1 /* 2 * mm/percpu.c - percpu memory allocator 3 * 4 * Copyright (C) 2009 SUSE Linux Products GmbH 5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 6 * 7 * Copyright (C) 2017 Facebook Inc. 8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com> 9 * 10 * This file is released under the GPLv2 license. 11 * 12 * The percpu allocator handles both static and dynamic areas. Percpu 13 * areas are allocated in chunks which are divided into units. There is 14 * a 1-to-1 mapping for units to possible cpus. These units are grouped 15 * based on NUMA properties of the machine. 16 * 17 * c0 c1 c2 18 * ------------------- ------------------- ------------ 19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 20 * ------------------- ...... ------------------- .... ------------ 21 * 22 * Allocation is done by offsets into a unit's address space. Ie., an 23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 25 * and even sparse. Access is handled by configuring percpu base 26 * registers according to the cpu to unit mappings and offsetting the 27 * base address using pcpu_unit_size. 28 * 29 * There is special consideration for the first chunk which must handle 30 * the static percpu variables in the kernel image as allocation services 31 * are not online yet. In short, the first chunk is structured like so: 32 * 33 * <Static | [Reserved] | Dynamic> 34 * 35 * The static data is copied from the original section managed by the 36 * linker. The reserved section, if non-zero, primarily manages static 37 * percpu variables from kernel modules. Finally, the dynamic section 38 * takes care of normal allocations. 39 * 40 * The allocator organizes chunks into lists according to free size and 41 * tries to allocate from the fullest chunk first. Each chunk is managed 42 * by a bitmap with metadata blocks. The allocation map is updated on 43 * every allocation and free to reflect the current state while the boundary 44 * map is only updated on allocation. Each metadata block contains 45 * information to help mitigate the need to iterate over large portions 46 * of the bitmap. The reverse mapping from page to chunk is stored in 47 * the page's index. Lastly, units are lazily backed and grow in unison. 48 * 49 * There is a unique conversion that goes on here between bytes and bits. 50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 51 * tracks the number of pages it is responsible for in nr_pages. Helper 52 * functions are used to convert from between the bytes, bits, and blocks. 53 * All hints are managed in bits unless explicitly stated. 54 * 55 * To use this allocator, arch code should do the following: 56 * 57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 58 * regular address to percpu pointer and back if they need to be 59 * different from the default 60 * 61 * - use pcpu_setup_first_chunk() during percpu area initialization to 62 * setup the first chunk containing the kernel static percpu area 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 67 #include <linux/bitmap.h> 68 #include <linux/bootmem.h> 69 #include <linux/err.h> 70 #include <linux/lcm.h> 71 #include <linux/list.h> 72 #include <linux/log2.h> 73 #include <linux/mm.h> 74 #include <linux/module.h> 75 #include <linux/mutex.h> 76 #include <linux/percpu.h> 77 #include <linux/pfn.h> 78 #include <linux/slab.h> 79 #include <linux/spinlock.h> 80 #include <linux/vmalloc.h> 81 #include <linux/workqueue.h> 82 #include <linux/kmemleak.h> 83 84 #include <asm/cacheflush.h> 85 #include <asm/sections.h> 86 #include <asm/tlbflush.h> 87 #include <asm/io.h> 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/percpu.h> 91 92 #include "percpu-internal.h" 93 94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 95 #define PCPU_SLOT_BASE_SHIFT 5 96 97 #define PCPU_EMPTY_POP_PAGES_LOW 2 98 #define PCPU_EMPTY_POP_PAGES_HIGH 4 99 100 #ifdef CONFIG_SMP 101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 102 #ifndef __addr_to_pcpu_ptr 103 #define __addr_to_pcpu_ptr(addr) \ 104 (void __percpu *)((unsigned long)(addr) - \ 105 (unsigned long)pcpu_base_addr + \ 106 (unsigned long)__per_cpu_start) 107 #endif 108 #ifndef __pcpu_ptr_to_addr 109 #define __pcpu_ptr_to_addr(ptr) \ 110 (void __force *)((unsigned long)(ptr) + \ 111 (unsigned long)pcpu_base_addr - \ 112 (unsigned long)__per_cpu_start) 113 #endif 114 #else /* CONFIG_SMP */ 115 /* on UP, it's always identity mapped */ 116 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 117 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 118 #endif /* CONFIG_SMP */ 119 120 static int pcpu_unit_pages __ro_after_init; 121 static int pcpu_unit_size __ro_after_init; 122 static int pcpu_nr_units __ro_after_init; 123 static int pcpu_atom_size __ro_after_init; 124 int pcpu_nr_slots __ro_after_init; 125 static size_t pcpu_chunk_struct_size __ro_after_init; 126 127 /* cpus with the lowest and highest unit addresses */ 128 static unsigned int pcpu_low_unit_cpu __ro_after_init; 129 static unsigned int pcpu_high_unit_cpu __ro_after_init; 130 131 /* the address of the first chunk which starts with the kernel static area */ 132 void *pcpu_base_addr __ro_after_init; 133 EXPORT_SYMBOL_GPL(pcpu_base_addr); 134 135 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 136 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 137 138 /* group information, used for vm allocation */ 139 static int pcpu_nr_groups __ro_after_init; 140 static const unsigned long *pcpu_group_offsets __ro_after_init; 141 static const size_t *pcpu_group_sizes __ro_after_init; 142 143 /* 144 * The first chunk which always exists. Note that unlike other 145 * chunks, this one can be allocated and mapped in several different 146 * ways and thus often doesn't live in the vmalloc area. 147 */ 148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 149 150 /* 151 * Optional reserved chunk. This chunk reserves part of the first 152 * chunk and serves it for reserved allocations. When the reserved 153 * region doesn't exist, the following variable is NULL. 154 */ 155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 156 157 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 158 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 159 160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 161 162 /* chunks which need their map areas extended, protected by pcpu_lock */ 163 static LIST_HEAD(pcpu_map_extend_chunks); 164 165 /* 166 * The number of empty populated pages, protected by pcpu_lock. The 167 * reserved chunk doesn't contribute to the count. 168 */ 169 int pcpu_nr_empty_pop_pages; 170 171 /* 172 * Balance work is used to populate or destroy chunks asynchronously. We 173 * try to keep the number of populated free pages between 174 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 175 * empty chunk. 176 */ 177 static void pcpu_balance_workfn(struct work_struct *work); 178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 179 static bool pcpu_async_enabled __read_mostly; 180 static bool pcpu_atomic_alloc_failed; 181 182 static void pcpu_schedule_balance_work(void) 183 { 184 if (pcpu_async_enabled) 185 schedule_work(&pcpu_balance_work); 186 } 187 188 /** 189 * pcpu_addr_in_chunk - check if the address is served from this chunk 190 * @chunk: chunk of interest 191 * @addr: percpu address 192 * 193 * RETURNS: 194 * True if the address is served from this chunk. 195 */ 196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 197 { 198 void *start_addr, *end_addr; 199 200 if (!chunk) 201 return false; 202 203 start_addr = chunk->base_addr + chunk->start_offset; 204 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 205 chunk->end_offset; 206 207 return addr >= start_addr && addr < end_addr; 208 } 209 210 static int __pcpu_size_to_slot(int size) 211 { 212 int highbit = fls(size); /* size is in bytes */ 213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 214 } 215 216 static int pcpu_size_to_slot(int size) 217 { 218 if (size == pcpu_unit_size) 219 return pcpu_nr_slots - 1; 220 return __pcpu_size_to_slot(size); 221 } 222 223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 224 { 225 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) 226 return 0; 227 228 return pcpu_size_to_slot(chunk->free_bytes); 229 } 230 231 /* set the pointer to a chunk in a page struct */ 232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 233 { 234 page->index = (unsigned long)pcpu; 235 } 236 237 /* obtain pointer to a chunk from a page struct */ 238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 239 { 240 return (struct pcpu_chunk *)page->index; 241 } 242 243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 244 { 245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 246 } 247 248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 249 { 250 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 251 } 252 253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 254 unsigned int cpu, int page_idx) 255 { 256 return (unsigned long)chunk->base_addr + 257 pcpu_unit_page_offset(cpu, page_idx); 258 } 259 260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) 261 { 262 *rs = find_next_zero_bit(bitmap, end, *rs); 263 *re = find_next_bit(bitmap, end, *rs + 1); 264 } 265 266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) 267 { 268 *rs = find_next_bit(bitmap, end, *rs); 269 *re = find_next_zero_bit(bitmap, end, *rs + 1); 270 } 271 272 /* 273 * Bitmap region iterators. Iterates over the bitmap between 274 * [@start, @end) in @chunk. @rs and @re should be integer variables 275 * and will be set to start and end index of the current free region. 276 */ 277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ 278 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ 279 (rs) < (re); \ 280 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) 281 282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ 283 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ 284 (rs) < (re); \ 285 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) 286 287 /* 288 * The following are helper functions to help access bitmaps and convert 289 * between bitmap offsets to address offsets. 