xref: /openbmc/linux/mm/percpu.c (revision 293d5b43)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
73 
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
78 
79 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
80 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
81 #define PCPU_ATOMIC_MAP_MARGIN_LOW	32
82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
83 #define PCPU_EMPTY_POP_PAGES_LOW	2
84 #define PCPU_EMPTY_POP_PAGES_HIGH	4
85 
86 #ifdef CONFIG_SMP
87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88 #ifndef __addr_to_pcpu_ptr
89 #define __addr_to_pcpu_ptr(addr)					\
90 	(void __percpu *)((unsigned long)(addr) -			\
91 			  (unsigned long)pcpu_base_addr	+		\
92 			  (unsigned long)__per_cpu_start)
93 #endif
94 #ifndef __pcpu_ptr_to_addr
95 #define __pcpu_ptr_to_addr(ptr)						\
96 	(void __force *)((unsigned long)(ptr) +				\
97 			 (unsigned long)pcpu_base_addr -		\
98 			 (unsigned long)__per_cpu_start)
99 #endif
100 #else	/* CONFIG_SMP */
101 /* on UP, it's always identity mapped */
102 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
103 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
104 #endif	/* CONFIG_SMP */
105 
106 struct pcpu_chunk {
107 	struct list_head	list;		/* linked to pcpu_slot lists */
108 	int			free_size;	/* free bytes in the chunk */
109 	int			contig_hint;	/* max contiguous size hint */
110 	void			*base_addr;	/* base address of this chunk */
111 
112 	int			map_used;	/* # of map entries used before the sentry */
113 	int			map_alloc;	/* # of map entries allocated */
114 	int			*map;		/* allocation map */
115 	struct list_head	map_extend_list;/* on pcpu_map_extend_chunks */
116 
117 	void			*data;		/* chunk data */
118 	int			first_free;	/* no free below this */
119 	bool			immutable;	/* no [de]population allowed */
120 	int			nr_populated;	/* # of populated pages */
121 	unsigned long		populated[];	/* populated bitmap */
122 };
123 
124 static int pcpu_unit_pages __read_mostly;
125 static int pcpu_unit_size __read_mostly;
126 static int pcpu_nr_units __read_mostly;
127 static int pcpu_atom_size __read_mostly;
128 static int pcpu_nr_slots __read_mostly;
129 static size_t pcpu_chunk_struct_size __read_mostly;
130 
131 /* cpus with the lowest and highest unit addresses */
132 static unsigned int pcpu_low_unit_cpu __read_mostly;
133 static unsigned int pcpu_high_unit_cpu __read_mostly;
134 
135 /* the address of the first chunk which starts with the kernel static area */
136 void *pcpu_base_addr __read_mostly;
137 EXPORT_SYMBOL_GPL(pcpu_base_addr);
138 
139 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
140 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
141 
142 /* group information, used for vm allocation */
143 static int pcpu_nr_groups __read_mostly;
144 static const unsigned long *pcpu_group_offsets __read_mostly;
145 static const size_t *pcpu_group_sizes __read_mostly;
146 
147 /*
148  * The first chunk which always exists.  Note that unlike other
149  * chunks, this one can be allocated and mapped in several different
150  * ways and thus often doesn't live in the vmalloc area.
151  */
152 static struct pcpu_chunk *pcpu_first_chunk;
153 
154 /*
155  * Optional reserved chunk.  This chunk reserves part of the first
156  * chunk and serves it for reserved allocations.  The amount of
157  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
158  * area doesn't exist, the following variables contain NULL and 0
159  * respectively.
160  */
161 static struct pcpu_chunk *pcpu_reserved_chunk;
162 static int pcpu_reserved_chunk_limit;
163 
164 static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
165 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
166 
167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
168 
169 /* chunks which need their map areas extended, protected by pcpu_lock */
170 static LIST_HEAD(pcpu_map_extend_chunks);
171 
172 /*
173  * The number of empty populated pages, protected by pcpu_lock.  The
174  * reserved chunk doesn't contribute to the count.
175  */
176 static int pcpu_nr_empty_pop_pages;
177 
178 /*
179  * Balance work is used to populate or destroy chunks asynchronously.  We
180  * try to keep the number of populated free pages between
181  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
182  * empty chunk.
183  */
184 static void pcpu_balance_workfn(struct work_struct *work);
185 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
186 static bool pcpu_async_enabled __read_mostly;
187 static bool pcpu_atomic_alloc_failed;
188 
189 static void pcpu_schedule_balance_work(void)
190 {
191 	if (pcpu_async_enabled)
192 		schedule_work(&pcpu_balance_work);
193 }
194 
195 static bool pcpu_addr_in_first_chunk(void *addr)
196 {
197 	void *first_start = pcpu_first_chunk->base_addr;
198 
199 	return addr >= first_start && addr < first_start + pcpu_unit_size;
200 }
201 
202 static bool pcpu_addr_in_reserved_chunk(void *addr)
203 {
204 	void *first_start = pcpu_first_chunk->base_addr;
205 
206 	return addr >= first_start &&
207 		addr < first_start + pcpu_reserved_chunk_limit;
208 }
209 
210 static int __pcpu_size_to_slot(int size)
211 {
212 	int highbit = fls(size);	/* size is in bytes */
213 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214 }
215 
216 static int pcpu_size_to_slot(int size)
217 {
218 	if (size == pcpu_unit_size)
219 		return pcpu_nr_slots - 1;
220 	return __pcpu_size_to_slot(size);
221 }
222 
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224 {
225 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
226 		return 0;
227 
228 	return pcpu_size_to_slot(chunk->free_size);
229 }
230 
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233 {
234 	page->index = (unsigned long)pcpu;
235 }
236 
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239 {
240 	return (struct pcpu_chunk *)page->index;
241 }
242 
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244 {
245 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 }
247 
248 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
249 				     unsigned int cpu, int page_idx)
250 {
251 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
252 		(page_idx << PAGE_SHIFT);
253 }
254 
255 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
256 					   int *rs, int *re, int end)
257 {
258 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
259 	*re = find_next_bit(chunk->populated, end, *rs + 1);
260 }
261 
262 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
263 					 int *rs, int *re, int end)
264 {
265 	*rs = find_next_bit(chunk->populated, end, *rs);
266 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
267 }
268 
269 /*
270  * (Un)populated page region iterators.  Iterate over (un)populated
271  * page regions between @start and @end in @chunk.  @rs and @re should
272  * be integer variables and will be set to start and end page index of
273  * the current region.
274  */
275 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
276 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
277 	     (rs) < (re);						    \
278 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
279 
280 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
281 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
282 	     (rs) < (re);						    \
283 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
284 
285 /**
286  * pcpu_mem_zalloc - allocate memory
287  * @size: bytes to allocate
288  *
289  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
290  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
291  * memory is always zeroed.
292  *
293  * CONTEXT:
294  * Does GFP_KERNEL allocation.
295  *
296  * RETURNS:
297  * Pointer to the allocated area on success, NULL on failure.
298  */
299 static void *pcpu_mem_zalloc(size_t size)
300 {
301 	if (WARN_ON_ONCE(!slab_is_available()))
302 		return NULL;
303 
304 	if (size <= PAGE_SIZE)
305 		return kzalloc(size, GFP_KERNEL);
306 	else
307 		return vzalloc(size);
308 }
309 
310 /**
311  * pcpu_mem_free - free memory
312  * @ptr: memory to free
313  *
314  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
315  */
316 static void pcpu_mem_free(void *ptr)
317 {
318 	kvfree(ptr);
319 }
320 
321 /**
322  * pcpu_count_occupied_pages - count the number of pages an area occupies
323  * @chunk: chunk of interest
324  * @i: index of the area in question
325  *
326  * Count the number of pages chunk's @i'th area occupies.  When the area's
327  * start and/or end address isn't aligned to page boundary, the straddled
328  * page is included in the count iff the rest of the page is free.
329  */
330 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
331 {
332 	int off = chunk->map[i] & ~1;
333 	int end = chunk->map[i + 1] & ~1;
334 
335 	if (!PAGE_ALIGNED(off) && i > 0) {
336 		int prev = chunk->map[i - 1];
337 
338 		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
339 			off = round_down(off, PAGE_SIZE);
340 	}
341 
342 	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
343 		int next = chunk->map[i + 1];
344 		int nend = chunk->map[i + 2] & ~1;
345 
346 		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
347 			end = round_up(end, PAGE_SIZE);
348 	}
349 
350 	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
351 }
352 
353 /**
354  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
355  * @chunk: chunk of interest
356  * @oslot: the previous slot it was on
357  *
358  * This function is called after an allocation or free changed @chunk.
359  * New slot according to the changed state is determined and @chunk is
360  * moved to the slot.  Note that the reserved chunk is never put on
361  * chunk slots.
362  *
363  * CONTEXT:
364  * pcpu_lock.
