2267  */
2268 void free_percpu(void __percpu *ptr)
2269 {
2270 	void *addr;
2271 	struct pcpu_chunk *chunk;
2272 	unsigned long flags;
2273 	int size, off;
2274 	bool need_balance = false;
2275 
2276 	if (!ptr)
2277 		return;
2278 
2279 	kmemleak_free_percpu(ptr);
2280 
2281 	addr = __pcpu_ptr_to_addr(ptr);
2282 
2283 	spin_lock_irqsave(&pcpu_lock, flags);
2284 
2285 	chunk = pcpu_chunk_addr_search(addr);
2286 	off = addr - chunk->base_addr;
2287 
2288 	size = pcpu_free_area(chunk, off);
2289 
2290 	pcpu_memcg_free_hook(chunk, off, size);
2291 
2292 	/*
2293 	 * If there are more than one fully free chunks, wake up grim reaper.
2294 	 * If the chunk is isolated, it may be in the process of being
2295 	 * reclaimed.  Let reclaim manage cleaning up of that chunk.
2296 	 */
2297 	if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2298 		struct pcpu_chunk *pos;
2299 
2300 		list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2301 			if (pos != chunk) {
2302 				need_balance = true;
2303 				break;
2304 			}
2305 	} else if (pcpu_should_reclaim_chunk(chunk)) {
2306 		pcpu_isolate_chunk(chunk);
2307 		need_balance = true;
2308 	}
2309 
2310 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2311 
2312 	spin_unlock_irqrestore(&pcpu_lock, flags);
2313 
2314 	if (need_balance)
2315 		pcpu_schedule_balance_work();
2316 }
2317 EXPORT_SYMBOL_GPL(free_percpu);
2318 
2319 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2320 {
2321 #ifdef CONFIG_SMP
2322 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2323 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2324 	unsigned int cpu;
2325 
2326 	for_each_possible_cpu(cpu) {
2327 		void *start = per_cpu_ptr(base, cpu);
2328 		void *va = (void *)addr;
2329 
2330 		if (va >= start && va < start + static_size) {
2331 			if (can_addr) {
2332 				*can_addr = (unsigned long) (va - start);
2333 				*can_addr += (unsigned long)
2334 					per_cpu_ptr(base, get_boot_cpu_id());
2335 			}
2336 			return true;
2337 		}
2338 	}
2339 #endif
2340 	/* on UP, can't distinguish from other static vars, always false */
2341 	return false;
2342 }
2343 
2344 /**
2345  * is_kernel_percpu_address - test whether address is from static percpu area
2346  * @addr: address to test
2347  *
2348  * Test whether @addr belongs to in-kernel static percpu area.  Module
2349  * static percpu areas are not considered.  For those, use
2350  * is_module_percpu_address().
2351  *
2352  * RETURNS:
2353  * %true if @addr is from in-kernel static percpu area, %false otherwise.
2354  */
2355 bool is_kernel_percpu_address(unsigned long addr)
2356 {
2357 	return __is_kernel_percpu_address(addr, NULL);
2358 }
2359 
2360 /**
2361  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2362  * @addr: the address to be converted to physical address
2363  *
2364  * Given @addr which is dereferenceable address obtained via one of
2365  * percpu access macros, this function translates it into its physical
2366  * address.  The caller is responsible for ensuring @addr stays valid
2367  * until this function finishes.
2368  *
2369  * percpu allocator has special setup for the first chunk, which currently
2370  * supports either embedding in linear address space or vmalloc mapping,
2371  * and, from the second one, the backing allocator (currently either vm or
2372  * km) provides translation.
2373  *
2374  * The addr can be translated simply without checking if it falls into the
2375  * first chunk. But the current code reflects better how percpu allocator
2376  * actually works, and the verification can discover both bugs in percpu
2377  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2378  * code.
2379  *
2380  * RETURNS:
2381  * The physical address for @addr.
2382  */
2383 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2384 {
2385 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2386 	bool in_first_chunk = false;
2387 	unsigned long first_low, first_high;
2388 	unsigned int cpu;
2389 
2390 	/*
2391 	 * The following test on unit_low/high isn't strictly
2392 	 * necessary but will speed up lookups of addresses which
2393 	 * aren't in the first chunk.
2394 	 *
2395 	 * The address check is against full chunk sizes.  pcpu_base_addr
2396 	 * points to the beginning of the first chunk including the
2397 	 * static region.  Assumes good intent as the first chunk may
2398 	 * not be full (ie. < pcpu_unit_pages in size).