290 */ 291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 292 { 293 return chunk->alloc_map + 294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 295 } 296 297 static unsigned long pcpu_off_to_block_index(int off) 298 { 299 return off / PCPU_BITMAP_BLOCK_BITS; 300 } 301 302 static unsigned long pcpu_off_to_block_off(int off) 303 { 304 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 305 } 306 307 static unsigned long pcpu_block_off_to_off(int index, int off) 308 { 309 return index * PCPU_BITMAP_BLOCK_BITS + off; 310 } 311 312 /** 313 * pcpu_next_md_free_region - finds the next hint free area 314 * @chunk: chunk of interest 315 * @bit_off: chunk offset 316 * @bits: size of free area 317 * 318 * Helper function for pcpu_for_each_md_free_region. It checks 319 * block->contig_hint and performs aggregation across blocks to find the 320 * next hint. It modifies bit_off and bits in-place to be consumed in the 321 * loop. 322 */ 323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 324 int *bits) 325 { 326 int i = pcpu_off_to_block_index(*bit_off); 327 int block_off = pcpu_off_to_block_off(*bit_off); 328 struct pcpu_block_md *block; 329 330 *bits = 0; 331 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 332 block++, i++) { 333 /* handles contig area across blocks */ 334 if (*bits) { 335 *bits += block->left_free; 336 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 337 continue; 338 return; 339 } 340 341 /* 342 * This checks three things. First is there a contig_hint to 343 * check. Second, have we checked this hint before by 344 * comparing the block_off. Third, is this the same as the 345 * right contig hint. In the last case, it spills over into 346 * the next block and should be handled by the contig area 347 * across blocks code. 348 */ 349 *bits = block->contig_hint; 350 if (*bits && block->contig_hint_start >= block_off && 351 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 352 *bit_off = pcpu_block_off_to_off(i, 353 block->contig_hint_start); 354 return; 355 } 356 357 *bits = block->right_free; 358 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 359 } 360 } 361 362 /** 363 * pcpu_next_fit_region - finds fit areas for a given allocation request 364 * @chunk: chunk of interest 365 * @alloc_bits: size of allocation 366 * @align: alignment of area (max PAGE_SIZE) 367 * @bit_off: chunk offset 368 * @bits: size of free area 369 * 370 * Finds the next free region that is viable for use with a given size and 371 * alignment. This only returns if there is a valid area to be used for this 372 * allocation. block->first_free is returned if the allocation request fits 373 * within the block to see if the request can be fulfilled prior to the contig 374 * hint. 375 */ 376 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 377 int align, int *bit_off, int *bits) 378 { 379 int i = pcpu_off_to_block_index(*bit_off); 380 int block_off = pcpu_off_to_block_off(*bit_off); 381 struct pcpu_block_md *block; 382 383 *bits = 0; 384 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 385 block++, i++) { 386 /* handles contig area across blocks */ 387 if (*bits) { 388 *bits += block->left_free; 389 if (*bits >= alloc_bits) 390 return; 391 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 392 continue; 393 } 394 395 /* check block->contig_hint */ 396 *bits = ALIGN(block->contig_hint_start, align) - 397 block->contig_hint_start; 398 /* 399 * This uses the block offset to determine if this has been 400 * checked in the prior iteration. 401 */ 402 if (block->contig_hint && 403 block->contig_hint_start >= block_off && 404 block->contig_hint >= *bits + alloc_bits) { 405 *bits += alloc_bits + block->contig_hint_start - 406 block->first_free; 407 *bit_off = pcpu_block_off_to_off(i, block->first_free); 408 return; 409 } 410 411 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 412 align); 413 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 414 *bit_off = pcpu_block_off_to_off(i, *bit_off); 415 if (*bits >= alloc_bits) 416 return; 417 } 418 419 /* no valid offsets were found - fail condition */ 420 *bit_off = pcpu_chunk_map_bits(chunk); 421 } 422 423 /* 424 * Metadata free area iterators. These perform aggregation of free areas 425 * based on the metadata blocks and return the offset @bit_off and size in 426 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 427 * a fit is found for the allocation request. 428 */ 429 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 430 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 431 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 432 (bit_off) += (bits) + 1, \ 433 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 434 435 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 436 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 437 &(bits)); \ 438 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 439 (bit_off) += (bits), \ 440 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 441 &(bits))) 442 443 /** 444 * pcpu_mem_zalloc - allocate memory 445 * @size: bytes to allocate 446 * 447 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 448 * kzalloc() is used; otherwise, vzalloc() is used. The returned 449 * memory is always zeroed. 450 * 451 * CONTEXT: 452 * Does GFP_KERNEL allocation. 453 * 454 * RETURNS: 455 * Pointer to the allocated area on success, NULL on failure. 456 */ 457 static void *pcpu_mem_zalloc(size_t size) 458 { 459 if (WARN_ON_ONCE(!slab_is_available())) 460 return NULL; 461 462 if (size <= PAGE_SIZE) 463 return kzalloc(size, GFP_KERNEL); 464 else 465 return vzalloc(size); 466 } 467 468 /** 469 * pcpu_mem_free - free memory 470 * @ptr: memory to free 471 * 472 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 473 */ 474 static void pcpu_mem_free(void *ptr) 475 { 476 kvfree(ptr); 477 } 478 479 /** 480 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 481 * @chunk: chunk of interest 482 * @oslot: the previous slot it was on 483 * 484 * This function is called after an allocation or free changed @chunk. 485 * New slot according to the changed state is determined and @chunk is 486 * moved to the slot. Note that the reserved chunk is never put on 487 * chunk slots. 488 * 489 * CONTEXT: 490 * pcpu_lock. 491 */ 492 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 493 { 494 int nslot = pcpu_chunk_slot(chunk); 495 496 if (chunk != pcpu_reserved_chunk && oslot != nslot) { 497 if (oslot < nslot) 498 list_move(&chunk->list, &pcpu_slot[nslot]); 499 else 500 list_move_tail(&chunk->list, &pcpu_slot[nslot]); 501 } 502 } 503 504 /** 505 * pcpu_cnt_pop_pages- counts populated backing pages in range 506 * @chunk: chunk of interest 507 * @bit_off: start offset 508 * @bits: size of area to check 509 * 510 * Calculates the number of populated pages in the region 511 * [page_start, page_end). This keeps track of how many empty populated 512 * pages are available and decide if async work should be scheduled. 513 * 514 * RETURNS: 515 * The nr of populated pages. 516 */ 517 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, 518 int bits) 519 { 520 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); 521 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 522 523 if (page_start >= page_end) 524 return 0; 525 526 /* 527 * bitmap_weight counts the number of bits set in a bitmap up to 528 * the specified number of bits. This is counting the populated 529 * pages up to page_end and then subtracting the populated pages 530 * up to page_start to count the populated pages in 531 * [page_start, page_end). 532 */ 533 return bitmap_weight(chunk->populated, page_end) - 534 bitmap_weight(chunk->populated, page_start); 535 } 536 537 /** 538 * pcpu_chunk_update - updates the chunk metadata given a free area 539 * @chunk: chunk of interest 540 * @bit_off: chunk offset 541 * @bits: size of free area 542 * 543 * This updates the chunk's contig hint and starting offset given a free area. 544 * Choose the best starting offset if the contig hint is equal. 545 */ 546 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) 547 { 548 if (bits > chunk->contig_bits) { 549 chunk->contig_bits_start = bit_off; 550 chunk->contig_bits = bits; 551 } else if (bits == chunk->contig_bits && chunk->contig_bits_start && 552 (!bit_off || 553 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { 554 /* use the start with the best alignment */ 555 chunk->contig_bits_start = bit_off; 556 } 557 } 558 559 /** 560 * pcpu_chunk_refresh_hint - updates metadata about a chunk 561 * @chunk: chunk of interest 562 * 563 * Iterates over the metadata blocks to find the largest contig area. 564 * It also counts the populated pages and uses the delta to update the 565 * global count. 566 * 567 * Updates: 568 * chunk->contig_bits 569 * chunk->contig_bits_start 570 * nr_empty_pop_pages (chunk and global) 571 */ 572 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) 573 { 574 int bit_off, bits, nr_empty_pop_pages; 575 576 /* clear metadata */ 577 chunk->contig_bits = 0; 578 579 bit_off = chunk->first_bit; 580 bits = nr_empty_pop_pages = 0; 581 pcpu_for_each_md_free_region(chunk, bit_off, bits) { 582 pcpu_chunk_update(chunk, bit_off, bits); 583 584 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); 585 } 586 587 /* 588 * Keep track of nr_empty_pop_pages. 589 * 590 * The chunk maintains the previous number of free pages it held, 591 * so the delta is used to update the global counter. The reserved 592 * chunk is not part of the free page count as they are populated 593 * at init and are special to serving reserved allocations. 594 */ 595 if (chunk != pcpu_reserved_chunk) 596 pcpu_nr_empty_pop_pages += 597 (nr_empty_pop_pages - chunk->nr_empty_pop_pages); 598 599 chunk->nr_empty_pop_pages = nr_empty_pop_pages; 600 } 601 602 /** 603 * pcpu_block_update - updates a block given a free area 604 * @block: block of interest 605 * @start: start offset in block 606 * @end: end offset in block 607 * 608 * Updates a block given a known free area. The region [start, end) is 609 * expected to be the entirety of the free area within a block. Chooses 610 * the best starting offset if the contig hints are equal. 611 */ 612 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 613 { 614 int contig = end - start; 615 616 block->first_free = min(block->first_free, start); 617 if (start == 0) 618 block->left_free = contig; 619 620 if (end == PCPU_BITMAP_BLOCK_BITS) 621 block->right_free = contig; 622 623 if (contig > block->contig_hint) { 624 block->contig_hint_start = start; 625 block->contig_hint = contig; 626 } else if (block->contig_hint_start && contig == block->contig_hint && 627 (!start || __ffs(start) > __ffs(block->contig_hint_start))) { 628 /* use the start with the best alignment */ 629 block->contig_hint_start = start; 630 } 631 } 632 633 /** 634 * pcpu_block_refresh_hint 635 * @chunk: chunk of interest 636 * @index: index of the metadata block 637 * 638 * Scans over the block beginning at first_free and updates the block 639 * metadata accordingly. 640 */ 641 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 642 { 643 struct pcpu_block_md *block = chunk->md_blocks + index; 644 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 645 int rs, re; /* region start, region end */ 646 647 /* clear hints */ 648 block->contig_hint = 0; 649 block->left_free = block->right_free = 0; 650 651 /* iterate over free areas and update the contig hints */ 652 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, 653 PCPU_BITMAP_BLOCK_BITS) { 654 pcpu_block_update(block, rs, re); 655 } 656 } 657 658 /** 659 * pcpu_block_update_hint_alloc - update hint on allocation path 660 * @chunk: chunk of interest 661 * @bit_off: chunk offset 662 * @bits: size of request 663 * 664 * Updates metadata for the allocation path. The metadata only has to be 665 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 666 * scans are required if the block's contig hint is broken. 667 */ 668 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 669 int bits) 670 { 671 struct pcpu_block_md *s_block, *e_block, *block; 672 int s_index, e_index; /* block indexes of the freed allocation */ 673 int s_off, e_off; /* block offsets of the freed allocation */ 674 675 /* 676 * Calculate per block offsets. 677 * The calculation uses an inclusive range, but the resulting offsets 678 * are [start, end). e_index always points to the last block in the 679 * range. 