365  */
366 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
367 {
368 	int nslot = pcpu_chunk_slot(chunk);
369 
370 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
371 		if (oslot < nslot)
372 			list_move(&chunk->list, &pcpu_slot[nslot]);
373 		else
374 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
375 	}
376 }
377 
378 /**
379  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
380  * @chunk: chunk of interest
381  * @is_atomic: the allocation context
382  *
383  * Determine whether area map of @chunk needs to be extended.  If
384  * @is_atomic, only the amount necessary for a new allocation is
385  * considered; however, async extension is scheduled if the left amount is
386  * low.  If !@is_atomic, it aims for more empty space.  Combined, this
387  * ensures that the map is likely to have enough available space to
388  * accomodate atomic allocations which can't extend maps directly.
389  *
390  * CONTEXT:
391  * pcpu_lock.
392  *
393  * RETURNS:
394  * New target map allocation length if extension is necessary, 0
395  * otherwise.
396  */
397 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
398 {
399 	int margin, new_alloc;
400 
401 	lockdep_assert_held(&pcpu_lock);
402 
403 	if (is_atomic) {
404 		margin = 3;
405 
406 		if (chunk->map_alloc <
407 		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
408 			if (list_empty(&chunk->map_extend_list)) {
409 				list_add_tail(&chunk->map_extend_list,
410 					      &pcpu_map_extend_chunks);
411 				pcpu_schedule_balance_work();
412 			}
413 		}
414 	} else {
415 		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
416 	}
417 
418 	if (chunk->map_alloc >= chunk->map_used + margin)
419 		return 0;
420 
421 	new_alloc = PCPU_DFL_MAP_ALLOC;
422 	while (new_alloc < chunk->map_used + margin)
423 		new_alloc *= 2;
424 
425 	return new_alloc;
426 }
427 
428 /**
429  * pcpu_extend_area_map - extend area map of a chunk
430  * @chunk: chunk of interest
431  * @new_alloc: new target allocation length of the area map
432  *
433  * Extend area map of @chunk to have @new_alloc entries.
434  *
435  * CONTEXT:
436  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
437  *
438  * RETURNS:
439  * 0 on success, -errno on failure.
440  */
441 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
442 {
443 	int *old = NULL, *new = NULL;
444 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
445 	unsigned long flags;
446 
447 	lockdep_assert_held(&pcpu_alloc_mutex);
448 
449 	new = pcpu_mem_zalloc(new_size);
450 	if (!new)
451 		return -ENOMEM;
452 
453 	/* acquire pcpu_lock and switch to new area map */
454 	spin_lock_irqsave(&pcpu_lock, flags);
455 
456 	if (new_alloc <= chunk->map_alloc)
457 		goto out_unlock;
458 
459 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
460 	old = chunk->map;
461 
462 	memcpy(new, old, old_size);
463 
464 	chunk->map_alloc = new_alloc;
465 	chunk->map = new;
466 	new = NULL;
467 
468 out_unlock:
469 	spin_unlock_irqrestore(&pcpu_lock, flags);
470 
471 	/*
472 	 * pcpu_mem_free() might end up calling vfree() which uses
473 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
474 	 */
475 	pcpu_mem_free(old);
476 	pcpu_mem_free(new);
477 
478 	return 0;
479 }
480 
481 /**
482  * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
483  * @chunk: chunk the candidate area belongs to
484  * @off: the offset to the start of the candidate area
485  * @this_size: the size of the candidate area
486  * @size: the size of the target allocation
487  * @align: the alignment of the target allocation
488  * @pop_only: only allocate from already populated region
489  *
490  * We're trying to allocate @size bytes aligned at @align.  @chunk's area
491  * at @off sized @this_size is a candidate.  This function determines
492  * whether the target allocation fits in the candidate area and returns the
493  * number of bytes to pad after @off.  If the target area doesn't fit, -1
494  * is returned.
495  *
496  * If @pop_only is %true, this function only considers the already
497  * populated part of the candidate area.
498  */
499 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
500 			    int size, int align, bool pop_only)
501 {
502 	int cand_off = off;
503 
504 	while (true) {
505 		int head = ALIGN(cand_off, align) - off;
506 		int page_start, page_end, rs, re;
507 
508 		if (this_size < head + size)
509 			return -1;
510 
511 		if (!pop_only)
512 			return head;
513 
514 		/*
515 		 * If the first unpopulated page is beyond the end of the
516 		 * allocation, the whole allocation is populated;
517 		 * otherwise, retry from the end of the unpopulated area.
518 		 */
519 		page_start = PFN_DOWN(head + off);
520 		page_end = PFN_UP(head + off + size);
521 
522 		rs = page_start;
523 		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
524 		if (rs >= page_end)
525 			return head;
526 		cand_off = re * PAGE_SIZE;
527 	}
528 }
529 
530 /**
531  * pcpu_alloc_area - allocate area from a pcpu_chunk
532  * @chunk: chunk of interest
533  * @size: wanted size in bytes
534  * @align: wanted align
535  * @pop_only: allocate only from the populated area
536  * @occ_pages_p: out param for the number of pages the area occupies
537  *
538  * Try to allocate @size bytes area aligned at @align from @chunk.
539  * Note that this function only allocates the offset.  It doesn't
540  * populate or map the area.
541  *
542  * @chunk->map must have at least two free slots.
543  *
544  * CONTEXT:
545  * pcpu_lock.
546  *
547  * RETURNS:
548  * Allocated offset in @chunk on success, -1 if no matching area is
549  * found.
550  */
551 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
552 			   bool pop_only, int *occ_pages_p)
553 {
554 	int oslot = pcpu_chunk_slot(chunk);
555 	int max_contig = 0;
556 	int i, off;
557 	bool seen_free = false;
558 	int *p;
559 
560 	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
561 		int head, tail;
562 		int this_size;
563 
564 		off = *p;
565 		if (off & 1)
566 			continue;
567 
568 		this_size = (p[1] & ~1) - off;
569 
570 		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
571 					pop_only);
572 		if (head < 0) {
573 			if (!seen_free) {
574 				chunk->first_free = i;
575 				seen_free = true;
576 			}
577 			max_contig = max(this_size, max_contig);
578 			continue;
579 		}
580 
581 		/*
582 		 * If head is small or the previous block is free,
583 		 * merge'em.  Note that 'small' is defined as smaller
584 		 * than sizeof(int), which is very small but isn't too
585 		 * uncommon for percpu allocations.
586 		 */
587 		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
588 			*p = off += head;
589 			if (p[-1] & 1)
590 				chunk->free_size -= head;
591 			else
592 				max_contig = max(*p - p[-1], max_contig);
593 			this_size -= head;
594 			head = 0;
595 		}
596 
597 		/* if tail is small, just keep it around */
598 		tail = this_size - head - size;
599 		if (tail < sizeof(int)) {
600 			tail = 0;
601 			size = this_size - head;
602 		}
603 
604 		/* split if warranted */
605 		if (head || tail) {
606 			int nr_extra = !!head + !!tail;
607 
608 			/* insert new subblocks */
609 			memmove(p + nr_extra + 1, p + 1,
610 				sizeof(chunk->map[0]) * (chunk->map_used - i));
611 			chunk->map_used += nr_extra;
612 
613 			if (head) {
614 				if (!seen_free) {
615 					chunk->first_free = i;
616 					seen_free = true;
617 				}
618 				*++p = off += head;
619 				++i;
620 				max_contig = max(head, max_contig);
621 			}
622 			if (tail) {
623 				p[1] = off + size;
624 				max_contig = max(tail, max_contig);
625 			}
626 		}
627 
628 		if (!seen_free)
629 			chunk->first_free = i + 1;
630 
631 		/* update hint and mark allocated */
632 		if (i + 1 == chunk->map_used)
633 			chunk->contig_hint = max_contig; /* fully scanned */
634 		else
635 			chunk->contig_hint = max(chunk->contig_hint,
636 						 max_contig);
637 
638 		chunk->free_size -= size;
639 		*p |= 1;
640 
641 		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
642 		pcpu_chunk_relocate(chunk, oslot);
643 		return off;
644 	}
645 
646 	chunk->contig_hint = max_contig;	/* fully scanned */
647 	pcpu_chunk_relocate(chunk, oslot);
648 
649 	/* tell the upper layer that this chunk has no matching area */
650 	return -1;
651 }
652 
653 /**
654  * pcpu_free_area - free area to a pcpu_chunk
655  * @chunk: chunk of interest
656  * @freeme: offset of area to free
657  * @occ_pages_p: out param for the number of pages the area occupies
658  *
659  * Free area starting from @freeme to @chunk.  Note that this function
660  * only modifies the allocation map.  It doesn't depopulate or unmap
661  * the area.
662  *
663  * CONTEXT:
664  * pcpu_lock.