2399 	 */
2400 	first_low = (unsigned long)pcpu_base_addr +
2401 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2402 	first_high = (unsigned long)pcpu_base_addr +
2403 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2404 	if ((unsigned long)addr >= first_low &&
2405 	    (unsigned long)addr < first_high) {
2406 		for_each_possible_cpu(cpu) {
2407 			void *start = per_cpu_ptr(base, cpu);
2408 
2409 			if (addr >= start && addr < start + pcpu_unit_size) {
2410 				in_first_chunk = true;
2411 				break;
2412 			}
2413 		}
2414 	}
2415 
2416 	if (in_first_chunk) {
2417 		if (!is_vmalloc_addr(addr))
2418 			return __pa(addr);
2419 		else
2420 			return page_to_phys(vmalloc_to_page(addr)) +
2421 			       offset_in_page(addr);
2422 	} else
2423 		return page_to_phys(pcpu_addr_to_page(addr)) +
2424 		       offset_in_page(addr);
2425 }
2426 
2427 /**
2428  * pcpu_alloc_alloc_info - allocate percpu allocation info
2429  * @nr_groups: the number of groups
2430  * @nr_units: the number of units
2431  *
2432  * Allocate ai which is large enough for @nr_groups groups containing
2433  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2434  * cpu_map array which is long enough for @nr_units and filled with
2435  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2436  * pointer of other groups.
2437  *
2438  * RETURNS:
2439  * Pointer to the allocated pcpu_alloc_info on success, NULL on
2440  * failure.
2441  */
2442 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2443 						      int nr_units)
2444 {
2445 	struct pcpu_alloc_info *ai;
2446 	size_t base_size, ai_size;
2447 	void *ptr;
2448 	int unit;
2449 
2450 	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2451 			  __alignof__(ai->groups[0].cpu_map[0]));
2452 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2453 
2454 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2455 	if (!ptr)
2456 		return NULL;
2457 	ai = ptr;
2458 	ptr += base_size;
2459 
2460 	ai->groups[0].cpu_map = ptr;
2461 
2462 	for (unit = 0; unit < nr_units; unit++)
2463 		ai->groups[0].cpu_map[unit] = NR_CPUS;
2464 
2465 	ai->nr_groups = nr_groups;
2466 	ai->__ai_size = PFN_ALIGN(ai_size);
2467 
2468 	return ai;
2469 }
2470 
2471 /**
2472  * pcpu_free_alloc_info - free percpu allocation info
2473  * @ai: pcpu_alloc_info to free
2474  *
2475  * Free @ai which was allocated by pcpu_alloc_alloc_info().
2476  */
2477 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2478 {
2479 	memblock_free_early(__pa(ai), ai->__ai_size);
2480 }
2481 
2482 /**
2483  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2484  * @lvl: loglevel
2485  * @ai: allocation info to dump
2486  *
2487  * Print out information about @ai using loglevel @lvl.
2488  */
2489 static void pcpu_dump_alloc_info(const char *lvl,
2490 				 const struct pcpu_alloc_info *ai)
2491 {
2492 	int group_width = 1, cpu_width = 1, width;
2493 	char empty_str[] = "--------";
2494 	int alloc = 0, alloc_end = 0;
2495 	int group, v;
2496 	int upa, apl;	/* units per alloc, allocs per line */
2497 
2498 	v = ai->nr_groups;
2499 	while (v /= 10)
2500 		group_width++;
2501 
2502 	v = num_possible_cpus();
2503 	while (v /= 10)
2504 		cpu_width++;
2505 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2506 
2507 	upa = ai->alloc_size / ai->unit_size;
2508 	width = upa * (cpu_width + 1) + group_width + 3;
2509 	apl = rounddown_pow_of_two(max(60 / width, 1));
2510 
2511 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2512 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2513 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2514 
2515 	for (group = 0; group < ai->nr_groups; group++) {
2516 		const struct pcpu_group_info *gi = &ai->groups[group];
2517 		int unit = 0, unit_end = 0;
2518 
2519 		BUG_ON(gi->nr_units % upa);
2520 		for (alloc_end += gi->nr_units / upa;
2521 		     alloc < alloc_end; alloc++) {
2522 			if (!(alloc % apl)) {
2523 				pr_cont("\n");
2524 				printk("%spcpu-alloc: ", lvl);
2525 			}
2526 			pr_cont("[%0*d] ", group_width, group);
2527 
2528 			for (unit_end += upa; unit < unit_end; unit++)
2529 				if (gi->cpu_map[unit] != NR_CPUS)
2530 					pr_cont("%0*d ",
2531 						cpu_width, gi->cpu_map[unit]);
2532 				else
2533 					pr_cont("%s ", empty_str);
2534 		}
2535 	}
2536 	pr_cont("\n");
2537 }
2538 
2539 /**
2540  * pcpu_setup_first_chunk - initialize the first percpu chunk
2541  * @ai: pcpu_alloc_info describing how to percpu area is shaped
2542  * @base_addr: mapped address
2543  *
2544  * Initialize the first percpu chunk which contains the kernel static
2545  * percpu area.  This function is to be called from arch percpu area
2546  * setup path.
2547  *
2548  * @ai contains all information necessary to initialize the first
2549  * chunk and prime the dynamic percpu allocator.