680 */ 681 s_index = pcpu_off_to_block_index(bit_off); 682 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 683 s_off = pcpu_off_to_block_off(bit_off); 684 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 685 686 s_block = chunk->md_blocks + s_index; 687 e_block = chunk->md_blocks + e_index; 688 689 /* 690 * Update s_block. 691 * block->first_free must be updated if the allocation takes its place. 692 * If the allocation breaks the contig_hint, a scan is required to 693 * restore this hint. 694 */ 695 if (s_off == s_block->first_free) 696 s_block->first_free = find_next_zero_bit( 697 pcpu_index_alloc_map(chunk, s_index), 698 PCPU_BITMAP_BLOCK_BITS, 699 s_off + bits); 700 701 if (s_off >= s_block->contig_hint_start && 702 s_off < s_block->contig_hint_start + s_block->contig_hint) { 703 /* block contig hint is broken - scan to fix it */ 704 pcpu_block_refresh_hint(chunk, s_index); 705 } else { 706 /* update left and right contig manually */ 707 s_block->left_free = min(s_block->left_free, s_off); 708 if (s_index == e_index) 709 s_block->right_free = min_t(int, s_block->right_free, 710 PCPU_BITMAP_BLOCK_BITS - e_off); 711 else 712 s_block->right_free = 0; 713 } 714 715 /* 716 * Update e_block. 717 */ 718 if (s_index != e_index) { 719 /* 720 * When the allocation is across blocks, the end is along 721 * the left part of the e_block. 722 */ 723 e_block->first_free = find_next_zero_bit( 724 pcpu_index_alloc_map(chunk, e_index), 725 PCPU_BITMAP_BLOCK_BITS, e_off); 726 727 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 728 /* reset the block */ 729 e_block++; 730 } else { 731 if (e_off > e_block->contig_hint_start) { 732 /* contig hint is broken - scan to fix it */ 733 pcpu_block_refresh_hint(chunk, e_index); 734 } else { 735 e_block->left_free = 0; 736 e_block->right_free = 737 min_t(int, e_block->right_free, 738 PCPU_BITMAP_BLOCK_BITS - e_off); 739 } 740 } 741 742 /* update in-between md_blocks */ 743 for (block = s_block + 1; block < e_block; block++) { 744 block->contig_hint = 0; 745 block->left_free = 0; 746 block->right_free = 0; 747 } 748 } 749 750 /* 751 * The only time a full chunk scan is required is if the chunk 752 * contig hint is broken. Otherwise, it means a smaller space 753 * was used and therefore the chunk contig hint is still correct. 754 */ 755 if (bit_off >= chunk->contig_bits_start && 756 bit_off < chunk->contig_bits_start + chunk->contig_bits) 757 pcpu_chunk_refresh_hint(chunk); 758 } 759 760 /** 761 * pcpu_block_update_hint_free - updates the block hints on the free path 762 * @chunk: chunk of interest 763 * @bit_off: chunk offset 764 * @bits: size of request 765 * 766 * Updates metadata for the allocation path. This avoids a blind block 767 * refresh by making use of the block contig hints. If this fails, it scans 768 * forward and backward to determine the extent of the free area. This is 769 * capped at the boundary of blocks. 770 * 771 * A chunk update is triggered if a page becomes free, a block becomes free, 772 * or the free spans across blocks. This tradeoff is to minimize iterating 773 * over the block metadata to update chunk->contig_bits. chunk->contig_bits 774 * may be off by up to a page, but it will never be more than the available 775 * space. If the contig hint is contained in one block, it will be accurate. 776 */ 777 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 778 int bits) 779 { 780 struct pcpu_block_md *s_block, *e_block, *block; 781 int s_index, e_index; /* block indexes of the freed allocation */ 782 int s_off, e_off; /* block offsets of the freed allocation */ 783 int start, end; /* start and end of the whole free area */ 784 785 /* 786 * Calculate per block offsets. 787 * The calculation uses an inclusive range, but the resulting offsets 788 * are [start, end). e_index always points to the last block in the 789 * range. 790 */ 791 s_index = pcpu_off_to_block_index(bit_off); 792 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 793 s_off = pcpu_off_to_block_off(bit_off); 794 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 795 796 s_block = chunk->md_blocks + s_index; 797 e_block = chunk->md_blocks + e_index; 798 799 /* 800 * Check if the freed area aligns with the block->contig_hint. 801 * If it does, then the scan to find the beginning/end of the 802 * larger free area can be avoided. 803 * 804 * start and end refer to beginning and end of the free area 805 * within each their respective blocks. This is not necessarily 806 * the entire free area as it may span blocks past the beginning 807 * or end of the block. 808 */ 809 start = s_off; 810 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 811 start = s_block->contig_hint_start; 812 } else { 813 /* 814 * Scan backwards to find the extent of the free area. 815 * find_last_bit returns the starting bit, so if the start bit 816 * is returned, that means there was no last bit and the 817 * remainder of the chunk is free. 818 */ 819 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 820 start); 821 start = (start == l_bit) ? 0 : l_bit + 1; 822 } 823 824 end = e_off; 825 if (e_off == e_block->contig_hint_start) 826 end = e_block->contig_hint_start + e_block->contig_hint; 827 else 828 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 829 PCPU_BITMAP_BLOCK_BITS, end); 830 831 /* update s_block */ 832 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 833 pcpu_block_update(s_block, start, e_off); 834 835 /* freeing in the same block */ 836 if (s_index != e_index) { 837 /* update e_block */ 838 pcpu_block_update(e_block, 0, end); 839 840 /* reset md_blocks in the middle */ 841 for (block = s_block + 1; block < e_block; block++) { 842 block->first_free = 0; 843 block->contig_hint_start = 0; 844 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 845 block->left_free = PCPU_BITMAP_BLOCK_BITS; 846 block->right_free = PCPU_BITMAP_BLOCK_BITS; 847 } 848 } 849 850 /* 851 * Refresh chunk metadata when the free makes a page free, a block 852 * free, or spans across blocks. The contig hint may be off by up to 853 * a page, but if the hint is contained in a block, it will be accurate 854 * with the else condition below. 855 */ 856 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > 857 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || 858 s_index != e_index) 859 pcpu_chunk_refresh_hint(chunk); 860 else 861 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), 862 s_block->contig_hint); 863 } 864 865 /** 866 * pcpu_is_populated - determines if the region is populated 867 * @chunk: chunk of interest 868 * @bit_off: chunk offset 869 * @bits: size of area 870 * @next_off: return value for the next offset to start searching 871 * 872 * For atomic allocations, check if the backing pages are populated. 873 * 874 * RETURNS: 875 * Bool if the backing pages are populated. 876 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 877 */ 878 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 879 int *next_off) 880 { 881 int page_start, page_end, rs, re; 882 883 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 884 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 885 886 rs = page_start; 887 pcpu_next_unpop(chunk->populated, &rs, &re, page_end); 888 if (rs >= page_end) 889 return true; 890 891 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 892 return false; 893 } 894 895 /** 896 * pcpu_find_block_fit - finds the block index to start searching 897 * @chunk: chunk of interest 898 * @alloc_bits: size of request in allocation units 899 * @align: alignment of area (max PAGE_SIZE bytes) 900 * @pop_only: use populated regions only 901 * 902 * Given a chunk and an allocation spec, find the offset to begin searching 903 * for a free region. This iterates over the bitmap metadata blocks to 904 * find an offset that will be guaranteed to fit the requirements. It is 905 * not quite first fit as if the allocation does not fit in the contig hint 906 * of a block or chunk, it is skipped. This errs on the side of caution 907 * to prevent excess iteration. Poor alignment can cause the allocator to 908 * skip over blocks and chunks that have valid free areas. 909 * 910 * RETURNS: 911 * The offset in the bitmap to begin searching. 912 * -1 if no offset is found. 913 */ 914 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 915 size_t align, bool pop_only) 916 { 917 int bit_off, bits, next_off; 918 919 /* 920 * Check to see if the allocation can fit in the chunk's contig hint. 921 * This is an optimization to prevent scanning by assuming if it 922 * cannot fit in the global hint, there is memory pressure and creating 923 * a new chunk would happen soon. 924 */ 925 bit_off = ALIGN(chunk->contig_bits_start, align) - 926 chunk->contig_bits_start; 927 if (bit_off + alloc_bits > chunk->contig_bits) 928 return -1; 929 930 bit_off = chunk->first_bit; 931 bits = 0; 932 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 933 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 934 &next_off)) 935 break; 936 937 bit_off = next_off; 938 bits = 0; 939 } 940 941 if (bit_off == pcpu_chunk_map_bits(chunk)) 942 return -1; 943 944 return bit_off; 945 } 946 947 /** 948 * pcpu_alloc_area - allocates an area from a pcpu_chunk 949 * @chunk: chunk of interest 950 * @alloc_bits: size of request in allocation units 951 * @align: alignment of area (max PAGE_SIZE) 952 * @start: bit_off to start searching 953 * 954 * This function takes in a @start offset to begin searching to fit an 955 * allocation of @alloc_bits with alignment @align. It needs to scan 956 * the allocation map because if it fits within the block's contig hint, 957 * @start will be block->first_free. This is an attempt to fill the 958 * allocation prior to breaking the contig hint. The allocation and 959 * boundary maps are updated accordingly if it confirms a valid 960 * free area. 961 * 962 * RETURNS: 963 * Allocated addr offset in @chunk on success. 964 * -1 if no matching area is found. 