665  */
666 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
667 			   int *occ_pages_p)
668 {
669 	int oslot = pcpu_chunk_slot(chunk);
670 	int off = 0;
671 	unsigned i, j;
672 	int to_free = 0;
673 	int *p;
674 
675 	freeme |= 1;	/* we are searching for <given offset, in use> pair */
676 
677 	i = 0;
678 	j = chunk->map_used;
679 	while (i != j) {
680 		unsigned k = (i + j) / 2;
681 		off = chunk->map[k];
682 		if (off < freeme)
683 			i = k + 1;
684 		else if (off > freeme)
685 			j = k;
686 		else
687 			i = j = k;
688 	}
689 	BUG_ON(off != freeme);
690 
691 	if (i < chunk->first_free)
692 		chunk->first_free = i;
693 
694 	p = chunk->map + i;
695 	*p = off &= ~1;
696 	chunk->free_size += (p[1] & ~1) - off;
697 
698 	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
699 
700 	/* merge with next? */
701 	if (!(p[1] & 1))
702 		to_free++;
703 	/* merge with previous? */
704 	if (i > 0 && !(p[-1] & 1)) {
705 		to_free++;
706 		i--;
707 		p--;
708 	}
709 	if (to_free) {
710 		chunk->map_used -= to_free;
711 		memmove(p + 1, p + 1 + to_free,
712 			(chunk->map_used - i) * sizeof(chunk->map[0]));
713 	}
714 
715 	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
716 	pcpu_chunk_relocate(chunk, oslot);
717 }
718 
719 static struct pcpu_chunk *pcpu_alloc_chunk(void)
720 {
721 	struct pcpu_chunk *chunk;
722 
723 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
724 	if (!chunk)
725 		return NULL;
726 
727 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
728 						sizeof(chunk->map[0]));
729 	if (!chunk->map) {
730 		pcpu_mem_free(chunk);
731 		return NULL;
732 	}
733 
734 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
735 	chunk->map[0] = 0;
736 	chunk->map[1] = pcpu_unit_size | 1;
737 	chunk->map_used = 1;
738 
739 	INIT_LIST_HEAD(&chunk->list);
740 	INIT_LIST_HEAD(&chunk->map_extend_list);
741 	chunk->free_size = pcpu_unit_size;
742 	chunk->contig_hint = pcpu_unit_size;
743 
744 	return chunk;
745 }
746 
747 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
748 {
749 	if (!chunk)
750 		return;
751 	pcpu_mem_free(chunk->map);
752 	pcpu_mem_free(chunk);
753 }
754 
755 /**
756  * pcpu_chunk_populated - post-population bookkeeping
757  * @chunk: pcpu_chunk which got populated
758  * @page_start: the start page
759  * @page_end: the end page
760  *
761  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
762  * the bookkeeping information accordingly.  Must be called after each
763  * successful population.
764  */
765 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
766 				 int page_start, int page_end)
767 {
768 	int nr = page_end - page_start;
769 
770 	lockdep_assert_held(&pcpu_lock);
771 
772 	bitmap_set(chunk->populated, page_start, nr);
773 	chunk->nr_populated += nr;
774 	pcpu_nr_empty_pop_pages += nr;
775 }
776 
777 /**
778  * pcpu_chunk_depopulated - post-depopulation bookkeeping
779  * @chunk: pcpu_chunk which got depopulated
780  * @page_start: the start page
781  * @page_end: the end page
782  *
783  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
784  * Update the bookkeeping information accordingly.  Must be called after
785  * each successful depopulation.
786  */
787 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
788 				   int page_start, int page_end)
789 {
790 	int nr = page_end - page_start;
791 
792 	lockdep_assert_held(&pcpu_lock);
793 
794 	bitmap_clear(chunk->populated, page_start, nr);
795 	chunk->nr_populated -= nr;
796 	pcpu_nr_empty_pop_pages -= nr;
797 }
798 
799 /*
800  * Chunk management implementation.
801  *
802  * To allow different implementations, chunk alloc/free and
803  * [de]population are implemented in a separate file which is pulled
804  * into this file and compiled together.  The following functions
805  * should be implemented.
806  *
807  * pcpu_populate_chunk		- populate the specified range of a chunk
808  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
809  * pcpu_create_chunk		- create a new chunk
810  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
811  * pcpu_addr_to_page		- translate address to physical address
812  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
813  */
814 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
815 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
816 static struct pcpu_chunk *pcpu_create_chunk(void);
817 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
818 static struct page *pcpu_addr_to_page(void *addr);
819 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
820 
821 #ifdef CONFIG_NEED_PER_CPU_KM
822 #include "percpu-km.c"
823 #else
824 #include "percpu-vm.c"
825 #endif
826 
827 /**
828  * pcpu_chunk_addr_search - determine chunk containing specified address
829  * @addr: address for which the chunk needs to be determined.
830  *
831  * RETURNS:
832  * The address of the found chunk.
833  */
834 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
835 {
836 	/* is it in the first chunk? */
837 	if (pcpu_addr_in_first_chunk(addr)) {
838 		/* is it in the reserved area? */
839 		if (pcpu_addr_in_reserved_chunk(addr))
840 			return pcpu_reserved_chunk;
841 		return pcpu_first_chunk;
842 	}
843 
844 	/*
845 	 * The address is relative to unit0 which might be unused and
846 	 * thus unmapped.  Offset the address to the unit space of the
847 	 * current processor before looking it up in the vmalloc
848 	 * space.  Note that any possible cpu id can be used here, so
849 	 * there's no need to worry about preemption or cpu hotplug.
850 	 */
851 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
852 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
853 }
854 
855 /**
856  * pcpu_alloc - the percpu allocator
857  * @size: size of area to allocate in bytes
858  * @align: alignment of area (max PAGE_SIZE)
859  * @reserved: allocate from the reserved chunk if available
860  * @gfp: allocation flags
861  *
862  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
863  * contain %GFP_KERNEL, the allocation is atomic.
864  *
865  * RETURNS:
866  * Percpu pointer to the allocated area on success, NULL on failure.
867  */
868 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
869 				 gfp_t gfp)
870 {
871 	static int warn_limit = 10;
872 	struct pcpu_chunk *chunk;
873 	const char *err;
874 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
875 	int occ_pages = 0;
876 	int slot, off, new_alloc, cpu, ret;
877 	unsigned long flags;
878 	void __percpu *ptr;
879 
880 	/*
881 	 * We want the lowest bit of offset available for in-use/free
882 	 * indicator, so force >= 16bit alignment and make size even.
883 	 */
884 	if (unlikely(align < 2))
885 		align = 2;
886 
887 	size = ALIGN(size, 2);
888 
889 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
890 		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
891 		     size, align);
892 		return NULL;
893 	}
894 
895 	if (!is_atomic)
896 		mutex_lock(&pcpu_alloc_mutex);
897 
898 	spin_lock_irqsave(&pcpu_lock, flags);
899 
900 	/* serve reserved allocations from the reserved chunk if available */
901 	if (reserved && pcpu_reserved_chunk) {
902 		chunk = pcpu_reserved_chunk;
903 
904 		if (size > chunk->contig_hint) {
905 			err = "alloc from reserved chunk failed";
906 			goto fail_unlock;
907 		}
908 
909 		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
910 			spin_unlock_irqrestore(&pcpu_lock, flags);
911 			if (is_atomic ||
912 			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
913 				err = "failed to extend area map of reserved chunk";
914 				goto fail;
915 			}
916 			spin_lock_irqsave(&pcpu_lock, flags);
917 		}
918 
919 		off = pcpu_alloc_area(chunk, size, align, is_atomic,
920 				      &occ_pages);
921 		if (off >= 0)
922 			goto area_found;
923 
924 		err = "alloc from reserved chunk failed";
925 		goto fail_unlock;
926 	}
927 
928 restart:
929 	/* search through normal chunks */
930 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
931 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
932 			if (size > chunk->contig_hint)
933 				continue;
934 
935 			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
936 			if (new_alloc) {
937 				if (is_atomic)
938 					continue;
939 				spin_unlock_irqrestore(&pcpu_lock, flags);
940 				if (pcpu_extend_area_map(chunk,
941 							 new_alloc) < 0) {
942 					err = "failed to extend area map";
943 					goto fail;
944 				}
945 				spin_lock_irqsave(&pcpu_lock, flags);
946 				/*
947 				 * pcpu_lock has been dropped, need to
948 				 * restart cpu_slot list walking.
949 				 */
950 				goto restart;
951 			}
952 
953 			off = pcpu_alloc_area(chunk, size, align, is_atomic,
954 					      &occ_pages);
955 			if (off >= 0)
956 				goto area_found;
957 		}
958 	}
959 
960 	spin_unlock_irqrestore(&pcpu_lock, flags);
961 
962 	/*
963 	 * No space left.  Create a new chunk.  We don't want multiple
964 	 * tasks to create chunks simultaneously.  Serialize and create iff
965 	 * there's still no empty chunk after grabbing the mutex.