2550  *
2551  * @ai->static_size is the size of static percpu area.
2552  *
2553  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2554  * reserve after the static area in the first chunk.  This reserves
2555  * the first chunk such that it's available only through reserved
2556  * percpu allocation.  This is primarily used to serve module percpu
2557  * static areas on architectures where the addressing model has
2558  * limited offset range for symbol relocations to guarantee module
2559  * percpu symbols fall inside the relocatable range.
2560  *
2561  * @ai->dyn_size determines the number of bytes available for dynamic
2562  * allocation in the first chunk.  The area between @ai->static_size +
2563  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2564  *
2565  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2566  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2567  * @ai->dyn_size.
2568  *
2569  * @ai->atom_size is the allocation atom size and used as alignment
2570  * for vm areas.
2571  *
2572  * @ai->alloc_size is the allocation size and always multiple of
2573  * @ai->atom_size.  This is larger than @ai->atom_size if
2574  * @ai->unit_size is larger than @ai->atom_size.
2575  *
2576  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2577  * percpu areas.  Units which should be colocated are put into the
2578  * same group.  Dynamic VM areas will be allocated according to these
2579  * groupings.  If @ai->nr_groups is zero, a single group containing
2580  * all units is assumed.
2581  *
2582  * The caller should have mapped the first chunk at @base_addr and
2583  * copied static data to each unit.
2584  *
2585  * The first chunk will always contain a static and a dynamic region.
2586  * However, the static region is not managed by any chunk.  If the first
2587  * chunk also contains a reserved region, it is served by two chunks -
2588  * one for the reserved region and one for the dynamic region.  They
2589  * share the same vm, but use offset regions in the area allocation map.
2590  * The chunk serving the dynamic region is circulated in the chunk slots
2591  * and available for dynamic allocation like any other chunk.
2592  */
2593 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2594 				   void *base_addr)
2595 {
2596 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2597 	size_t static_size, dyn_size;
2598 	struct pcpu_chunk *chunk;
2599 	unsigned long *group_offsets;
2600 	size_t *group_sizes;
2601 	unsigned long *unit_off;
2602 	unsigned int cpu;
2603 	int *unit_map;
2604 	int group, unit, i;
2605 	int map_size;
2606 	unsigned long tmp_addr;
2607 	size_t alloc_size;
2608 
2609 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2610 	if (unlikely(cond)) {						\
2611 		pr_emerg("failed to initialize, %s\n", #cond);		\
2612 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2613 			 cpumask_pr_args(cpu_possible_mask));		\
2614 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2615 		BUG();							\
2616 	}								\
2617 } while (0)
2618 
2619 	/* sanity checks */
2620 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2621 #ifdef CONFIG_SMP
2622 	PCPU_SETUP_BUG_ON(!ai->static_size);
2623 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2624 #endif
2625 	PCPU_SETUP_BUG_ON(!base_addr);
2626 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2627 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2628 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2629 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2630 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2631 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2632 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2633 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2634 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2635 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2636 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2637 
2638 	/* process group information and build config tables accordingly */
2639 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2640 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2641 	if (!group_offsets)
2642 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2643 		      alloc_size);
2644 
2645 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2646 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2647 	if (!group_sizes)
2648 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2649 		      alloc_size);
2650 
2651 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2652 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2653 	if (!unit_map)
2654 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2655 		      alloc_size);
2656 
2657 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2658 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2659 	if (!unit_off)
2660 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2661 		      alloc_size);
2662 
2663 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2664 		unit_map[cpu] = UINT_MAX;
2665 
2666 	pcpu_low_unit_cpu = NR_CPUS;
2667 	pcpu_high_unit_cpu = NR_CPUS;
2668 
2669 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2670 		const struct pcpu_group_info *gi = &ai->groups[group];
2671 
2672 		group_offsets[group] = gi->base_offset;
2673 		group_sizes[group] = gi->nr_units * ai->unit_size;
2674 
2675 		for (i = 0; i < gi->nr_units; i++) {
2676 			cpu = gi->cpu_map[i];
2677 			if (cpu == NR_CPUS)
2678 				continue;
2679 
2680 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2681 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2682 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2683 
2684 			unit_map[cpu] = unit + i;
2685 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2686 
2687 			/* determine low/high unit_cpu */