965 */ 966 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 967 size_t align, int start) 968 { 969 size_t align_mask = (align) ? (align - 1) : 0; 970 int bit_off, end, oslot; 971 972 lockdep_assert_held(&pcpu_lock); 973 974 oslot = pcpu_chunk_slot(chunk); 975 976 /* 977 * Search to find a fit. 978 */ 979 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; 980 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, 981 alloc_bits, align_mask); 982 if (bit_off >= end) 983 return -1; 984 985 /* update alloc map */ 986 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 987 988 /* update boundary map */ 989 set_bit(bit_off, chunk->bound_map); 990 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 991 set_bit(bit_off + alloc_bits, chunk->bound_map); 992 993 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 994 995 /* update first free bit */ 996 if (bit_off == chunk->first_bit) 997 chunk->first_bit = find_next_zero_bit( 998 chunk->alloc_map, 999 pcpu_chunk_map_bits(chunk), 1000 bit_off + alloc_bits); 1001 1002 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1003 1004 pcpu_chunk_relocate(chunk, oslot); 1005 1006 return bit_off * PCPU_MIN_ALLOC_SIZE; 1007 } 1008 1009 /** 1010 * pcpu_free_area - frees the corresponding offset 1011 * @chunk: chunk of interest 1012 * @off: addr offset into chunk 1013 * 1014 * This function determines the size of an allocation to free using 1015 * the boundary bitmap and clears the allocation map. 1016 */ 1017 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1018 { 1019 int bit_off, bits, end, oslot; 1020 1021 lockdep_assert_held(&pcpu_lock); 1022 pcpu_stats_area_dealloc(chunk); 1023 1024 oslot = pcpu_chunk_slot(chunk); 1025 1026 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1027 1028 /* find end index */ 1029 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1030 bit_off + 1); 1031 bits = end - bit_off; 1032 bitmap_clear(chunk->alloc_map, bit_off, bits); 1033 1034 /* update metadata */ 1035 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1036 1037 /* update first free bit */ 1038 chunk->first_bit = min(chunk->first_bit, bit_off); 1039 1040 pcpu_block_update_hint_free(chunk, bit_off, bits); 1041 1042 pcpu_chunk_relocate(chunk, oslot); 1043 } 1044 1045 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1046 { 1047 struct pcpu_block_md *md_block; 1048 1049 for (md_block = chunk->md_blocks; 1050 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1051 md_block++) { 1052 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1053 md_block->left_free = PCPU_BITMAP_BLOCK_BITS; 1054 md_block->right_free = PCPU_BITMAP_BLOCK_BITS; 1055 } 1056 } 1057 1058 /** 1059 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1060 * @tmp_addr: the start of the region served 1061 * @map_size: size of the region served 1062 * 1063 * This is responsible for creating the chunks that serve the first chunk. The 1064 * base_addr is page aligned down of @tmp_addr while the region end is page 1065 * aligned up. Offsets are kept track of to determine the region served. All 1066 * this is done to appease the bitmap allocator in avoiding partial blocks. 1067 * 1068 * RETURNS: 1069 * Chunk serving the region at @tmp_addr of @map_size. 1070 */ 1071 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1072 int map_size) 1073 { 1074 struct pcpu_chunk *chunk; 1075 unsigned long aligned_addr, lcm_align; 1076 int start_offset, offset_bits, region_size, region_bits; 1077 1078 /* region calculations */ 1079 aligned_addr = tmp_addr & PAGE_MASK; 1080 1081 start_offset = tmp_addr - aligned_addr; 1082 1083 /* 1084 * Align the end of the region with the LCM of PAGE_SIZE and 1085 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1086 * the other. 1087 */ 1088 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1089 region_size = ALIGN(start_offset + map_size, lcm_align); 1090 1091 /* allocate chunk */ 1092 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) + 1093 BITS_TO_LONGS(region_size >> PAGE_SHIFT), 1094 0); 1095 1096 INIT_LIST_HEAD(&chunk->list); 1097 1098 chunk->base_addr = (void *)aligned_addr; 1099 chunk->start_offset = start_offset; 1100 chunk->end_offset = region_size - chunk->start_offset - map_size; 1101 1102 chunk->nr_pages = region_size >> PAGE_SHIFT; 1103 region_bits = pcpu_chunk_map_bits(chunk); 1104 1105 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) * 1106 sizeof(chunk->alloc_map[0]), 0); 1107 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) * 1108 sizeof(chunk->bound_map[0]), 0); 1109 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) * 1110 sizeof(chunk->md_blocks[0]), 0); 1111 pcpu_init_md_blocks(chunk); 1112 1113 /* manage populated page bitmap */ 1114 chunk->immutable = true; 1115 bitmap_fill(chunk->populated, chunk->nr_pages); 1116 chunk->nr_populated = chunk->nr_pages; 1117 chunk->nr_empty_pop_pages = 1118 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, 1119 map_size / PCPU_MIN_ALLOC_SIZE); 1120 1121 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; 1122 chunk->free_bytes = map_size; 1123 1124 if (chunk->start_offset) { 1125 /* hide the beginning of the bitmap */ 1126 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1127 bitmap_set(chunk->alloc_map, 0, offset_bits); 1128 set_bit(0, chunk->bound_map); 1129 set_bit(offset_bits, chunk->bound_map); 1130 1131 chunk->first_bit = offset_bits; 1132 1133 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1134 } 1135 1136 if (chunk->end_offset) { 1137 /* hide the end of the bitmap */ 1138 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1139 bitmap_set(chunk->alloc_map, 1140 pcpu_chunk_map_bits(chunk) - offset_bits, 1141 offset_bits); 1142 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1143 chunk->bound_map); 1144 set_bit(region_bits, chunk->bound_map); 1145 1146 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1147 - offset_bits, offset_bits); 1148 } 1149 1150 return chunk; 1151 } 1152 1153 static struct pcpu_chunk *pcpu_alloc_chunk(void) 1154 { 1155 struct pcpu_chunk *chunk; 1156 int region_bits; 1157 1158 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); 1159 if (!chunk) 1160 return NULL; 1161 1162 INIT_LIST_HEAD(&chunk->list); 1163 chunk->nr_pages = pcpu_unit_pages; 1164 region_bits = pcpu_chunk_map_bits(chunk); 1165 1166 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1167 sizeof(chunk->alloc_map[0])); 1168 if (!chunk->alloc_map) 1169 goto alloc_map_fail; 1170 1171 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1172 sizeof(chunk->bound_map[0])); 1173 if (!chunk->bound_map) 1174 goto bound_map_fail; 1175 1176 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1177 sizeof(chunk->md_blocks[0])); 1178 if (!chunk->md_blocks) 1179 goto md_blocks_fail; 1180 1181 pcpu_init_md_blocks(chunk); 1182 1183 /* init metadata */ 1184 chunk->contig_bits = region_bits; 1185 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1186 1187 return chunk; 1188 1189 md_blocks_fail: 1190 pcpu_mem_free(chunk->bound_map); 1191 bound_map_fail: 1192 pcpu_mem_free(chunk->alloc_map); 1193 alloc_map_fail: 1194 pcpu_mem_free(chunk); 1195 1196 return NULL; 1197 } 1198 1199 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1200 { 1201 if (!chunk) 1202 return; 1203 pcpu_mem_free(chunk->bound_map); 1204 pcpu_mem_free(chunk->alloc_map); 1205 pcpu_mem_free(chunk); 1206 } 1207 1208 /** 1209 * pcpu_chunk_populated - post-population bookkeeping 1210 * @chunk: pcpu_chunk which got populated 1211 * @page_start: the start page 1212 * @page_end: the end page 1213 * @for_alloc: if this is to populate for allocation 1214 * 1215 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1216 * the bookkeeping information accordingly. Must be called after each 1217 * successful population. 1218 * 1219 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1220 * is to serve an allocation in that area. 1221 */ 1222 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1223 int page_end, bool for_alloc) 1224 { 1225 int nr = page_end - page_start; 1226 1227 lockdep_assert_held(&pcpu_lock); 1228 1229 bitmap_set(chunk->populated, page_start, nr); 1230 chunk->nr_populated += nr; 1231 1232 if (!for_alloc) { 1233 chunk->nr_empty_pop_pages += nr; 1234 pcpu_nr_empty_pop_pages += nr; 1235 } 1236 } 1237 1238 /** 1239 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1240 * @chunk: pcpu_chunk which got depopulated 1241 * @page_start: the start page 1242 * @page_end: the end page 1243 * 1244 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1245 * Update the bookkeeping information accordingly. Must be called after 1246 * each successful depopulation. 1247 */ 1248 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1249 int page_start, int page_end) 1250 { 1251 int nr = page_end - page_start; 1252 1253 lockdep_assert_held(&pcpu_lock); 1254 1255 bitmap_clear(chunk->populated, page_start, nr); 1256 chunk->nr_populated -= nr; 1257 chunk->nr_empty_pop_pages -= nr; 1258 pcpu_nr_empty_pop_pages -= nr; 1259 } 1260 1261 /* 1262 * Chunk management implementation. 1263 * 1264 * To allow different implementations, chunk alloc/free and 1265 * [de]population are implemented in a separate file which is pulled 1266 * into this file and compiled together. The following functions 1267 * should be implemented. 1268 * 1269 * pcpu_populate_chunk - populate the specified range of a chunk 1270 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1271 * pcpu_create_chunk - create a new chunk 1272 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1273 * pcpu_addr_to_page - translate address to physical address 1274 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1275 */ 1276 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); 1277 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); 1278 static struct pcpu_chunk *pcpu_create_chunk(void); 1279 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1280 static struct page *pcpu_addr_to_page(void *addr); 1281 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1282 1283 #ifdef CONFIG_NEED_PER_CPU_KM 1284 #include "percpu-km.c" 1285 #else 1286 #include "percpu-vm.c" 1287 #endif 1288 1289 /** 1290 * pcpu_chunk_addr_search - determine chunk containing specified address 1291 * @addr: address for which the chunk needs to be determined. 1292 * 1293 * This is an internal function that handles all but static allocations. 1294 * Static percpu address values should never be passed into the allocator. 1295 * 1296 * RETURNS: 1297 * The address of the found chunk. 1298 */ 1299 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1300 { 1301 /* is it in the dynamic region (first chunk)? */ 1302 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1303 return pcpu_first_chunk; 1304 1305 /* is it in the reserved region? */ 1306 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1307 return pcpu_reserved_chunk; 1308 1309 /* 1310 * The address is relative to unit0 which might be unused and 1311 * thus unmapped. Offset the address to the unit space of the 1312 * current processor before looking it up in the vmalloc 1313 * space. Note that any possible cpu id can be used here, so 1314 * there's no need to worry about preemption or cpu hotplug. 1315 */ 1316 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1317 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1318 } 1319 1320 /** 1321 * pcpu_alloc - the percpu allocator 1322 * @size: size of area to allocate in bytes 1323 * @align: alignment of area (max PAGE_SIZE) 1324 * @reserved: allocate from the reserved chunk if available 1325 * @gfp: allocation flags 1326 * 1327 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1328 * contain %GFP_KERNEL, the allocation is atomic. 1329 * 1330 * RETURNS: 1331 * Percpu pointer to the allocated area on success, NULL on failure. 1332 */ 1333 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1334 gfp_t gfp) 1335 { 1336 static int warn_limit = 10; 1337 struct pcpu_chunk *chunk; 1338 const char *err; 1339 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1340 int slot, off, cpu, ret; 1341 unsigned long flags; 1342 void __percpu *ptr; 1343 size_t bits, bit_align; 1344 1345 /* 1346 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1347 * therefore alignment must be a minimum of that many bytes. 