966 	 */
967 	if (is_atomic)
968 		goto fail;
969 
970 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
971 		chunk = pcpu_create_chunk();
972 		if (!chunk) {
973 			err = "failed to allocate new chunk";
974 			goto fail;
975 		}
976 
977 		spin_lock_irqsave(&pcpu_lock, flags);
978 		pcpu_chunk_relocate(chunk, -1);
979 	} else {
980 		spin_lock_irqsave(&pcpu_lock, flags);
981 	}
982 
983 	goto restart;
984 
985 area_found:
986 	spin_unlock_irqrestore(&pcpu_lock, flags);
987 
988 	/* populate if not all pages are already there */
989 	if (!is_atomic) {
990 		int page_start, page_end, rs, re;
991 
992 		page_start = PFN_DOWN(off);
993 		page_end = PFN_UP(off + size);
994 
995 		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
996 			WARN_ON(chunk->immutable);
997 
998 			ret = pcpu_populate_chunk(chunk, rs, re);
999 
1000 			spin_lock_irqsave(&pcpu_lock, flags);
1001 			if (ret) {
1002 				pcpu_free_area(chunk, off, &occ_pages);
1003 				err = "failed to populate";
1004 				goto fail_unlock;
1005 			}
1006 			pcpu_chunk_populated(chunk, rs, re);
1007 			spin_unlock_irqrestore(&pcpu_lock, flags);
1008 		}
1009 
1010 		mutex_unlock(&pcpu_alloc_mutex);
1011 	}
1012 
1013 	if (chunk != pcpu_reserved_chunk)
1014 		pcpu_nr_empty_pop_pages -= occ_pages;
1015 
1016 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1017 		pcpu_schedule_balance_work();
1018 
1019 	/* clear the areas and return address relative to base address */
1020 	for_each_possible_cpu(cpu)
1021 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1022 
1023 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1024 	kmemleak_alloc_percpu(ptr, size, gfp);
1025 	return ptr;
1026 
1027 fail_unlock:
1028 	spin_unlock_irqrestore(&pcpu_lock, flags);
1029 fail:
1030 	if (!is_atomic && warn_limit) {
1031 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1032 			size, align, is_atomic, err);
1033 		dump_stack();
1034 		if (!--warn_limit)
1035 			pr_info("limit reached, disable warning\n");
1036 	}
1037 	if (is_atomic) {
1038 		/* see the flag handling in pcpu_blance_workfn() */
1039 		pcpu_atomic_alloc_failed = true;
1040 		pcpu_schedule_balance_work();
1041 	} else {
1042 		mutex_unlock(&pcpu_alloc_mutex);
1043 	}
1044 	return NULL;
1045 }
1046 
1047 /**
1048  * __alloc_percpu_gfp - allocate dynamic percpu area
1049  * @size: size of area to allocate in bytes
1050  * @align: alignment of area (max PAGE_SIZE)
1051  * @gfp: allocation flags
1052  *
1053  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1054  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1055  * be called from any context but is a lot more likely to fail.
1056  *
1057  * RETURNS:
1058  * Percpu pointer to the allocated area on success, NULL on failure.
1059  */
1060 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1061 {
1062 	return pcpu_alloc(size, align, false, gfp);
1063 }
1064 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1065 
1066 /**
1067  * __alloc_percpu - allocate dynamic percpu area
1068  * @size: size of area to allocate in bytes
1069  * @align: alignment of area (max PAGE_SIZE)
1070  *
1071  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1072  */
1073 void __percpu *__alloc_percpu(size_t size, size_t align)
1074 {
1075 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1076 }
1077 EXPORT_SYMBOL_GPL(__alloc_percpu);
1078 
1079 /**
1080  * __alloc_reserved_percpu - allocate reserved percpu area
1081  * @size: size of area to allocate in bytes
1082  * @align: alignment of area (max PAGE_SIZE)
1083  *
1084  * Allocate zero-filled percpu area of @size bytes aligned at @align
1085  * from reserved percpu area if arch has set it up; otherwise,
1086  * allocation is served from the same dynamic area.  Might sleep.
1087  * Might trigger writeouts.
1088  *
1089  * CONTEXT:
1090  * Does GFP_KERNEL allocation.
1091  *
1092  * RETURNS:
1093  * Percpu pointer to the allocated area on success, NULL on failure.
1094  */
1095 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1096 {
1097 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1098 }
1099 
1100 /**
1101  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1102  * @work: unused
1103  *
1104  * Reclaim all fully free chunks except for the first one.
1105  */
1106 static void pcpu_balance_workfn(struct work_struct *work)
1107 {
1108 	LIST_HEAD(to_free);
1109 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1110 	struct pcpu_chunk *chunk, *next;
1111 	int slot, nr_to_pop, ret;
1112 
1113 	/*
1114 	 * There's no reason to keep around multiple unused chunks and VM
1115 	 * areas can be scarce.  Destroy all free chunks except for one.
1116 	 */
1117 	mutex_lock(&pcpu_alloc_mutex);
1118 	spin_lock_irq(&pcpu_lock);
1119 
1120 	list_for_each_entry_safe(chunk, next, free_head, list) {
1121 		WARN_ON(chunk->immutable);
1122 
1123 		/* spare the first one */
1124 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1125 			continue;
1126 
1127 		list_del_init(&chunk->map_extend_list);
1128 		list_move(&chunk->list, &to_free);
1129 	}
1130 
1131 	spin_unlock_irq(&pcpu_lock);
1132 
1133 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1134 		int rs, re;
1135 
1136 		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1137 			pcpu_depopulate_chunk(chunk, rs, re);
1138 			spin_lock_irq(&pcpu_lock);
1139 			pcpu_chunk_depopulated(chunk, rs, re);
1140 			spin_unlock_irq(&pcpu_lock);
1141 		}
1142 		pcpu_destroy_chunk(chunk);
1143 	}
1144 
1145 	/* service chunks which requested async area map extension */
1146 	do {
1147 		int new_alloc = 0;
1148 
1149 		spin_lock_irq(&pcpu_lock);
1150 
1151 		chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1152 					struct pcpu_chunk, map_extend_list);
1153 		if (chunk) {
1154 			list_del_init(&chunk->map_extend_list);
1155 			new_alloc = pcpu_need_to_extend(chunk, false);
1156 		}
1157 
1158 		spin_unlock_irq(&pcpu_lock);
1159 
1160 		if (new_alloc)
1161 			pcpu_extend_area_map(chunk, new_alloc);
1162 	} while (chunk);
1163 
1164 	/*
1165 	 * Ensure there are certain number of free populated pages for
1166 	 * atomic allocs.  Fill up from the most packed so that atomic
1167 	 * allocs don't increase fragmentation.  If atomic allocation
1168 	 * failed previously, always populate the maximum amount.  This
1169 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1170 	 * failing indefinitely; however, large atomic allocs are not
1171 	 * something we support properly and can be highly unreliable and
1172 	 * inefficient.
1173 	 */
1174 retry_pop:
1175 	if (pcpu_atomic_alloc_failed) {
1176 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1177 		/* best effort anyway, don't worry about synchronization */
1178 		pcpu_atomic_alloc_failed = false;
1179 	} else {
1180 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1181 				  pcpu_nr_empty_pop_pages,
1182 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1183 	}
1184 
1185 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1186 		int nr_unpop = 0, rs, re;
1187 
1188 		if (!nr_to_pop)
1189 			break;
1190 
1191 		spin_lock_irq(&pcpu_lock);
1192 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1193 			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1194 			if (nr_unpop)
1195 				break;
1196 		}
1197 		spin_unlock_irq(&pcpu_lock);
1198 
1199 		if (!nr_unpop)
1200 			continue;
1201 
1202 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1203 		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1204 			int nr = min(re - rs, nr_to_pop);
1205 
1206 			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1207 			if (!ret) {
1208 				nr_to_pop -= nr;
1209 				spin_lock_irq(&pcpu_lock);
1210 				pcpu_chunk_populated(chunk, rs, rs + nr);
1211 				spin_unlock_irq(&pcpu_lock);
1212 			} else {
1213 				nr_to_pop = 0;
1214 			}
1215 
1216 			if (!nr_to_pop)
1217 				break;
1218 		}
1219 	}
1220 
1221 	if (nr_to_pop) {
1222 		/* ran out of chunks to populate, create a new one and retry */
1223 		chunk = pcpu_create_chunk();
1224 		if (chunk) {
1225 			spin_lock_irq(&pcpu_lock);
1226 			pcpu_chunk_relocate(chunk, -1);
1227 			spin_unlock_irq(&pcpu_lock);
1228 			goto retry_pop;
1229 		}
1230 	}
1231 
1232 	mutex_unlock(&pcpu_alloc_mutex);
1233 }
1234 
1235 /**
1236  * free_percpu - free percpu area
1237  * @ptr: pointer to area to free
1238  *
1239  * Free percpu area @ptr.