2688 			if (pcpu_low_unit_cpu == NR_CPUS ||
2689 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2690 				pcpu_low_unit_cpu = cpu;
2691 			if (pcpu_high_unit_cpu == NR_CPUS ||
2692 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2693 				pcpu_high_unit_cpu = cpu;
2694 		}
2695 	}
2696 	pcpu_nr_units = unit;
2697 
2698 	for_each_possible_cpu(cpu)
2699 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2700 
2701 	/* we're done parsing the input, undefine BUG macro and dump config */
2702 #undef PCPU_SETUP_BUG_ON
2703 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2704 
2705 	pcpu_nr_groups = ai->nr_groups;
2706 	pcpu_group_offsets = group_offsets;
2707 	pcpu_group_sizes = group_sizes;
2708 	pcpu_unit_map = unit_map;
2709 	pcpu_unit_offsets = unit_off;
2710 
2711 	/* determine basic parameters */
2712 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2713 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2714 	pcpu_atom_size = ai->atom_size;
2715 	pcpu_chunk_struct_size = struct_size(chunk, populated,
2716 					     BITS_TO_LONGS(pcpu_unit_pages));
2717 
2718 	pcpu_stats_save_ai(ai);
2719 
2720 	/*
2721 	 * Allocate chunk slots.  The slots after the active slots are:
2722 	 *   sidelined_slot - isolated, depopulated chunks
2723 	 *   free_slot - fully free chunks
2724 	 *   to_depopulate_slot - isolated, chunks to depopulate
2725 	 */
2726 	pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2727 	pcpu_free_slot = pcpu_sidelined_slot + 1;
2728 	pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2729 	pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2730 	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2731 					  sizeof(pcpu_chunk_lists[0]),
2732 					  SMP_CACHE_BYTES);
2733 	if (!pcpu_chunk_lists)
2734 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2735 		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2736 
2737 	for (i = 0; i < pcpu_nr_slots; i++)
2738 		INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2739 
2740 	/*
2741 	 * The end of the static region needs to be aligned with the
2742 	 * minimum allocation size as this offsets the reserved and
2743 	 * dynamic region.  The first chunk ends page aligned by
2744 	 * expanding the dynamic region, therefore the dynamic region
2745 	 * can be shrunk to compensate while still staying above the
2746 	 * configured sizes.
2747 	 */
2748 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2749 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2750 
2751 	/*
2752 	 * Initialize first chunk.
2753 	 * If the reserved_size is non-zero, this initializes the reserved
2754 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2755 	 * and the dynamic region is initialized here.  The first chunk,
2756 	 * pcpu_first_chunk, will always point to the chunk that serves
2757 	 * the dynamic region.
2758 	 */
2759 	tmp_addr = (unsigned long)base_addr + static_size;
2760 	map_size = ai->reserved_size ?: dyn_size;
2761 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2762 
2763 	/* init dynamic chunk if necessary */
2764 	if (ai->reserved_size) {
2765 		pcpu_reserved_chunk = chunk;
2766 
2767 		tmp_addr = (unsigned long)base_addr + static_size +
2768 			   ai->reserved_size;
2769 		map_size = dyn_size;
2770 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2771 	}
2772 
2773 	/* link the first chunk in */
2774 	pcpu_first_chunk = chunk;
2775 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2776 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2777 
2778 	/* include all regions of the first chunk */
2779 	pcpu_nr_populated += PFN_DOWN(size_sum);
2780 
2781 	pcpu_stats_chunk_alloc();
2782 	trace_percpu_create_chunk(base_addr);
2783 
2784 	/* we're done */
2785 	pcpu_base_addr = base_addr;
2786 }
2787 
2788 #ifdef CONFIG_SMP
2789 
2790 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2791 	[PCPU_FC_AUTO]	= "auto",
2792 	[PCPU_FC_EMBED]	= "embed",
2793 	[PCPU_FC_PAGE]	= "page",
2794 };
2795 
2796 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2797 
2798 static int __init percpu_alloc_setup(char *str)
2799 {
2800 	if (!str)
2801 		return -EINVAL;
2802 
2803 	if (0)
2804 		/* nada */;
2805 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2806 	else if (!strcmp(str, "embed"))
2807 		pcpu_chosen_fc = PCPU_FC_EMBED;
2808 #endif
2809 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2810 	else if (!strcmp(str, "page"))
2811 		pcpu_chosen_fc = PCPU_FC_PAGE;
2812 #endif
2813 	else
2814 		pr_warn("unknown allocator %s specified\n", str);
2815 
2816 	return 0;
2817 }
2818 early_param("percpu_alloc", percpu_alloc_setup);
2819 
2820 /*
2821  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2822  * Build it if needed by the arch config or the generic setup is going
2823  * to be used.
2824  */
2825 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2826 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2827 #define BUILD_EMBED_FIRST_CHUNK
2828 #endif
2829 
2830 /* build pcpu_page_first_chunk() iff needed by the arch config */
2831 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2832 #define BUILD_PAGE_FIRST_CHUNK
2833 #endif
2834 
2835 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2836 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2837 /**
2838  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2839  * @reserved_size: the size of reserved percpu area in bytes
2840  * @dyn_size: minimum free size for dynamic allocation in bytes
2841  * @atom_size: allocation atom size
2842  * @cpu_distance_fn: callback to determine distance between cpus, optional
2843  *
2844  * This function determines grouping of units, their mappings to cpus
2845  * and other parameters considering needed percpu size, allocation
2846  * atom size and distances between CPUs.