1348 * An allocation may have internal fragmentation from rounding up 1349 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1350 */ 1351 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1352 align = PCPU_MIN_ALLOC_SIZE; 1353 1354 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1355 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1356 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1357 1358 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1359 !is_power_of_2(align))) { 1360 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1361 size, align); 1362 return NULL; 1363 } 1364 1365 if (!is_atomic) 1366 mutex_lock(&pcpu_alloc_mutex); 1367 1368 spin_lock_irqsave(&pcpu_lock, flags); 1369 1370 /* serve reserved allocations from the reserved chunk if available */ 1371 if (reserved && pcpu_reserved_chunk) { 1372 chunk = pcpu_reserved_chunk; 1373 1374 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1375 if (off < 0) { 1376 err = "alloc from reserved chunk failed"; 1377 goto fail_unlock; 1378 } 1379 1380 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1381 if (off >= 0) 1382 goto area_found; 1383 1384 err = "alloc from reserved chunk failed"; 1385 goto fail_unlock; 1386 } 1387 1388 restart: 1389 /* search through normal chunks */ 1390 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1391 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1392 off = pcpu_find_block_fit(chunk, bits, bit_align, 1393 is_atomic); 1394 if (off < 0) 1395 continue; 1396 1397 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1398 if (off >= 0) 1399 goto area_found; 1400 1401 } 1402 } 1403 1404 spin_unlock_irqrestore(&pcpu_lock, flags); 1405 1406 /* 1407 * No space left. Create a new chunk. We don't want multiple 1408 * tasks to create chunks simultaneously. Serialize and create iff 1409 * there's still no empty chunk after grabbing the mutex. 1410 */ 1411 if (is_atomic) { 1412 err = "atomic alloc failed, no space left"; 1413 goto fail; 1414 } 1415 1416 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1417 chunk = pcpu_create_chunk(); 1418 if (!chunk) { 1419 err = "failed to allocate new chunk"; 1420 goto fail; 1421 } 1422 1423 spin_lock_irqsave(&pcpu_lock, flags); 1424 pcpu_chunk_relocate(chunk, -1); 1425 } else { 1426 spin_lock_irqsave(&pcpu_lock, flags); 1427 } 1428 1429 goto restart; 1430 1431 area_found: 1432 pcpu_stats_area_alloc(chunk, size); 1433 spin_unlock_irqrestore(&pcpu_lock, flags); 1434 1435 /* populate if not all pages are already there */ 1436 if (!is_atomic) { 1437 int page_start, page_end, rs, re; 1438 1439 page_start = PFN_DOWN(off); 1440 page_end = PFN_UP(off + size); 1441 1442 pcpu_for_each_unpop_region(chunk->populated, rs, re, 1443 page_start, page_end) { 1444 WARN_ON(chunk->immutable); 1445 1446 ret = pcpu_populate_chunk(chunk, rs, re); 1447 1448 spin_lock_irqsave(&pcpu_lock, flags); 1449 if (ret) { 1450 pcpu_free_area(chunk, off); 1451 err = "failed to populate"; 1452 goto fail_unlock; 1453 } 1454 pcpu_chunk_populated(chunk, rs, re, true); 1455 spin_unlock_irqrestore(&pcpu_lock, flags); 1456 } 1457 1458 mutex_unlock(&pcpu_alloc_mutex); 1459 } 1460 1461 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1462 pcpu_schedule_balance_work(); 1463 1464 /* clear the areas and return address relative to base address */ 1465 for_each_possible_cpu(cpu) 1466 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1467 1468 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1469 kmemleak_alloc_percpu(ptr, size, gfp); 1470 1471 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1472 chunk->base_addr, off, ptr); 1473 1474 return ptr; 1475 1476 fail_unlock: 1477 spin_unlock_irqrestore(&pcpu_lock, flags); 1478 fail: 1479 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1480 1481 if (!is_atomic && warn_limit) { 1482 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1483 size, align, is_atomic, err); 1484 dump_stack(); 1485 if (!--warn_limit) 1486 pr_info("limit reached, disable warning\n"); 1487 } 1488 if (is_atomic) { 1489 /* see the flag handling in pcpu_blance_workfn() */ 1490 pcpu_atomic_alloc_failed = true; 1491 pcpu_schedule_balance_work(); 1492 } else { 1493 mutex_unlock(&pcpu_alloc_mutex); 1494 } 1495 return NULL; 1496 } 1497 1498 /** 1499 * __alloc_percpu_gfp - allocate dynamic percpu area 1500 * @size: size of area to allocate in bytes 1501 * @align: alignment of area (max PAGE_SIZE) 1502 * @gfp: allocation flags 1503 * 1504 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1505 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1506 * be called from any context but is a lot more likely to fail. 1507 * 1508 * RETURNS: 1509 * Percpu pointer to the allocated area on success, NULL on failure. 1510 */ 1511 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1512 { 1513 return pcpu_alloc(size, align, false, gfp); 1514 } 1515 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1516 1517 /** 1518 * __alloc_percpu - allocate dynamic percpu area 1519 * @size: size of area to allocate in bytes 1520 * @align: alignment of area (max PAGE_SIZE) 1521 * 1522 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1523 */ 1524 void __percpu *__alloc_percpu(size_t size, size_t align) 1525 { 1526 return pcpu_alloc(size, align, false, GFP_KERNEL); 1527 } 1528 EXPORT_SYMBOL_GPL(__alloc_percpu); 1529 1530 /** 1531 * __alloc_reserved_percpu - allocate reserved percpu area 1532 * @size: size of area to allocate in bytes 1533 * @align: alignment of area (max PAGE_SIZE) 1534 * 1535 * Allocate zero-filled percpu area of @size bytes aligned at @align 1536 * from reserved percpu area if arch has set it up; otherwise, 1537 * allocation is served from the same dynamic area. Might sleep. 1538 * Might trigger writeouts. 1539 * 1540 * CONTEXT: 1541 * Does GFP_KERNEL allocation. 1542 * 1543 * RETURNS: 1544 * Percpu pointer to the allocated area on success, NULL on failure. 1545 */ 1546 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1547 { 1548 return pcpu_alloc(size, align, true, GFP_KERNEL); 1549 } 1550 1551 /** 1552 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1553 * @work: unused 1554 * 1555 * Reclaim all fully free chunks except for the first one. 1556 */ 1557 static void pcpu_balance_workfn(struct work_struct *work) 1558 { 1559 LIST_HEAD(to_free); 1560 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1561 struct pcpu_chunk *chunk, *next; 1562 int slot, nr_to_pop, ret; 1563 1564 /* 1565 * There's no reason to keep around multiple unused chunks and VM 1566 * areas can be scarce. Destroy all free chunks except for one. 1567 */ 1568 mutex_lock(&pcpu_alloc_mutex); 1569 spin_lock_irq(&pcpu_lock); 1570 1571 list_for_each_entry_safe(chunk, next, free_head, list) { 1572 WARN_ON(chunk->immutable); 1573 1574 /* spare the first one */ 1575 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1576 continue; 1577 1578 list_move(&chunk->list, &to_free); 1579 } 1580 1581 spin_unlock_irq(&pcpu_lock); 1582 1583 list_for_each_entry_safe(chunk, next, &to_free, list) { 1584 int rs, re; 1585 1586 pcpu_for_each_pop_region(chunk->populated, rs, re, 0, 1587 chunk->nr_pages) { 1588 pcpu_depopulate_chunk(chunk, rs, re); 1589 spin_lock_irq(&pcpu_lock); 1590 pcpu_chunk_depopulated(chunk, rs, re); 1591 spin_unlock_irq(&pcpu_lock); 1592 } 1593 pcpu_destroy_chunk(chunk); 1594 } 1595 1596 /* 1597 * Ensure there are certain number of free populated pages for 1598 * atomic allocs. Fill up from the most packed so that atomic 1599 * allocs don't increase fragmentation. If atomic allocation 1600 * failed previously, always populate the maximum amount. This 1601 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1602 * failing indefinitely; however, large atomic allocs are not 1603 * something we support properly and can be highly unreliable and 1604 * inefficient. 1605 */ 1606 retry_pop: 1607 if (pcpu_atomic_alloc_failed) { 1608 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1609 /* best effort anyway, don't worry about synchronization */ 1610 pcpu_atomic_alloc_failed = false; 1611 } else { 1612 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1613 pcpu_nr_empty_pop_pages, 1614 0, PCPU_EMPTY_POP_PAGES_HIGH); 1615 } 1616 1617 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1618 int nr_unpop = 0, rs, re; 1619 1620 if (!nr_to_pop) 1621 break; 1622 1623 spin_lock_irq(&pcpu_lock); 1624 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1625 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1626 if (nr_unpop) 1627 break; 1628 } 1629 spin_unlock_irq(&pcpu_lock); 1630 1631 if (!nr_unpop) 1632 continue; 1633 1634 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1635 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, 1636 chunk->nr_pages) { 1637 int nr = min(re - rs, nr_to_pop); 1638 1639 ret = pcpu_populate_chunk(chunk, rs, rs + nr); 1640 if (!ret) { 1641 nr_to_pop -= nr; 1642 spin_lock_irq(&pcpu_lock); 1643 pcpu_chunk_populated(chunk, rs, rs + nr, false); 1644 spin_unlock_irq(&pcpu_lock); 1645 } else { 1646 nr_to_pop = 0; 1647 } 1648 1649 if (!nr_to_pop) 1650 break; 1651 } 1652 } 1653 1654 if (nr_to_pop) { 1655 /* ran out of chunks to populate, create a new one and retry */ 1656 chunk = pcpu_create_chunk(); 1657 if (chunk) { 1658 spin_lock_irq(&pcpu_lock); 1659 pcpu_chunk_relocate(chunk, -1); 1660 spin_unlock_irq(&pcpu_lock); 1661 goto retry_pop; 1662 } 1663 } 1664 1665 mutex_unlock(&pcpu_alloc_mutex); 1666 } 1667 1668 /** 1669 * free_percpu - free percpu area 1670 * @ptr: pointer to area to free 1671 * 1672 * Free percpu area @ptr. 1673 * 1674 * CONTEXT: 1675 * Can be called from atomic context. 1676 */ 1677 void free_percpu(void __percpu *ptr) 1678 { 1679 void *addr; 1680 struct pcpu_chunk *chunk; 1681 unsigned long flags; 1682 int off; 1683 1684 if (!ptr) 1685 return; 1686 1687 kmemleak_free_percpu(ptr); 1688 1689 addr = __pcpu_ptr_to_addr(ptr); 1690 1691 spin_lock_irqsave(&pcpu_lock, flags); 1692 1693 chunk = pcpu_chunk_addr_search(addr); 1694 off = addr - chunk->base_addr; 1695 1696 pcpu_free_area(chunk, off); 1697 1698 /* if there are more than one fully free chunks, wake up grim reaper */ 1699 if (chunk->free_bytes == pcpu_unit_size) { 1700 struct pcpu_chunk *pos; 1701 1702 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1703 if (pos != chunk) { 1704 pcpu_schedule_balance_work(); 1705 break; 1706 } 1707 } 1708 1709 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1710 1711 spin_unlock_irqrestore(&pcpu_lock, flags); 1712 } 1713 EXPORT_SYMBOL_GPL(free_percpu); 1714 1715 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1716 { 1717 #ifdef CONFIG_SMP 1718 const size_t static_size = __per_cpu_end - __per_cpu_start; 1719 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1720 unsigned int cpu; 1721 1722 for_each_possible_cpu(cpu) { 1723 void *start = per_cpu_ptr(base, cpu); 1724 void *va = (void *)addr; 1725 1726 if (va >= start && va < start + static_size) { 1727 if (can_addr) { 1728 *can_addr = (unsigned long) (va - start); 1729 *can_addr += (unsigned long) 1730 per_cpu_ptr(base, get_boot_cpu_id()); 1731 } 1732 return true; 1733 } 1734 } 1735 #endif 1736 /* on UP, can't distinguish from other static vars, always false */ 1737 return false; 1738 } 1739 1740 /** 1741 * is_kernel_percpu_address - test whether address is from static percpu area 1742 * @addr: address to test 1743 * 1744 * Test whether @addr belongs to in-kernel static percpu area. Module 1745 * static percpu areas are not considered. For those, use 1746 * is_module_percpu_address(). 