1240  *
1241  * CONTEXT:
1242  * Can be called from atomic context.
1243  */
1244 void free_percpu(void __percpu *ptr)
1245 {
1246 	void *addr;
1247 	struct pcpu_chunk *chunk;
1248 	unsigned long flags;
1249 	int off, occ_pages;
1250 
1251 	if (!ptr)
1252 		return;
1253 
1254 	kmemleak_free_percpu(ptr);
1255 
1256 	addr = __pcpu_ptr_to_addr(ptr);
1257 
1258 	spin_lock_irqsave(&pcpu_lock, flags);
1259 
1260 	chunk = pcpu_chunk_addr_search(addr);
1261 	off = addr - chunk->base_addr;
1262 
1263 	pcpu_free_area(chunk, off, &occ_pages);
1264 
1265 	if (chunk != pcpu_reserved_chunk)
1266 		pcpu_nr_empty_pop_pages += occ_pages;
1267 
1268 	/* if there are more than one fully free chunks, wake up grim reaper */
1269 	if (chunk->free_size == pcpu_unit_size) {
1270 		struct pcpu_chunk *pos;
1271 
1272 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1273 			if (pos != chunk) {
1274 				pcpu_schedule_balance_work();
1275 				break;
1276 			}
1277 	}
1278 
1279 	spin_unlock_irqrestore(&pcpu_lock, flags);
1280 }
1281 EXPORT_SYMBOL_GPL(free_percpu);
1282 
1283 /**
1284  * is_kernel_percpu_address - test whether address is from static percpu area
1285  * @addr: address to test
1286  *
1287  * Test whether @addr belongs to in-kernel static percpu area.  Module
1288  * static percpu areas are not considered.  For those, use
1289  * is_module_percpu_address().
1290  *
1291  * RETURNS:
1292  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1293  */
1294 bool is_kernel_percpu_address(unsigned long addr)
1295 {
1296 #ifdef CONFIG_SMP
1297 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1298 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1299 	unsigned int cpu;
1300 
1301 	for_each_possible_cpu(cpu) {
1302 		void *start = per_cpu_ptr(base, cpu);
1303 
1304 		if ((void *)addr >= start && (void *)addr < start + static_size)
1305 			return true;
1306         }
1307 #endif
1308 	/* on UP, can't distinguish from other static vars, always false */
1309 	return false;
1310 }
1311 
1312 /**
1313  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1314  * @addr: the address to be converted to physical address
1315  *
1316  * Given @addr which is dereferenceable address obtained via one of
1317  * percpu access macros, this function translates it into its physical
1318  * address.  The caller is responsible for ensuring @addr stays valid
1319  * until this function finishes.
1320  *
1321  * percpu allocator has special setup for the first chunk, which currently
1322  * supports either embedding in linear address space or vmalloc mapping,
1323  * and, from the second one, the backing allocator (currently either vm or
1324  * km) provides translation.
1325  *
1326  * The addr can be translated simply without checking if it falls into the
1327  * first chunk. But the current code reflects better how percpu allocator
1328  * actually works, and the verification can discover both bugs in percpu
1329  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1330  * code.
1331  *
1332  * RETURNS:
1333  * The physical address for @addr.
1334  */
1335 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1336 {
1337 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1338 	bool in_first_chunk = false;
1339 	unsigned long first_low, first_high;
1340 	unsigned int cpu;
1341 
1342 	/*
1343 	 * The following test on unit_low/high isn't strictly
1344 	 * necessary but will speed up lookups of addresses which
1345 	 * aren't in the first chunk.
1346 	 */
1347 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1348 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1349 				     pcpu_unit_pages);
1350 	if ((unsigned long)addr >= first_low &&
1351 	    (unsigned long)addr < first_high) {
1352 		for_each_possible_cpu(cpu) {
1353 			void *start = per_cpu_ptr(base, cpu);
1354 
1355 			if (addr >= start && addr < start + pcpu_unit_size) {
1356 				in_first_chunk = true;
1357 				break;
1358 			}
1359 		}
1360 	}
1361 
1362 	if (in_first_chunk) {
1363 		if (!is_vmalloc_addr(addr))
1364 			return __pa(addr);
1365 		else
1366 			return page_to_phys(vmalloc_to_page(addr)) +
1367 			       offset_in_page(addr);
1368 	} else
1369 		return page_to_phys(pcpu_addr_to_page(addr)) +
1370 		       offset_in_page(addr);
1371 }
1372 
1373 /**
1374  * pcpu_alloc_alloc_info - allocate percpu allocation info
1375  * @nr_groups: the number of groups
1376  * @nr_units: the number of units
1377  *
1378  * Allocate ai which is large enough for @nr_groups groups containing
1379  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1380  * cpu_map array which is long enough for @nr_units and filled with
1381  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1382  * pointer of other groups.
1383  *
1384  * RETURNS:
1385  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1386  * failure.
1387  */
1388 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1389 						      int nr_units)
1390 {
1391 	struct pcpu_alloc_info *ai;
1392 	size_t base_size, ai_size;
1393 	void *ptr;
1394 	int unit;
1395 
1396 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1397 			  __alignof__(ai->groups[0].cpu_map[0]));
1398 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1399 
1400 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1401 	if (!ptr)
1402 		return NULL;
1403 	ai = ptr;
1404 	ptr += base_size;
1405 
1406 	ai->groups[0].cpu_map = ptr;
1407 
1408 	for (unit = 0; unit < nr_units; unit++)
1409 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1410 
1411 	ai->nr_groups = nr_groups;
1412 	ai->__ai_size = PFN_ALIGN(ai_size);
1413 
1414 	return ai;
1415 }
1416 
1417 /**
1418  * pcpu_free_alloc_info - free percpu allocation info
1419  * @ai: pcpu_alloc_info to free
1420  *
1421  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1422  */
1423 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1424 {
1425 	memblock_free_early(__pa(ai), ai->__ai_size);
1426 }
1427 
1428 /**
1429  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1430  * @lvl: loglevel
1431  * @ai: allocation info to dump
1432  *
1433  * Print out information about @ai using loglevel @lvl.
1434  */
1435 static void pcpu_dump_alloc_info(const char *lvl,
1436 				 const struct pcpu_alloc_info *ai)
1437 {
1438 	int group_width = 1, cpu_width = 1, width;
1439 	char empty_str[] = "--------";
1440 	int alloc = 0, alloc_end = 0;
1441 	int group, v;
1442 	int upa, apl;	/* units per alloc, allocs per line */
1443 
1444 	v = ai->nr_groups;
1445 	while (v /= 10)
1446 		group_width++;
1447 
1448 	v = num_possible_cpus();
1449 	while (v /= 10)
1450 		cpu_width++;
1451 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1452 
1453 	upa = ai->alloc_size / ai->unit_size;
1454 	width = upa * (cpu_width + 1) + group_width + 3;
1455 	apl = rounddown_pow_of_two(max(60 / width, 1));
1456 
1457 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1458 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1459 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1460 
1461 	for (group = 0; group < ai->nr_groups; group++) {
1462 		const struct pcpu_group_info *gi = &ai->groups[group];
1463 		int unit = 0, unit_end = 0;
1464 
1465 		BUG_ON(gi->nr_units % upa);
1466 		for (alloc_end += gi->nr_units / upa;
1467 		     alloc < alloc_end; alloc++) {
1468 			if (!(alloc % apl)) {
1469 				pr_cont("\n");
1470 				printk("%spcpu-alloc: ", lvl);
1471 			}
1472 			pr_cont("[%0*d] ", group_width, group);
1473 
1474 			for (unit_end += upa; unit < unit_end; unit++)
1475 				if (gi->cpu_map[unit] != NR_CPUS)
1476 					pr_cont("%0*d ",
1477 						cpu_width, gi->cpu_map[unit]);
1478 				else
1479 					pr_cont("%s ", empty_str);
1480 		}
1481 	}
1482 	pr_cont("\n");
1483 }
1484 
1485 /**
1486  * pcpu_setup_first_chunk - initialize the first percpu chunk
1487  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1488  * @base_addr: mapped address
1489  *
1490  * Initialize the first percpu chunk which contains the kernel static
1491  * perpcu area.  This function is to be called from arch percpu area
1492  * setup path.
1493  *
1494  * @ai contains all information necessary to initialize the first
1495  * chunk and prime the dynamic percpu allocator.
1496  *
1497  * @ai->static_size is the size of static percpu area.
1498  *
1499  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1500  * reserve after the static area in the first chunk.  This reserves
1501  * the first chunk such that it's available only through reserved
1502  * percpu allocation.  This is primarily used to serve module percpu
1503  * static areas on architectures where the addressing model has
1504  * limited offset range for symbol relocations to guarantee module
1505  * percpu symbols fall inside the relocatable range.