2847  *
2848  * Groups are always multiples of atom size and CPUs which are of
2849  * LOCAL_DISTANCE both ways are grouped together and share space for
2850  * units in the same group.  The returned configuration is guaranteed
2851  * to have CPUs on different nodes on different groups and >=75% usage
2852  * of allocated virtual address space.
2853  *
2854  * RETURNS:
2855  * On success, pointer to the new allocation_info is returned.  On
2856  * failure, ERR_PTR value is returned.
2857  */
2858 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2859 				size_t reserved_size, size_t dyn_size,
2860 				size_t atom_size,
2861 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2862 {
2863 	static int group_map[NR_CPUS] __initdata;
2864 	static int group_cnt[NR_CPUS] __initdata;
2865 	static struct cpumask mask __initdata;
2866 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2867 	int nr_groups = 1, nr_units = 0;
2868 	size_t size_sum, min_unit_size, alloc_size;
2869 	int upa, max_upa, best_upa;	/* units_per_alloc */
2870 	int last_allocs, group, unit;
2871 	unsigned int cpu, tcpu;
2872 	struct pcpu_alloc_info *ai;
2873 	unsigned int *cpu_map;
2874 
2875 	/* this function may be called multiple times */
2876 	memset(group_map, 0, sizeof(group_map));
2877 	memset(group_cnt, 0, sizeof(group_cnt));
2878 	cpumask_clear(&mask);
2879 
2880 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2881 	size_sum = PFN_ALIGN(static_size + reserved_size +
2882 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2883 	dyn_size = size_sum - static_size - reserved_size;
2884 
2885 	/*
2886 	 * Determine min_unit_size, alloc_size and max_upa such that
2887 	 * alloc_size is multiple of atom_size and is the smallest
2888 	 * which can accommodate 4k aligned segments which are equal to
2889 	 * or larger than min_unit_size.
2890 	 */
2891 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2892 
2893 	/* determine the maximum # of units that can fit in an allocation */
2894 	alloc_size = roundup(min_unit_size, atom_size);
2895 	upa = alloc_size / min_unit_size;
2896 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2897 		upa--;
2898 	max_upa = upa;
2899 
2900 	cpumask_copy(&mask, cpu_possible_mask);
2901 
2902 	/* group cpus according to their proximity */
2903 	for (group = 0; !cpumask_empty(&mask); group++) {
2904 		/* pop the group's first cpu */
2905 		cpu = cpumask_first(&mask);
2906 		group_map[cpu] = group;
2907 		group_cnt[group]++;
2908 		cpumask_clear_cpu(cpu, &mask);
2909 
2910 		for_each_cpu(tcpu, &mask) {
2911 			if (!cpu_distance_fn ||
2912 			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2913 			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2914 				group_map[tcpu] = group;
2915 				group_cnt[group]++;
2916 				cpumask_clear_cpu(tcpu, &mask);
2917 			}
2918 		}
2919 	}
2920 	nr_groups = group;
2921 
2922 	/*
2923 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2924 	 * Expand the unit_size until we use >= 75% of the units allocated.
2925 	 * Related to atom_size, which could be much larger than the unit_size.
2926 	 */
2927 	last_allocs = INT_MAX;
2928 	best_upa = 0;
2929 	for (upa = max_upa; upa; upa--) {
2930 		int allocs = 0, wasted = 0;
2931 
2932 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2933 			continue;
2934 
2935 		for (group = 0; group < nr_groups; group++) {
2936 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2937 			allocs += this_allocs;
2938 			wasted += this_allocs * upa - group_cnt[group];
2939 		}
2940 
2941 		/*
2942 		 * Don't accept if wastage is over 1/3.  The
2943 		 * greater-than comparison ensures upa==1 always
2944 		 * passes the following check.
2945 		 */
2946 		if (wasted > num_possible_cpus() / 3)
2947 			continue;
2948 
2949 		/* and then don't consume more memory */
2950 		if (allocs > last_allocs)
2951 			break;
2952 		last_allocs = allocs;
2953 		best_upa = upa;
2954 	}
2955 	BUG_ON(!best_upa);
2956 	upa = best_upa;
2957 
2958 	/* allocate and fill alloc_info */
2959 	for (group = 0; group < nr_groups; group++)
2960 		nr_units += roundup(group_cnt[group], upa);
2961 
2962 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2963 	if (!ai)
2964 		return ERR_PTR(-ENOMEM);
2965 	cpu_map = ai->groups[0].cpu_map;
2966 
2967 	for (group = 0; group < nr_groups; group++) {
2968 		ai->groups[group].cpu_map = cpu_map;
2969 		cpu_map += roundup(group_cnt[group], upa);
2970 	}
2971 
2972 	ai->static_size = static_size;
2973 	ai->reserved_size = reserved_size;
2974 	ai->dyn_size = dyn_size;
2975 	ai->unit_size = alloc_size / upa;
2976 	ai->atom_size = atom_size;
2977 	ai->alloc_size = alloc_size;
2978 
2979 	for (group = 0, unit = 0; group < nr_groups; group++) {
2980 		struct pcpu_group_info *gi = &ai->groups[group];
2981 
2982 		/*
2983 		 * Initialize base_offset as if all groups are located
2984 		 * back-to-back.  The caller should update this to
2985 		 * reflect actual allocation.