1747 * 1748 * RETURNS: 1749 * %true if @addr is from in-kernel static percpu area, %false otherwise. 1750 */ 1751 bool is_kernel_percpu_address(unsigned long addr) 1752 { 1753 return __is_kernel_percpu_address(addr, NULL); 1754 } 1755 1756 /** 1757 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 1758 * @addr: the address to be converted to physical address 1759 * 1760 * Given @addr which is dereferenceable address obtained via one of 1761 * percpu access macros, this function translates it into its physical 1762 * address. The caller is responsible for ensuring @addr stays valid 1763 * until this function finishes. 1764 * 1765 * percpu allocator has special setup for the first chunk, which currently 1766 * supports either embedding in linear address space or vmalloc mapping, 1767 * and, from the second one, the backing allocator (currently either vm or 1768 * km) provides translation. 1769 * 1770 * The addr can be translated simply without checking if it falls into the 1771 * first chunk. But the current code reflects better how percpu allocator 1772 * actually works, and the verification can discover both bugs in percpu 1773 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 1774 * code. 1775 * 1776 * RETURNS: 1777 * The physical address for @addr. 1778 */ 1779 phys_addr_t per_cpu_ptr_to_phys(void *addr) 1780 { 1781 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1782 bool in_first_chunk = false; 1783 unsigned long first_low, first_high; 1784 unsigned int cpu; 1785 1786 /* 1787 * The following test on unit_low/high isn't strictly 1788 * necessary but will speed up lookups of addresses which 1789 * aren't in the first chunk. 1790 * 1791 * The address check is against full chunk sizes. pcpu_base_addr 1792 * points to the beginning of the first chunk including the 1793 * static region. Assumes good intent as the first chunk may 1794 * not be full (ie. < pcpu_unit_pages in size). 1795 */ 1796 first_low = (unsigned long)pcpu_base_addr + 1797 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 1798 first_high = (unsigned long)pcpu_base_addr + 1799 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 1800 if ((unsigned long)addr >= first_low && 1801 (unsigned long)addr < first_high) { 1802 for_each_possible_cpu(cpu) { 1803 void *start = per_cpu_ptr(base, cpu); 1804 1805 if (addr >= start && addr < start + pcpu_unit_size) { 1806 in_first_chunk = true; 1807 break; 1808 } 1809 } 1810 } 1811 1812 if (in_first_chunk) { 1813 if (!is_vmalloc_addr(addr)) 1814 return __pa(addr); 1815 else 1816 return page_to_phys(vmalloc_to_page(addr)) + 1817 offset_in_page(addr); 1818 } else 1819 return page_to_phys(pcpu_addr_to_page(addr)) + 1820 offset_in_page(addr); 1821 } 1822 1823 /** 1824 * pcpu_alloc_alloc_info - allocate percpu allocation info 1825 * @nr_groups: the number of groups 1826 * @nr_units: the number of units 1827 * 1828 * Allocate ai which is large enough for @nr_groups groups containing 1829 * @nr_units units. The returned ai's groups[0].cpu_map points to the 1830 * cpu_map array which is long enough for @nr_units and filled with 1831 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 1832 * pointer of other groups. 1833 * 1834 * RETURNS: 1835 * Pointer to the allocated pcpu_alloc_info on success, NULL on 1836 * failure. 1837 */ 1838 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 1839 int nr_units) 1840 { 1841 struct pcpu_alloc_info *ai; 1842 size_t base_size, ai_size; 1843 void *ptr; 1844 int unit; 1845 1846 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), 1847 __alignof__(ai->groups[0].cpu_map[0])); 1848 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 1849 1850 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); 1851 if (!ptr) 1852 return NULL; 1853 ai = ptr; 1854 ptr += base_size; 1855 1856 ai->groups[0].cpu_map = ptr; 1857 1858 for (unit = 0; unit < nr_units; unit++) 1859 ai->groups[0].cpu_map[unit] = NR_CPUS; 1860 1861 ai->nr_groups = nr_groups; 1862 ai->__ai_size = PFN_ALIGN(ai_size); 1863 1864 return ai; 1865 } 1866 1867 /** 1868 * pcpu_free_alloc_info - free percpu allocation info 1869 * @ai: pcpu_alloc_info to free 1870 * 1871 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 1872 */ 1873 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 1874 { 1875 memblock_free_early(__pa(ai), ai->__ai_size); 1876 } 1877 1878 /** 1879 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 1880 * @lvl: loglevel 1881 * @ai: allocation info to dump 1882 * 1883 * Print out information about @ai using loglevel @lvl. 1884 */ 1885 static void pcpu_dump_alloc_info(const char *lvl, 1886 const struct pcpu_alloc_info *ai) 1887 { 1888 int group_width = 1, cpu_width = 1, width; 1889 char empty_str[] = "--------"; 1890 int alloc = 0, alloc_end = 0; 1891 int group, v; 1892 int upa, apl; /* units per alloc, allocs per line */ 1893 1894 v = ai->nr_groups; 1895 while (v /= 10) 1896 group_width++; 1897 1898 v = num_possible_cpus(); 1899 while (v /= 10) 1900 cpu_width++; 1901 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 1902 1903 upa = ai->alloc_size / ai->unit_size; 1904 width = upa * (cpu_width + 1) + group_width + 3; 1905 apl = rounddown_pow_of_two(max(60 / width, 1)); 1906 1907 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 1908 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 1909 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 1910 1911 for (group = 0; group < ai->nr_groups; group++) { 1912 const struct pcpu_group_info *gi = &ai->groups[group]; 1913 int unit = 0, unit_end = 0; 1914 1915 BUG_ON(gi->nr_units % upa); 1916 for (alloc_end += gi->nr_units / upa; 1917 alloc < alloc_end; alloc++) { 1918 if (!(alloc % apl)) { 1919 pr_cont("\n"); 1920 printk("%spcpu-alloc: ", lvl); 1921 } 1922 pr_cont("[%0*d] ", group_width, group); 1923 1924 for (unit_end += upa; unit < unit_end; unit++) 1925 if (gi->cpu_map[unit] != NR_CPUS) 1926 pr_cont("%0*d ", 1927 cpu_width, gi->cpu_map[unit]); 1928 else 1929 pr_cont("%s ", empty_str); 1930 } 1931 } 1932 pr_cont("\n"); 1933 } 1934 1935 /** 1936 * pcpu_setup_first_chunk - initialize the first percpu chunk 1937 * @ai: pcpu_alloc_info describing how to percpu area is shaped 1938 * @base_addr: mapped address 1939 * 1940 * Initialize the first percpu chunk which contains the kernel static 1941 * perpcu area. This function is to be called from arch percpu area 1942 * setup path. 1943 * 1944 * @ai contains all information necessary to initialize the first 1945 * chunk and prime the dynamic percpu allocator. 1946 * 1947 * @ai->static_size is the size of static percpu area. 1948 * 1949 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 1950 * reserve after the static area in the first chunk. This reserves 1951 * the first chunk such that it's available only through reserved 1952 * percpu allocation. This is primarily used to serve module percpu 1953 * static areas on architectures where the addressing model has 1954 * limited offset range for symbol relocations to guarantee module 1955 * percpu symbols fall inside the relocatable range. 1956 * 1957 * @ai->dyn_size determines the number of bytes available for dynamic 1958 * allocation in the first chunk. The area between @ai->static_size + 1959 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 1960 * 1961 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 1962 * and equal to or larger than @ai->static_size + @ai->reserved_size + 1963 * @ai->dyn_size. 1964 * 1965 * @ai->atom_size is the allocation atom size and used as alignment 1966 * for vm areas. 1967 * 1968 * @ai->alloc_size is the allocation size and always multiple of 1969 * @ai->atom_size. This is larger than @ai->atom_size if 1970 * @ai->unit_size is larger than @ai->atom_size. 1971 * 1972 * @ai->nr_groups and @ai->groups describe virtual memory layout of 1973 * percpu areas. Units which should be colocated are put into the 1974 * same group. Dynamic VM areas will be allocated according to these 1975 * groupings. If @ai->nr_groups is zero, a single group containing 1976 * all units is assumed. 1977 * 1978 * The caller should have mapped the first chunk at @base_addr and 1979 * copied static data to each unit. 1980 * 1981 * The first chunk will always contain a static and a dynamic region. 1982 * However, the static region is not managed by any chunk. If the first 1983 * chunk also contains a reserved region, it is served by two chunks - 1984 * one for the reserved region and one for the dynamic region. They 1985 * share the same vm, but use offset regions in the area allocation map. 1986 * The chunk serving the dynamic region is circulated in the chunk slots 1987 * and available for dynamic allocation like any other chunk. 1988 * 1989 * RETURNS: 1990 * 0 on success, -errno on failure. 1991 */ 1992 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 1993 void *base_addr) 1994 { 1995 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 1996 size_t static_size, dyn_size; 1997 struct pcpu_chunk *chunk; 1998 unsigned long *group_offsets; 1999 size_t *group_sizes; 2000 unsigned long *unit_off; 2001 unsigned int cpu; 2002 int *unit_map; 2003 int group, unit, i; 2004 int map_size; 2005 unsigned long tmp_addr; 2006 2007 #define PCPU_SETUP_BUG_ON(cond) do { \ 2008 if (unlikely(cond)) { \ 2009 pr_emerg("failed to initialize, %s\n", #cond); \ 2010 pr_emerg("cpu_possible_mask=%*pb\n", \ 2011 cpumask_pr_args(cpu_possible_mask)); \ 2012 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2013 BUG(); \ 2014 } \ 2015 } while (0) 2016 2017 /* sanity checks */ 2018 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2019 #ifdef CONFIG_SMP 2020 PCPU_SETUP_BUG_ON(!ai->static_size); 2021 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2022 #endif 2023 PCPU_SETUP_BUG_ON(!base_addr); 2024 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2025 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2026 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2027 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2028 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2029 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2030 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2031 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2032 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2033 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2034 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2035 2036 /* process group information and build config tables accordingly */ 2037 group_offsets = memblock_virt_alloc(ai->nr_groups * 2038 sizeof(group_offsets[0]), 0); 2039 group_sizes = memblock_virt_alloc(ai->nr_groups * 2040 sizeof(group_sizes[0]), 0); 2041 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); 2042 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); 2043 2044 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2045 unit_map[cpu] = UINT_MAX; 2046 2047 pcpu_low_unit_cpu = NR_CPUS; 2048 pcpu_high_unit_cpu = NR_CPUS; 2049 2050 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2051 const struct pcpu_group_info *gi = &ai->groups[group]; 2052 2053 group_offsets[group] = gi->base_offset; 2054 group_sizes[group] = gi->nr_units * ai->unit_size; 2055 2056 for (i = 0; i < gi->nr_units; i++) { 2057 cpu = gi->cpu_map[i]; 2058 if (cpu == NR_CPUS) 2059 continue; 2060 2061 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2062 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2063 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2064 2065 unit_map[cpu] = unit + i; 2066 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2067 2068 /* determine low/high unit_cpu */ 2069 if (pcpu_low_unit_cpu == NR_CPUS || 2070 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2071 pcpu_low_unit_cpu = cpu; 2072 if (pcpu_high_unit_cpu == NR_CPUS || 2073 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2074 pcpu_high_unit_cpu = cpu; 2075 } 2076 } 2077 pcpu_nr_units = unit; 2078 2079 for_each_possible_cpu(cpu) 2080 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2081 2082 /* we're done parsing the input, undefine BUG macro and dump config */ 2083 #undef PCPU_SETUP_BUG_ON 2084 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2085 2086 pcpu_nr_groups = ai->nr_groups; 2087 pcpu_group_offsets = group_offsets; 2088 pcpu_group_sizes = group_sizes; 2089 pcpu_unit_map = unit_map; 2090 pcpu_unit_offsets = unit_off; 2091 2092 /* determine basic parameters */ 2093 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2094 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2095 pcpu_atom_size = ai->atom_size; 2096 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2097 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2098 2099 pcpu_stats_save_ai(ai); 2100 2101 /* 2102 * Allocate chunk slots. The additional last slot is for 2103 * empty chunks. 