1506  *
1507  * @ai->dyn_size determines the number of bytes available for dynamic
1508  * allocation in the first chunk.  The area between @ai->static_size +
1509  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1510  *
1511  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1512  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1513  * @ai->dyn_size.
1514  *
1515  * @ai->atom_size is the allocation atom size and used as alignment
1516  * for vm areas.
1517  *
1518  * @ai->alloc_size is the allocation size and always multiple of
1519  * @ai->atom_size.  This is larger than @ai->atom_size if
1520  * @ai->unit_size is larger than @ai->atom_size.
1521  *
1522  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1523  * percpu areas.  Units which should be colocated are put into the
1524  * same group.  Dynamic VM areas will be allocated according to these
1525  * groupings.  If @ai->nr_groups is zero, a single group containing
1526  * all units is assumed.
1527  *
1528  * The caller should have mapped the first chunk at @base_addr and
1529  * copied static data to each unit.
1530  *
1531  * If the first chunk ends up with both reserved and dynamic areas, it
1532  * is served by two chunks - one to serve the core static and reserved
1533  * areas and the other for the dynamic area.  They share the same vm
1534  * and page map but uses different area allocation map to stay away
1535  * from each other.  The latter chunk is circulated in the chunk slots
1536  * and available for dynamic allocation like any other chunks.
1537  *
1538  * RETURNS:
1539  * 0 on success, -errno on failure.
1540  */
1541 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1542 				  void *base_addr)
1543 {
1544 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1545 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1546 	size_t dyn_size = ai->dyn_size;
1547 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1548 	struct pcpu_chunk *schunk, *dchunk = NULL;
1549 	unsigned long *group_offsets;
1550 	size_t *group_sizes;
1551 	unsigned long *unit_off;
1552 	unsigned int cpu;
1553 	int *unit_map;
1554 	int group, unit, i;
1555 
1556 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1557 	if (unlikely(cond)) {						\
1558 		pr_emerg("failed to initialize, %s\n", #cond);		\
1559 		pr_emerg("cpu_possible_mask=%*pb\n",			\
1560 			 cpumask_pr_args(cpu_possible_mask));		\
1561 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1562 		BUG();							\
1563 	}								\
1564 } while (0)
1565 
1566 	/* sanity checks */
1567 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1568 #ifdef CONFIG_SMP
1569 	PCPU_SETUP_BUG_ON(!ai->static_size);
1570 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1571 #endif
1572 	PCPU_SETUP_BUG_ON(!base_addr);
1573 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1574 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1575 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1576 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1577 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1578 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1579 
1580 	/* process group information and build config tables accordingly */
1581 	group_offsets = memblock_virt_alloc(ai->nr_groups *
1582 					     sizeof(group_offsets[0]), 0);
1583 	group_sizes = memblock_virt_alloc(ai->nr_groups *
1584 					   sizeof(group_sizes[0]), 0);
1585 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1586 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1587 
1588 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1589 		unit_map[cpu] = UINT_MAX;
1590 
1591 	pcpu_low_unit_cpu = NR_CPUS;
1592 	pcpu_high_unit_cpu = NR_CPUS;
1593 
1594 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1595 		const struct pcpu_group_info *gi = &ai->groups[group];
1596 
1597 		group_offsets[group] = gi->base_offset;
1598 		group_sizes[group] = gi->nr_units * ai->unit_size;
1599 
1600 		for (i = 0; i < gi->nr_units; i++) {
1601 			cpu = gi->cpu_map[i];
1602 			if (cpu == NR_CPUS)
1603 				continue;
1604 
1605 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1606 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1607 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1608 
1609 			unit_map[cpu] = unit + i;
1610 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1611 
1612 			/* determine low/high unit_cpu */
1613 			if (pcpu_low_unit_cpu == NR_CPUS ||
1614 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1615 				pcpu_low_unit_cpu = cpu;
1616 			if (pcpu_high_unit_cpu == NR_CPUS ||
1617 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1618 				pcpu_high_unit_cpu = cpu;
1619 		}
1620 	}
1621 	pcpu_nr_units = unit;
1622 
1623 	for_each_possible_cpu(cpu)
1624 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1625 
1626 	/* we're done parsing the input, undefine BUG macro and dump config */
1627 #undef PCPU_SETUP_BUG_ON
1628 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1629 
1630 	pcpu_nr_groups = ai->nr_groups;
1631 	pcpu_group_offsets = group_offsets;
1632 	pcpu_group_sizes = group_sizes;
1633 	pcpu_unit_map = unit_map;
1634 	pcpu_unit_offsets = unit_off;
1635 
1636 	/* determine basic parameters */
1637 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1638 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1639 	pcpu_atom_size = ai->atom_size;
1640 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1641 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1642 
1643 	/*
1644 	 * Allocate chunk slots.  The additional last slot is for
1645 	 * empty chunks.
1646 	 */
1647 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1648 	pcpu_slot = memblock_virt_alloc(
1649 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1650 	for (i = 0; i < pcpu_nr_slots; i++)
1651 		INIT_LIST_HEAD(&pcpu_slot[i]);
1652 
1653 	/*
1654 	 * Initialize static chunk.  If reserved_size is zero, the
1655 	 * static chunk covers static area + dynamic allocation area
1656 	 * in the first chunk.  If reserved_size is not zero, it
1657 	 * covers static area + reserved area (mostly used for module
1658 	 * static percpu allocation).
1659 	 */
1660 	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1661 	INIT_LIST_HEAD(&schunk->list);
1662 	INIT_LIST_HEAD(&schunk->map_extend_list);
1663 	schunk->base_addr = base_addr;
1664 	schunk->map = smap;
1665 	schunk->map_alloc = ARRAY_SIZE(smap);
1666 	schunk->immutable = true;
1667 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1668 	schunk->nr_populated = pcpu_unit_pages;
1669 
1670 	if (ai->reserved_size) {
1671 		schunk->free_size = ai->reserved_size;
1672 		pcpu_reserved_chunk = schunk;
1673 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1674 	} else {
1675 		schunk->free_size = dyn_size;
1676 		dyn_size = 0;			/* dynamic area covered */
1677 	}
1678 	schunk->contig_hint = schunk->free_size;
1679 
1680 	schunk->map[0] = 1;
1681 	schunk->map[1] = ai->static_size;
1682 	schunk->map_used = 1;
1683 	if (schunk->free_size)
1684 		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1685 	schunk->map[schunk->map_used] |= 1;
1686 
1687 	/* init dynamic chunk if necessary */
1688 	if (dyn_size) {
1689 		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1690 		INIT_LIST_HEAD(&dchunk->list);
1691 		INIT_LIST_HEAD(&dchunk->map_extend_list);
1692 		dchunk->base_addr = base_addr;
1693 		dchunk->map = dmap;
1694 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1695 		dchunk->immutable = true;
1696 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1697 		dchunk->nr_populated = pcpu_unit_pages;
1698 
1699 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1700 		dchunk->map[0] = 1;
1701 		dchunk->map[1] = pcpu_reserved_chunk_limit;
1702 		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1703 		dchunk->map_used = 2;
1704 	}
1705 
1706 	/* link the first chunk in */
1707 	pcpu_first_chunk = dchunk ?: schunk;
1708 	pcpu_nr_empty_pop_pages +=
1709 		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1710 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1711 
1712 	/* we're done */
1713 	pcpu_base_addr = base_addr;
1714 	return 0;
1715 }
1716 
1717 #ifdef CONFIG_SMP
1718 
1719 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1720 	[PCPU_FC_AUTO]	= "auto",
1721 	[PCPU_FC_EMBED]	= "embed",
1722 	[PCPU_FC_PAGE]	= "page",
1723 };
1724 
1725 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1726 
1727 static int __init percpu_alloc_setup(char *str)
1728 {
1729 	if (!str)
1730 		return -EINVAL;
1731 
1732 	if (0)
1733 		/* nada */;
1734 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1735 	else if (!strcmp(str, "embed"))
1736 		pcpu_chosen_fc = PCPU_FC_EMBED;
1737 #endif
1738 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1739 	else if (!strcmp(str, "page"))
1740 		pcpu_chosen_fc = PCPU_FC_PAGE;
1741 #endif
1742 	else
1743 		pr_warn("unknown allocator %s specified\n", str);
1744 
1745 	return 0;
1746 }
1747 early_param("percpu_alloc", percpu_alloc_setup);
1748 
1749 /*
1750  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1751  * Build it if needed by the arch config or the generic setup is going
1752  * to be used.
1753  */
1754 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1755 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1756 #define BUILD_EMBED_FIRST_CHUNK
1757 #endif
1758 
1759 /* build pcpu_page_first_chunk() iff needed by the arch config */
1760 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1761 #define BUILD_PAGE_FIRST_CHUNK
1762 #endif
1763 
1764 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1765 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1766 /**
1767  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1768  * @reserved_size: the size of reserved percpu area in bytes
1769  * @dyn_size: minimum free size for dynamic allocation in bytes
1770  * @atom_size: allocation atom size
1771  * @cpu_distance_fn: callback to determine distance between cpus, optional
1772  *
1773  * This function determines grouping of units, their mappings to cpus
1774  * and other parameters considering needed percpu size, allocation
1775  * atom size and distances between CPUs.