2986 		 */
2987 		gi->base_offset = unit * ai->unit_size;
2988 
2989 		for_each_possible_cpu(cpu)
2990 			if (group_map[cpu] == group)
2991 				gi->cpu_map[gi->nr_units++] = cpu;
2992 		gi->nr_units = roundup(gi->nr_units, upa);
2993 		unit += gi->nr_units;
2994 	}
2995 	BUG_ON(unit != nr_units);
2996 
2997 	return ai;
2998 }
2999 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
3000 
3001 #if defined(BUILD_EMBED_FIRST_CHUNK)
3002 /**
3003  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
3004  * @reserved_size: the size of reserved percpu area in bytes
3005  * @dyn_size: minimum free size for dynamic allocation in bytes
3006  * @atom_size: allocation atom size
3007  * @cpu_distance_fn: callback to determine distance between cpus, optional
3008  * @alloc_fn: function to allocate percpu page
3009  * @free_fn: function to free percpu page
3010  *
3011  * This is a helper to ease setting up embedded first percpu chunk and
3012  * can be called where pcpu_setup_first_chunk() is expected.
3013  *
3014  * If this function is used to setup the first chunk, it is allocated
3015  * by calling @alloc_fn and used as-is without being mapped into
3016  * vmalloc area.  Allocations are always whole multiples of @atom_size
3017  * aligned to @atom_size.
3018  *
3019  * This enables the first chunk to piggy back on the linear physical
3020  * mapping which often uses larger page size.  Please note that this
3021  * can result in very sparse cpu->unit mapping on NUMA machines thus
3022  * requiring large vmalloc address space.  Don't use this allocator if
3023  * vmalloc space is not orders of magnitude larger than distances
3024  * between node memory addresses (ie. 32bit NUMA machines).
3025  *
3026  * @dyn_size specifies the minimum dynamic area size.
3027  *
3028  * If the needed size is smaller than the minimum or specified unit
3029  * size, the leftover is returned using @free_fn.
3030  *
3031  * RETURNS:
3032  * 0 on success, -errno on failure.
3033  */
3034 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3035 				  size_t atom_size,
3036 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3037 				  pcpu_fc_alloc_fn_t alloc_fn,
3038 				  pcpu_fc_free_fn_t free_fn)
3039 {
3040 	void *base = (void *)ULONG_MAX;
3041 	void **areas = NULL;
3042 	struct pcpu_alloc_info *ai;
3043 	size_t size_sum, areas_size;
3044 	unsigned long max_distance;
3045 	int group, i, highest_group, rc = 0;
3046 
3047 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3048 				   cpu_distance_fn);
3049 	if (IS_ERR(ai))
3050 		return PTR_ERR(ai);
3051 
3052 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3053 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3054 
3055 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3056 	if (!areas) {
3057 		rc = -ENOMEM;
3058 		goto out_free;
3059 	}
3060 
3061 	/* allocate, copy and determine base address & max_distance */
3062 	highest_group = 0;
3063 	for (group = 0; group < ai->nr_groups; group++) {
3064 		struct pcpu_group_info *gi = &ai->groups[group];
3065 		unsigned int cpu = NR_CPUS;
3066 		void *ptr;
3067 
3068 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3069 			cpu = gi->cpu_map[i];
3070 		BUG_ON(cpu == NR_CPUS);
3071 
3072 		/* allocate space for the whole group */
3073 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
3074 		if (!ptr) {
3075 			rc = -ENOMEM;
3076 			goto out_free_areas;
3077 		}
3078 		/* kmemleak tracks the percpu allocations separately */
3079 		kmemleak_free(ptr);
3080 		areas[group] = ptr;
3081 
3082 		base = min(ptr, base);
3083 		if (ptr > areas[highest_group])
3084 			highest_group = group;
3085 	}
3086 	max_distance = areas[highest_group] - base;
3087 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3088 
3089 	/* warn if maximum distance is further than 75% of vmalloc space */
3090 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3091 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3092 				max_distance, VMALLOC_TOTAL);
3093 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3094 		/* and fail if we have fallback */
3095 		rc = -EINVAL;
3096 		goto out_free_areas;
3097 #endif
3098 	}
3099 
3100 	/*
3101 	 * Copy data and free unused parts.  This should happen after all
3102 	 * allocations are complete; otherwise, we may end up with
3103 	 * overlapping groups.