2104 */ 2105 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2106 pcpu_slot = memblock_virt_alloc( 2107 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); 2108 for (i = 0; i < pcpu_nr_slots; i++) 2109 INIT_LIST_HEAD(&pcpu_slot[i]); 2110 2111 /* 2112 * The end of the static region needs to be aligned with the 2113 * minimum allocation size as this offsets the reserved and 2114 * dynamic region. The first chunk ends page aligned by 2115 * expanding the dynamic region, therefore the dynamic region 2116 * can be shrunk to compensate while still staying above the 2117 * configured sizes. 2118 */ 2119 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2120 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2121 2122 /* 2123 * Initialize first chunk. 2124 * If the reserved_size is non-zero, this initializes the reserved 2125 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2126 * and the dynamic region is initialized here. The first chunk, 2127 * pcpu_first_chunk, will always point to the chunk that serves 2128 * the dynamic region. 2129 */ 2130 tmp_addr = (unsigned long)base_addr + static_size; 2131 map_size = ai->reserved_size ?: dyn_size; 2132 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2133 2134 /* init dynamic chunk if necessary */ 2135 if (ai->reserved_size) { 2136 pcpu_reserved_chunk = chunk; 2137 2138 tmp_addr = (unsigned long)base_addr + static_size + 2139 ai->reserved_size; 2140 map_size = dyn_size; 2141 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2142 } 2143 2144 /* link the first chunk in */ 2145 pcpu_first_chunk = chunk; 2146 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2147 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2148 2149 pcpu_stats_chunk_alloc(); 2150 trace_percpu_create_chunk(base_addr); 2151 2152 /* we're done */ 2153 pcpu_base_addr = base_addr; 2154 return 0; 2155 } 2156 2157 #ifdef CONFIG_SMP 2158 2159 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2160 [PCPU_FC_AUTO] = "auto", 2161 [PCPU_FC_EMBED] = "embed", 2162 [PCPU_FC_PAGE] = "page", 2163 }; 2164 2165 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2166 2167 static int __init percpu_alloc_setup(char *str) 2168 { 2169 if (!str) 2170 return -EINVAL; 2171 2172 if (0) 2173 /* nada */; 2174 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2175 else if (!strcmp(str, "embed")) 2176 pcpu_chosen_fc = PCPU_FC_EMBED; 2177 #endif 2178 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2179 else if (!strcmp(str, "page")) 2180 pcpu_chosen_fc = PCPU_FC_PAGE; 2181 #endif 2182 else 2183 pr_warn("unknown allocator %s specified\n", str); 2184 2185 return 0; 2186 } 2187 early_param("percpu_alloc", percpu_alloc_setup); 2188 2189 /* 2190 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2191 * Build it if needed by the arch config or the generic setup is going 2192 * to be used. 2193 */ 2194 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2195 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2196 #define BUILD_EMBED_FIRST_CHUNK 2197 #endif 2198 2199 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2200 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2201 #define BUILD_PAGE_FIRST_CHUNK 2202 #endif 2203 2204 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2205 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2206 /** 2207 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2208 * @reserved_size: the size of reserved percpu area in bytes 2209 * @dyn_size: minimum free size for dynamic allocation in bytes 2210 * @atom_size: allocation atom size 2211 * @cpu_distance_fn: callback to determine distance between cpus, optional 2212 * 2213 * This function determines grouping of units, their mappings to cpus 2214 * and other parameters considering needed percpu size, allocation 2215 * atom size and distances between CPUs. 2216 * 2217 * Groups are always multiples of atom size and CPUs which are of 2218 * LOCAL_DISTANCE both ways are grouped together and share space for 2219 * units in the same group. The returned configuration is guaranteed 2220 * to have CPUs on different nodes on different groups and >=75% usage 2221 * of allocated virtual address space. 2222 * 2223 * RETURNS: 2224 * On success, pointer to the new allocation_info is returned. On 2225 * failure, ERR_PTR value is returned. 2226 */ 2227 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2228 size_t reserved_size, size_t dyn_size, 2229 size_t atom_size, 2230 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2231 { 2232 static int group_map[NR_CPUS] __initdata; 2233 static int group_cnt[NR_CPUS] __initdata; 2234 const size_t static_size = __per_cpu_end - __per_cpu_start; 2235 int nr_groups = 1, nr_units = 0; 2236 size_t size_sum, min_unit_size, alloc_size; 2237 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2238 int last_allocs, group, unit; 2239 unsigned int cpu, tcpu; 2240 struct pcpu_alloc_info *ai; 2241 unsigned int *cpu_map; 2242 2243 /* this function may be called multiple times */ 2244 memset(group_map, 0, sizeof(group_map)); 2245 memset(group_cnt, 0, sizeof(group_cnt)); 2246 2247 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2248 size_sum = PFN_ALIGN(static_size + reserved_size + 2249 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2250 dyn_size = size_sum - static_size - reserved_size; 2251 2252 /* 2253 * Determine min_unit_size, alloc_size and max_upa such that 2254 * alloc_size is multiple of atom_size and is the smallest 2255 * which can accommodate 4k aligned segments which are equal to 2256 * or larger than min_unit_size. 2257 */ 2258 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2259 2260 /* determine the maximum # of units that can fit in an allocation */ 2261 alloc_size = roundup(min_unit_size, atom_size); 2262 upa = alloc_size / min_unit_size; 2263 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2264 upa--; 2265 max_upa = upa; 2266 2267 /* group cpus according to their proximity */ 2268 for_each_possible_cpu(cpu) { 2269 group = 0; 2270 next_group: 2271 for_each_possible_cpu(tcpu) { 2272 if (cpu == tcpu) 2273 break; 2274 if (group_map[tcpu] == group && cpu_distance_fn && 2275 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2276 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2277 group++; 2278 nr_groups = max(nr_groups, group + 1); 2279 goto next_group; 2280 } 2281 } 2282 group_map[cpu] = group; 2283 group_cnt[group]++; 2284 } 2285 2286 /* 2287 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2288 * Expand the unit_size until we use >= 75% of the units allocated. 2289 * Related to atom_size, which could be much larger than the unit_size. 2290 */ 2291 last_allocs = INT_MAX; 2292 for (upa = max_upa; upa; upa--) { 2293 int allocs = 0, wasted = 0; 2294 2295 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2296 continue; 2297 2298 for (group = 0; group < nr_groups; group++) { 2299 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2300 allocs += this_allocs; 2301 wasted += this_allocs * upa - group_cnt[group]; 2302 } 2303 2304 /* 2305 * Don't accept if wastage is over 1/3. The 2306 * greater-than comparison ensures upa==1 always 2307 * passes the following check. 2308 */ 2309 if (wasted > num_possible_cpus() / 3) 2310 continue; 2311 2312 /* and then don't consume more memory */ 2313 if (allocs > last_allocs) 2314 break; 2315 last_allocs = allocs; 2316 best_upa = upa; 2317 } 2318 upa = best_upa; 2319 2320 /* allocate and fill alloc_info */ 2321 for (group = 0; group < nr_groups; group++) 2322 nr_units += roundup(group_cnt[group], upa); 2323 2324 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2325 if (!ai) 2326 return ERR_PTR(-ENOMEM); 2327 cpu_map = ai->groups[0].cpu_map; 2328 2329 for (group = 0; group < nr_groups; group++) { 2330 ai->groups[group].cpu_map = cpu_map; 2331 cpu_map += roundup(group_cnt[group], upa); 2332 } 2333 2334 ai->static_size = static_size; 2335 ai->reserved_size = reserved_size; 2336 ai->dyn_size = dyn_size; 2337 ai->unit_size = alloc_size / upa; 2338 ai->atom_size = atom_size; 2339 ai->alloc_size = alloc_size; 2340 2341 for (group = 0, unit = 0; group_cnt[group]; group++) { 2342 struct pcpu_group_info *gi = &ai->groups[group]; 2343 2344 /* 2345 * Initialize base_offset as if all groups are located 2346 * back-to-back. The caller should update this to 2347 * reflect actual allocation. 2348 */ 2349 gi->base_offset = unit * ai->unit_size; 2350 2351 for_each_possible_cpu(cpu) 2352 if (group_map[cpu] == group) 2353 gi->cpu_map[gi->nr_units++] = cpu; 2354 gi->nr_units = roundup(gi->nr_units, upa); 2355 unit += gi->nr_units; 2356 } 2357 BUG_ON(unit != nr_units); 2358 2359 return ai; 2360 } 2361 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2362 2363 #if defined(BUILD_EMBED_FIRST_CHUNK) 2364 /** 2365 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2366 * @reserved_size: the size of reserved percpu area in bytes 2367 * @dyn_size: minimum free size for dynamic allocation in bytes 2368 * @atom_size: allocation atom size 2369 * @cpu_distance_fn: callback to determine distance between cpus, optional 2370 * @alloc_fn: function to allocate percpu page 2371 * @free_fn: function to free percpu page 2372 * 2373 * This is a helper to ease setting up embedded first percpu chunk and 2374 * can be called where pcpu_setup_first_chunk() is expected. 2375 * 2376 * If this function is used to setup the first chunk, it is allocated 2377 * by calling @alloc_fn and used as-is without being mapped into 2378 * vmalloc area. Allocations are always whole multiples of @atom_size 2379 * aligned to @atom_size. 2380 * 2381 * This enables the first chunk to piggy back on the linear physical 2382 * mapping which often uses larger page size. Please note that this 2383 * can result in very sparse cpu->unit mapping on NUMA machines thus 2384 * requiring large vmalloc address space. Don't use this allocator if 2385 * vmalloc space is not orders of magnitude larger than distances 2386 * between node memory addresses (ie. 32bit NUMA machines). 