1776  *
1777  * Groups are always multiples of atom size and CPUs which are of
1778  * LOCAL_DISTANCE both ways are grouped together and share space for
1779  * units in the same group.  The returned configuration is guaranteed
1780  * to have CPUs on different nodes on different groups and >=75% usage
1781  * of allocated virtual address space.
1782  *
1783  * RETURNS:
1784  * On success, pointer to the new allocation_info is returned.  On
1785  * failure, ERR_PTR value is returned.
1786  */
1787 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1788 				size_t reserved_size, size_t dyn_size,
1789 				size_t atom_size,
1790 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1791 {
1792 	static int group_map[NR_CPUS] __initdata;
1793 	static int group_cnt[NR_CPUS] __initdata;
1794 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1795 	int nr_groups = 1, nr_units = 0;
1796 	size_t size_sum, min_unit_size, alloc_size;
1797 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1798 	int last_allocs, group, unit;
1799 	unsigned int cpu, tcpu;
1800 	struct pcpu_alloc_info *ai;
1801 	unsigned int *cpu_map;
1802 
1803 	/* this function may be called multiple times */
1804 	memset(group_map, 0, sizeof(group_map));
1805 	memset(group_cnt, 0, sizeof(group_cnt));
1806 
1807 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1808 	size_sum = PFN_ALIGN(static_size + reserved_size +
1809 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1810 	dyn_size = size_sum - static_size - reserved_size;
1811 
1812 	/*
1813 	 * Determine min_unit_size, alloc_size and max_upa such that
1814 	 * alloc_size is multiple of atom_size and is the smallest
1815 	 * which can accommodate 4k aligned segments which are equal to
1816 	 * or larger than min_unit_size.
1817 	 */
1818 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1819 
1820 	alloc_size = roundup(min_unit_size, atom_size);
1821 	upa = alloc_size / min_unit_size;
1822 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1823 		upa--;
1824 	max_upa = upa;
1825 
1826 	/* group cpus according to their proximity */
1827 	for_each_possible_cpu(cpu) {
1828 		group = 0;
1829 	next_group:
1830 		for_each_possible_cpu(tcpu) {
1831 			if (cpu == tcpu)
1832 				break;
1833 			if (group_map[tcpu] == group && cpu_distance_fn &&
1834 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1835 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1836 				group++;
1837 				nr_groups = max(nr_groups, group + 1);
1838 				goto next_group;
1839 			}
1840 		}
1841 		group_map[cpu] = group;
1842 		group_cnt[group]++;
1843 	}
1844 
1845 	/*
1846 	 * Expand unit size until address space usage goes over 75%
1847 	 * and then as much as possible without using more address
1848 	 * space.
1849 	 */
1850 	last_allocs = INT_MAX;
1851 	for (upa = max_upa; upa; upa--) {
1852 		int allocs = 0, wasted = 0;
1853 
1854 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1855 			continue;
1856 
1857 		for (group = 0; group < nr_groups; group++) {
1858 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1859 			allocs += this_allocs;
1860 			wasted += this_allocs * upa - group_cnt[group];
1861 		}
1862 
1863 		/*
1864 		 * Don't accept if wastage is over 1/3.  The
1865 		 * greater-than comparison ensures upa==1 always
1866 		 * passes the following check.
1867 		 */
1868 		if (wasted > num_possible_cpus() / 3)
1869 			continue;
1870 
1871 		/* and then don't consume more memory */
1872 		if (allocs > last_allocs)
1873 			break;
1874 		last_allocs = allocs;
1875 		best_upa = upa;
1876 	}
1877 	upa = best_upa;
1878 
1879 	/* allocate and fill alloc_info */
1880 	for (group = 0; group < nr_groups; group++)
1881 		nr_units += roundup(group_cnt[group], upa);
1882 
1883 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1884 	if (!ai)
1885 		return ERR_PTR(-ENOMEM);
1886 	cpu_map = ai->groups[0].cpu_map;
1887 
1888 	for (group = 0; group < nr_groups; group++) {
1889 		ai->groups[group].cpu_map = cpu_map;
1890 		cpu_map += roundup(group_cnt[group], upa);
1891 	}
1892 
1893 	ai->static_size = static_size;
1894 	ai->reserved_size = reserved_size;
1895 	ai->dyn_size = dyn_size;
1896 	ai->unit_size = alloc_size / upa;
1897 	ai->atom_size = atom_size;
1898 	ai->alloc_size = alloc_size;
1899 
1900 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1901 		struct pcpu_group_info *gi = &ai->groups[group];
1902 
1903 		/*
1904 		 * Initialize base_offset as if all groups are located
1905 		 * back-to-back.  The caller should update this to
1906 		 * reflect actual allocation.
1907 		 */
1908 		gi->base_offset = unit * ai->unit_size;
1909 
1910 		for_each_possible_cpu(cpu)
1911 			if (group_map[cpu] == group)
1912 				gi->cpu_map[gi->nr_units++] = cpu;
1913 		gi->nr_units = roundup(gi->nr_units, upa);
1914 		unit += gi->nr_units;
1915 	}
1916 	BUG_ON(unit != nr_units);
1917 
1918 	return ai;
1919 }
1920 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1921 
1922 #if defined(BUILD_EMBED_FIRST_CHUNK)
1923 /**
1924  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1925  * @reserved_size: the size of reserved percpu area in bytes
1926  * @dyn_size: minimum free size for dynamic allocation in bytes
1927  * @atom_size: allocation atom size
1928  * @cpu_distance_fn: callback to determine distance between cpus, optional
1929  * @alloc_fn: function to allocate percpu page
1930  * @free_fn: function to free percpu page
1931  *
1932  * This is a helper to ease setting up embedded first percpu chunk and
1933  * can be called where pcpu_setup_first_chunk() is expected.
1934  *
1935  * If this function is used to setup the first chunk, it is allocated
1936  * by calling @alloc_fn and used as-is without being mapped into
1937  * vmalloc area.  Allocations are always whole multiples of @atom_size
1938  * aligned to @atom_size.
1939  *
1940  * This enables the first chunk to piggy back on the linear physical
1941  * mapping which often uses larger page size.  Please note that this
1942  * can result in very sparse cpu->unit mapping on NUMA machines thus
1943  * requiring large vmalloc address space.  Don't use this allocator if
1944  * vmalloc space is not orders of magnitude larger than distances
1945  * between node memory addresses (ie. 32bit NUMA machines).
1946  *
1947  * @dyn_size specifies the minimum dynamic area size.
1948  *
1949  * If the needed size is smaller than the minimum or specified unit
1950  * size, the leftover is returned using @free_fn.
1951  *
1952  * RETURNS:
1953  * 0 on success, -errno on failure.
1954  */
1955 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1956 				  size_t atom_size,
1957 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1958 				  pcpu_fc_alloc_fn_t alloc_fn,
1959 				  pcpu_fc_free_fn_t free_fn)
1960 {
1961 	void *base = (void *)ULONG_MAX;
1962 	void **areas = NULL;
1963 	struct pcpu_alloc_info *ai;
1964 	size_t size_sum, areas_size, max_distance;
1965 	int group, i, rc;
1966 
1967 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1968 				   cpu_distance_fn);
1969 	if (IS_ERR(ai))
1970 		return PTR_ERR(ai);
1971 
1972 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1973 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1974 
1975 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1976 	if (!areas) {
1977 		rc = -ENOMEM;
1978 		goto out_free;
1979 	}
1980 
1981 	/* allocate, copy and determine base address */
1982 	for (group = 0; group < ai->nr_groups; group++) {
1983 		struct pcpu_group_info *gi = &ai->groups[group];
1984 		unsigned int cpu = NR_CPUS;
1985 		void *ptr;
1986 
1987 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1988 			cpu = gi->cpu_map[i];
1989 		BUG_ON(cpu == NR_CPUS);
1990 
1991 		/* allocate space for the whole group */
1992 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1993 		if (!ptr) {
1994 			rc = -ENOMEM;
1995 			goto out_free_areas;
1996 		}
1997 		/* kmemleak tracks the percpu allocations separately */
1998 		kmemleak_free(ptr);
1999 		areas[group] = ptr;
2000 
2001 		base = min(ptr, base);
2002 	}
2003 
2004 	/*
2005 	 * Copy data and free unused parts.  This should happen after all
2006 	 * allocations are complete; otherwise, we may end up with
2007 	 * overlapping groups.