3104 	 */
3105 	for (group = 0; group < ai->nr_groups; group++) {
3106 		struct pcpu_group_info *gi = &ai->groups[group];
3107 		void *ptr = areas[group];
3108 
3109 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3110 			if (gi->cpu_map[i] == NR_CPUS) {
3111 				/* unused unit, free whole */
3112 				free_fn(ptr, ai->unit_size);
3113 				continue;
3114 			}
3115 			/* copy and return the unused part */
3116 			memcpy(ptr, __per_cpu_load, ai->static_size);
3117 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
3118 		}
3119 	}
3120 
3121 	/* base address is now known, determine group base offsets */
3122 	for (group = 0; group < ai->nr_groups; group++) {
3123 		ai->groups[group].base_offset = areas[group] - base;
3124 	}
3125 
3126 	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3127 		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3128 		ai->dyn_size, ai->unit_size);
3129 
3130 	pcpu_setup_first_chunk(ai, base);
3131 	goto out_free;
3132 
3133 out_free_areas:
3134 	for (group = 0; group < ai->nr_groups; group++)
3135 		if (areas[group])
3136 			free_fn(areas[group],
3137 				ai->groups[group].nr_units * ai->unit_size);
3138 out_free:
3139 	pcpu_free_alloc_info(ai);
3140 	if (areas)
3141 		memblock_free_early(__pa(areas), areas_size);
3142 	return rc;
3143 }
3144 #endif /* BUILD_EMBED_FIRST_CHUNK */
3145 
3146 #ifdef BUILD_PAGE_FIRST_CHUNK
3147 /**
3148  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3149  * @reserved_size: the size of reserved percpu area in bytes
3150  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
3151  * @free_fn: function to free percpu page, always called with PAGE_SIZE
3152  * @populate_pte_fn: function to populate pte
3153  *
3154  * This is a helper to ease setting up page-remapped first percpu
3155  * chunk and can be called where pcpu_setup_first_chunk() is expected.
3156  *
3157  * This is the basic allocator.  Static percpu area is allocated
3158  * page-by-page into vmalloc area.
3159  *
3160  * RETURNS:
3161  * 0 on success, -errno on failure.
3162  */
3163 int __init pcpu_page_first_chunk(size_t reserved_size,
3164 				 pcpu_fc_alloc_fn_t alloc_fn,
3165 				 pcpu_fc_free_fn_t free_fn,
3166 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
3167 {
3168 	static struct vm_struct vm;
3169 	struct pcpu_alloc_info *ai;
3170 	char psize_str[16];
3171 	int unit_pages;
3172 	size_t pages_size;
3173 	struct page **pages;
3174 	int unit, i, j, rc = 0;
3175 	int upa;
3176 	int nr_g0_units;
3177 
3178 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3179 
3180 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3181 	if (IS_ERR(ai))
3182 		return PTR_ERR(ai);
3183 	BUG_ON(ai->nr_groups != 1);
3184 	upa = ai->alloc_size/ai->unit_size;
3185 	nr_g0_units = roundup(num_possible_cpus(), upa);
3186 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3187 		pcpu_free_alloc_info(ai);
3188 		return -EINVAL;
3189 	}
3190 
3191 	unit_pages = ai->unit_size >> PAGE_SHIFT;
3192 
3193 	/* unaligned allocations can't be freed, round up to page size */
3194 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3195 			       sizeof(pages[0]));
3196 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3197 	if (!pages)
3198 		panic("%s: Failed to allocate %zu bytes\n", __func__,
3199 		      pages_size);
3200 
3201 	/* allocate pages */
3202 	j = 0;
3203 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3204 		unsigned int cpu = ai->groups[0].cpu_map[unit];
3205 		for (i = 0; i < unit_pages; i++) {
3206 			void *ptr;
3207 
3208 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3209 			if (!ptr) {
3210 				pr_warn("failed to allocate %s page for cpu%u\n",
3211 						psize_str, cpu);
3212 				goto enomem;
3213 			}
3214 			/* kmemleak tracks the percpu allocations separately */
3215 			kmemleak_free(ptr);
3216 			pages[j++] = virt_to_page(ptr);
3217 		}
3218 	}
3219 
3220 	/* allocate vm area, map the pages and copy static data */
3221 	vm.flags = VM_ALLOC;
3222 	vm.size = num_possible_cpus() * ai->unit_size;
3223 	vm_area_register_early(&vm, PAGE_SIZE);
3224 
3225 	for (unit = 0; unit < num_possible_cpus(); unit++) {
3226 		unsigned long unit_addr =
3227 			(unsigned long)vm.addr + unit * ai->unit_size;
3228 
3229 		for (i = 0; i < unit_pages; i++)
3230 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3231 
3232 		/* pte already populated, the following shouldn't fail */
3233 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3234 				      unit_pages);
3235 		if (rc < 0)
3236 			panic("failed to map percpu area, err=%d\n", rc);
3237 
3238 		/*
3239 		 * FIXME: Archs with virtual cache should flush local
3240 		 * cache for the linear mapping here - something
3241 		 * equivalent to flush_cache_vmap() on the local cpu.