2387 * 2388 * @dyn_size specifies the minimum dynamic area size. 2389 * 2390 * If the needed size is smaller than the minimum or specified unit 2391 * size, the leftover is returned using @free_fn. 2392 * 2393 * RETURNS: 2394 * 0 on success, -errno on failure. 2395 */ 2396 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2397 size_t atom_size, 2398 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2399 pcpu_fc_alloc_fn_t alloc_fn, 2400 pcpu_fc_free_fn_t free_fn) 2401 { 2402 void *base = (void *)ULONG_MAX; 2403 void **areas = NULL; 2404 struct pcpu_alloc_info *ai; 2405 size_t size_sum, areas_size; 2406 unsigned long max_distance; 2407 int group, i, highest_group, rc; 2408 2409 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2410 cpu_distance_fn); 2411 if (IS_ERR(ai)) 2412 return PTR_ERR(ai); 2413 2414 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2415 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2416 2417 areas = memblock_virt_alloc_nopanic(areas_size, 0); 2418 if (!areas) { 2419 rc = -ENOMEM; 2420 goto out_free; 2421 } 2422 2423 /* allocate, copy and determine base address & max_distance */ 2424 highest_group = 0; 2425 for (group = 0; group < ai->nr_groups; group++) { 2426 struct pcpu_group_info *gi = &ai->groups[group]; 2427 unsigned int cpu = NR_CPUS; 2428 void *ptr; 2429 2430 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2431 cpu = gi->cpu_map[i]; 2432 BUG_ON(cpu == NR_CPUS); 2433 2434 /* allocate space for the whole group */ 2435 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2436 if (!ptr) { 2437 rc = -ENOMEM; 2438 goto out_free_areas; 2439 } 2440 /* kmemleak tracks the percpu allocations separately */ 2441 kmemleak_free(ptr); 2442 areas[group] = ptr; 2443 2444 base = min(ptr, base); 2445 if (ptr > areas[highest_group]) 2446 highest_group = group; 2447 } 2448 max_distance = areas[highest_group] - base; 2449 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2450 2451 /* warn if maximum distance is further than 75% of vmalloc space */ 2452 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2453 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2454 max_distance, VMALLOC_TOTAL); 2455 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2456 /* and fail if we have fallback */ 2457 rc = -EINVAL; 2458 goto out_free_areas; 2459 #endif 2460 } 2461 2462 /* 2463 * Copy data and free unused parts. This should happen after all 2464 * allocations are complete; otherwise, we may end up with 2465 * overlapping groups. 2466 */ 2467 for (group = 0; group < ai->nr_groups; group++) { 2468 struct pcpu_group_info *gi = &ai->groups[group]; 2469 void *ptr = areas[group]; 2470 2471 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2472 if (gi->cpu_map[i] == NR_CPUS) { 2473 /* unused unit, free whole */ 2474 free_fn(ptr, ai->unit_size); 2475 continue; 2476 } 2477 /* copy and return the unused part */ 2478 memcpy(ptr, __per_cpu_load, ai->static_size); 2479 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2480 } 2481 } 2482 2483 /* base address is now known, determine group base offsets */ 2484 for (group = 0; group < ai->nr_groups; group++) { 2485 ai->groups[group].base_offset = areas[group] - base; 2486 } 2487 2488 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", 2489 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, 2490 ai->dyn_size, ai->unit_size); 2491 2492 rc = pcpu_setup_first_chunk(ai, base); 2493 goto out_free; 2494 2495 out_free_areas: 2496 for (group = 0; group < ai->nr_groups; group++) 2497 if (areas[group]) 2498 free_fn(areas[group], 2499 ai->groups[group].nr_units * ai->unit_size); 2500 out_free: 2501 pcpu_free_alloc_info(ai); 2502 if (areas) 2503 memblock_free_early(__pa(areas), areas_size); 2504 return rc; 2505 } 2506 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2507 2508 #ifdef BUILD_PAGE_FIRST_CHUNK 2509 /** 2510 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2511 * @reserved_size: the size of reserved percpu area in bytes 2512 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2513 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2514 * @populate_pte_fn: function to populate pte 2515 * 2516 * This is a helper to ease setting up page-remapped first percpu 2517 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2518 * 2519 * This is the basic allocator. Static percpu area is allocated 2520 * page-by-page into vmalloc area. 2521 * 2522 * RETURNS: 2523 * 0 on success, -errno on failure. 2524 */ 2525 int __init pcpu_page_first_chunk(size_t reserved_size, 2526 pcpu_fc_alloc_fn_t alloc_fn, 2527 pcpu_fc_free_fn_t free_fn, 2528 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2529 { 2530 static struct vm_struct vm; 2531 struct pcpu_alloc_info *ai; 2532 char psize_str[16]; 2533 int unit_pages; 2534 size_t pages_size; 2535 struct page **pages; 2536 int unit, i, j, rc; 2537 int upa; 2538 int nr_g0_units; 2539 2540 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2541 2542 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2543 if (IS_ERR(ai)) 2544 return PTR_ERR(ai); 2545 BUG_ON(ai->nr_groups != 1); 2546 upa = ai->alloc_size/ai->unit_size; 2547 nr_g0_units = roundup(num_possible_cpus(), upa); 2548 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) { 2549 pcpu_free_alloc_info(ai); 2550 return -EINVAL; 2551 } 2552 2553 unit_pages = ai->unit_size >> PAGE_SHIFT; 2554 2555 /* unaligned allocations can't be freed, round up to page size */ 2556 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2557 sizeof(pages[0])); 2558 pages = memblock_virt_alloc(pages_size, 0); 2559 2560 /* allocate pages */ 2561 j = 0; 2562 for (unit = 0; unit < num_possible_cpus(); unit++) { 2563 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2564 for (i = 0; i < unit_pages; i++) { 2565 void *ptr; 2566 2567 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2568 if (!ptr) { 2569 pr_warn("failed to allocate %s page for cpu%u\n", 2570 psize_str, cpu); 2571 goto enomem; 2572 } 2573 /* kmemleak tracks the percpu allocations separately */ 2574 kmemleak_free(ptr); 2575 pages[j++] = virt_to_page(ptr); 2576 } 2577 } 2578 2579 /* allocate vm area, map the pages and copy static data */ 2580 vm.flags = VM_ALLOC; 2581 vm.size = num_possible_cpus() * ai->unit_size; 2582 vm_area_register_early(&vm, PAGE_SIZE); 2583 2584 for (unit = 0; unit < num_possible_cpus(); unit++) { 2585 unsigned long unit_addr = 2586 (unsigned long)vm.addr + unit * ai->unit_size; 2587 2588 for (i = 0; i < unit_pages; i++) 2589 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2590 2591 /* pte already populated, the following shouldn't fail */ 2592 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2593 unit_pages); 2594 if (rc < 0) 2595 panic("failed to map percpu area, err=%d\n", rc); 2596 2597 /* 2598 * FIXME: Archs with virtual cache should flush local 2599 * cache for the linear mapping here - something 2600 * equivalent to flush_cache_vmap() on the local cpu. 2601 * flush_cache_vmap() can't be used as most supporting 2602 * data structures are not set up yet. 2603 */ 2604 2605 /* copy static data */ 2606 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2607 } 2608 2609 /* we're ready, commit */ 2610 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", 2611 unit_pages, psize_str, vm.addr, ai->static_size, 2612 ai->reserved_size, ai->dyn_size); 2613 2614 rc = pcpu_setup_first_chunk(ai, vm.addr); 2615 goto out_free_ar; 2616 2617 enomem: 2618 while (--j >= 0) 2619 free_fn(page_address(pages[j]), PAGE_SIZE); 2620 rc = -ENOMEM; 2621 out_free_ar: 2622 memblock_free_early(__pa(pages), pages_size); 2623 pcpu_free_alloc_info(ai); 2624 return rc; 2625 } 2626 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2627 2628 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2629 /* 2630 * Generic SMP percpu area setup. 2631 * 2632 * The embedding helper is used because its behavior closely resembles 2633 * the original non-dynamic generic percpu area setup. This is 2634 * important because many archs have addressing restrictions and might 2635 * fail if the percpu area is located far away from the previous 2636 * location. As an added bonus, in non-NUMA cases, embedding is 2637 * generally a good idea TLB-wise because percpu area can piggy back 2638 * on the physical linear memory mapping which uses large page 2639 * mappings on applicable archs. 2640 */ 2641 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2642 EXPORT_SYMBOL(__per_cpu_offset); 2643 2644 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2645 size_t align) 2646 { 2647 return memblock_virt_alloc_from_nopanic( 2648 size, align, __pa(MAX_DMA_ADDRESS)); 2649 } 2650 2651 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2652 { 2653 memblock_free_early(__pa(ptr), size); 2654 } 2655 2656 void __init setup_per_cpu_areas(void) 2657 { 2658 unsigned long delta; 2659 unsigned int cpu; 2660 int rc; 2661 2662 /* 2663 * Always reserve area for module percpu variables. That's 2664 * what the legacy allocator did. 2665 */ 2666 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2667 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2668 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2669 if (rc < 0) 2670 panic("Failed to initialize percpu areas."); 2671 2672 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2673 for_each_possible_cpu(cpu) 2674 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2675 } 2676 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2677 2678 #else /* CONFIG_SMP */ 2679 2680 /* 2681 * UP percpu area setup. 2682 * 2683 * UP always uses km-based percpu allocator with identity mapping. 2684 * Static percpu variables are indistinguishable from the usual static 2685 * variables and don't require any special preparation. 2686 */ 2687 void __init setup_per_cpu_areas(void) 2688 { 2689 const size_t unit_size = 2690 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2691 PERCPU_DYNAMIC_RESERVE)); 2692 struct pcpu_alloc_info *ai; 2693 void *fc; 2694 2695 ai = pcpu_alloc_alloc_info(1, 1); 2696 fc = memblock_virt_alloc_from_nopanic(unit_size, 2697 PAGE_SIZE, 2698 __pa(MAX_DMA_ADDRESS)); 2699 if (!ai || !fc) 2700 panic("Failed to allocate memory for percpu areas."); 2701 /* kmemleak tracks the percpu allocations separately */ 2702 kmemleak_free(fc); 2703 2704 ai->dyn_size = unit_size; 2705 ai->unit_size = unit_size; 2706 ai->atom_size = unit_size; 2707 ai->alloc_size = unit_size; 2708 ai->groups[0].nr_units = 1; 2709 ai->groups[0].cpu_map[0] = 0; 2710 2711 if (pcpu_setup_first_chunk(ai, fc) < 0) 2712 panic("Failed to initialize percpu areas."); 2713 } 2714 2715 #endif /* CONFIG_SMP */ 2716 2717 /* 2718 * Percpu allocator is initialized early during boot when neither slab or 2719 * workqueue is available. Plug async management until everything is up 2720 * and running. 2721 */ 2722 static int __init percpu_enable_async(void) 2723 { 2724 pcpu_async_enabled = true; 2725 return 0; 2726 } 2727 subsys_initcall(percpu_enable_async); 2728