3242 		 * flush_cache_vmap() can't be used as most supporting
3243 		 * data structures are not set up yet.
3244 		 */
3245 
3246 		/* copy static data */
3247 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3248 	}
3249 
3250 	/* we're ready, commit */
3251 	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3252 		unit_pages, psize_str, ai->static_size,
3253 		ai->reserved_size, ai->dyn_size);
3254 
3255 	pcpu_setup_first_chunk(ai, vm.addr);
3256 	goto out_free_ar;
3257 
3258 enomem:
3259 	while (--j >= 0)
3260 		free_fn(page_address(pages[j]), PAGE_SIZE);
3261 	rc = -ENOMEM;
3262 out_free_ar:
3263 	memblock_free_early(__pa(pages), pages_size);
3264 	pcpu_free_alloc_info(ai);
3265 	return rc;
3266 }
3267 #endif /* BUILD_PAGE_FIRST_CHUNK */
3268 
3269 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3270 /*
3271  * Generic SMP percpu area setup.
3272  *
3273  * The embedding helper is used because its behavior closely resembles
3274  * the original non-dynamic generic percpu area setup.  This is
3275  * important because many archs have addressing restrictions and might
3276  * fail if the percpu area is located far away from the previous
3277  * location.  As an added bonus, in non-NUMA cases, embedding is
3278  * generally a good idea TLB-wise because percpu area can piggy back
3279  * on the physical linear memory mapping which uses large page
3280  * mappings on applicable archs.
3281  */
3282 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3283 EXPORT_SYMBOL(__per_cpu_offset);
3284 
3285 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3286 				       size_t align)
3287 {
3288 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3289 }
3290 
3291 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3292 {
3293 	memblock_free_early(__pa(ptr), size);
3294 }
3295 
3296 void __init setup_per_cpu_areas(void)
3297 {
3298 	unsigned long delta;
3299 	unsigned int cpu;
3300 	int rc;
3301 
3302 	/*
3303 	 * Always reserve area for module percpu variables.  That's
3304 	 * what the legacy allocator did.
3305 	 */
3306 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3307 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3308 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3309 	if (rc < 0)
3310 		panic("Failed to initialize percpu areas.");
3311 
3312 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3313 	for_each_possible_cpu(cpu)
3314 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3315 }
3316 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3317 
3318 #else	/* CONFIG_SMP */
3319 
3320 /*
3321  * UP percpu area setup.
3322  *
3323  * UP always uses km-based percpu allocator with identity mapping.
3324  * Static percpu variables are indistinguishable from the usual static
3325  * variables and don't require any special preparation.
3326  */
3327 void __init setup_per_cpu_areas(void)
3328 {
3329 	const size_t unit_size =
3330 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3331 					 PERCPU_DYNAMIC_RESERVE));
3332 	struct pcpu_alloc_info *ai;
3333 	void *fc;
3334 
3335 	ai = pcpu_alloc_alloc_info(1, 1);
3336 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3337 	if (!ai || !fc)
3338 		panic("Failed to allocate memory for percpu areas.");
3339 	/* kmemleak tracks the percpu allocations separately */
3340 	kmemleak_free(fc);
3341 
3342 	ai->dyn_size = unit_size;
3343 	ai->unit_size = unit_size;
3344 	ai->atom_size = unit_size;
3345 	ai->alloc_size = unit_size;
3346 	ai->groups[0].nr_units = 1;
3347 	ai->groups[0].cpu_map[0] = 0;
3348 
3349 	pcpu_setup_first_chunk(ai, fc);
3350 	pcpu_free_alloc_info(ai);
3351 }
3352 
3353 #endif	/* CONFIG_SMP */
3354 
3355 /*
3356  * pcpu_nr_pages - calculate total number of populated backing pages
3357  *
3358  * This reflects the number of pages populated to back chunks.  Metadata is
3359  * excluded in the number exposed in meminfo as the number of backing pages
3360  * scales with the number of cpus and can quickly outweigh the memory used for
3361  * metadata.  It also keeps this calculation nice and simple.
3362  *
3363  * RETURNS:
3364  * Total number of populated backing pages in use by the allocator.
3365  */
3366 unsigned long pcpu_nr_pages(void)
3367 {
3368 	return pcpu_nr_populated * pcpu_nr_units;
3369 }
3370 
3371 /*
3372  * Percpu allocator is initialized early during boot when neither slab or
3373  * workqueue is available.  Plug async management until everything is up
3374  * and running.
3375  */
3376 static int __init percpu_enable_async(void)
3377 {
3378 	pcpu_async_enabled = true;
3379 	return 0;
3380 }
3381 subsys_initcall(percpu_enable_async);
3382