2008 	 */
2009 	for (group = 0; group < ai->nr_groups; group++) {
2010 		struct pcpu_group_info *gi = &ai->groups[group];
2011 		void *ptr = areas[group];
2012 
2013 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2014 			if (gi->cpu_map[i] == NR_CPUS) {
2015 				/* unused unit, free whole */
2016 				free_fn(ptr, ai->unit_size);
2017 				continue;
2018 			}
2019 			/* copy and return the unused part */
2020 			memcpy(ptr, __per_cpu_load, ai->static_size);
2021 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2022 		}
2023 	}
2024 
2025 	/* base address is now known, determine group base offsets */
2026 	max_distance = 0;
2027 	for (group = 0; group < ai->nr_groups; group++) {
2028 		ai->groups[group].base_offset = areas[group] - base;
2029 		max_distance = max_t(size_t, max_distance,
2030 				     ai->groups[group].base_offset);
2031 	}
2032 	max_distance += ai->unit_size;
2033 
2034 	/* warn if maximum distance is further than 75% of vmalloc space */
2035 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2036 		pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2037 			max_distance, VMALLOC_TOTAL);
2038 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2039 		/* and fail if we have fallback */
2040 		rc = -EINVAL;
2041 		goto out_free;
2042 #endif
2043 	}
2044 
2045 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2046 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2047 		ai->dyn_size, ai->unit_size);
2048 
2049 	rc = pcpu_setup_first_chunk(ai, base);
2050 	goto out_free;
2051 
2052 out_free_areas:
2053 	for (group = 0; group < ai->nr_groups; group++)
2054 		if (areas[group])
2055 			free_fn(areas[group],
2056 				ai->groups[group].nr_units * ai->unit_size);
2057 out_free:
2058 	pcpu_free_alloc_info(ai);
2059 	if (areas)
2060 		memblock_free_early(__pa(areas), areas_size);
2061 	return rc;
2062 }
2063 #endif /* BUILD_EMBED_FIRST_CHUNK */
2064 
2065 #ifdef BUILD_PAGE_FIRST_CHUNK
2066 /**
2067  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2068  * @reserved_size: the size of reserved percpu area in bytes
2069  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2070  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2071  * @populate_pte_fn: function to populate pte
2072  *
2073  * This is a helper to ease setting up page-remapped first percpu
2074  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2075  *
2076  * This is the basic allocator.  Static percpu area is allocated
2077  * page-by-page into vmalloc area.
2078  *
2079  * RETURNS:
2080  * 0 on success, -errno on failure.
2081  */
2082 int __init pcpu_page_first_chunk(size_t reserved_size,
2083 				 pcpu_fc_alloc_fn_t alloc_fn,
2084 				 pcpu_fc_free_fn_t free_fn,
2085 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2086 {
2087 	static struct vm_struct vm;
2088 	struct pcpu_alloc_info *ai;
2089 	char psize_str[16];
2090 	int unit_pages;
2091 	size_t pages_size;
2092 	struct page **pages;
2093 	int unit, i, j, rc;
2094 
2095 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2096 
2097 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2098 	if (IS_ERR(ai))
2099 		return PTR_ERR(ai);
2100 	BUG_ON(ai->nr_groups != 1);
2101 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2102 
2103 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2104 
2105 	/* unaligned allocations can't be freed, round up to page size */
2106 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2107 			       sizeof(pages[0]));
2108 	pages = memblock_virt_alloc(pages_size, 0);
2109 
2110 	/* allocate pages */
2111 	j = 0;
2112 	for (unit = 0; unit < num_possible_cpus(); unit++)
2113 		for (i = 0; i < unit_pages; i++) {
2114 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2115 			void *ptr;
2116 
2117 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2118 			if (!ptr) {
2119 				pr_warn("failed to allocate %s page for cpu%u\n",
2120 					psize_str, cpu);
2121 				goto enomem;
2122 			}
2123 			/* kmemleak tracks the percpu allocations separately */
2124 			kmemleak_free(ptr);
2125 			pages[j++] = virt_to_page(ptr);
2126 		}
2127 
2128 	/* allocate vm area, map the pages and copy static data */
2129 	vm.flags = VM_ALLOC;
2130 	vm.size = num_possible_cpus() * ai->unit_size;
2131 	vm_area_register_early(&vm, PAGE_SIZE);
2132 
2133 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2134 		unsigned long unit_addr =
2135 			(unsigned long)vm.addr + unit * ai->unit_size;
2136 
2137 		for (i = 0; i < unit_pages; i++)
2138 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2139 
2140 		/* pte already populated, the following shouldn't fail */
2141 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2142 				      unit_pages);
2143 		if (rc < 0)
2144 			panic("failed to map percpu area, err=%d\n", rc);
2145 
2146 		/*
2147 		 * FIXME: Archs with virtual cache should flush local
2148 		 * cache for the linear mapping here - something
2149 		 * equivalent to flush_cache_vmap() on the local cpu.
2150 		 * flush_cache_vmap() can't be used as most supporting
2151 		 * data structures are not set up yet.
2152 		 */
2153 
2154 		/* copy static data */
2155 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2156 	}
2157 
2158 	/* we're ready, commit */
2159 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2160 		unit_pages, psize_str, vm.addr, ai->static_size,
2161 		ai->reserved_size, ai->dyn_size);
2162 
2163 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2164 	goto out_free_ar;
2165 
2166 enomem:
2167 	while (--j >= 0)
2168 		free_fn(page_address(pages[j]), PAGE_SIZE);
2169 	rc = -ENOMEM;
2170 out_free_ar:
2171 	memblock_free_early(__pa(pages), pages_size);
2172 	pcpu_free_alloc_info(ai);
2173 	return rc;
2174 }
2175 #endif /* BUILD_PAGE_FIRST_CHUNK */
2176 
2177 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2178 /*
2179  * Generic SMP percpu area setup.
2180  *
2181  * The embedding helper is used because its behavior closely resembles
2182  * the original non-dynamic generic percpu area setup.  This is
2183  * important because many archs have addressing restrictions and might
2184  * fail if the percpu area is located far away from the previous
2185  * location.  As an added bonus, in non-NUMA cases, embedding is
2186  * generally a good idea TLB-wise because percpu area can piggy back
2187  * on the physical linear memory mapping which uses large page
2188  * mappings on applicable archs.
2189  */
2190 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2191 EXPORT_SYMBOL(__per_cpu_offset);
2192 
2193 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2194 				       size_t align)
2195 {
2196 	return  memblock_virt_alloc_from_nopanic(
2197 			size, align, __pa(MAX_DMA_ADDRESS));
2198 }
2199 
2200 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2201 {
2202 	memblock_free_early(__pa(ptr), size);
2203 }
2204 
2205 void __init setup_per_cpu_areas(void)
2206 {
2207 	unsigned long delta;
2208 	unsigned int cpu;
2209 	int rc;
2210 
2211 	/*
2212 	 * Always reserve area for module percpu variables.  That's
2213 	 * what the legacy allocator did.
2214 	 */
2215 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2216 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2217 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2218 	if (rc < 0)
2219 		panic("Failed to initialize percpu areas.");
2220 
2221 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2222 	for_each_possible_cpu(cpu)
2223 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2224 }
2225 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2226 
2227 #else	/* CONFIG_SMP */
2228 
2229 /*
2230  * UP percpu area setup.
2231  *
2232  * UP always uses km-based percpu allocator with identity mapping.
2233  * Static percpu variables are indistinguishable from the usual static
2234  * variables and don't require any special preparation.
2235  */
2236 void __init setup_per_cpu_areas(void)
2237 {
2238 	const size_t unit_size =
2239 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2240 					 PERCPU_DYNAMIC_RESERVE));
2241 	struct pcpu_alloc_info *ai;
2242 	void *fc;
2243 
2244 	ai = pcpu_alloc_alloc_info(1, 1);
2245 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2246 					      PAGE_SIZE,
2247 					      __pa(MAX_DMA_ADDRESS));
2248 	if (!ai || !fc)
2249 		panic("Failed to allocate memory for percpu areas.");
2250 	/* kmemleak tracks the percpu allocations separately */
2251 	kmemleak_free(fc);
2252 
2253 	ai->dyn_size = unit_size;
2254 	ai->unit_size = unit_size;
2255 	ai->atom_size = unit_size;
2256 	ai->alloc_size = unit_size;
2257 	ai->groups[0].nr_units = 1;
2258 	ai->groups[0].cpu_map[0] = 0;
2259 
2260 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2261 		panic("Failed to initialize percpu areas.");
2262 }
2263 
2264 #endif	/* CONFIG_SMP */
2265 
2266 /*
2267  * First and reserved chunks are initialized with temporary allocation
2268  * map in initdata so that they can be used before slab is online.
2269  * This function is called after slab is brought up and replaces those
2270  * with properly allocated maps.
2271  */
2272 void __init percpu_init_late(void)
2273 {
2274 	struct pcpu_chunk *target_chunks[] =
2275 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2276 	struct pcpu_chunk *chunk;
2277 	unsigned long flags;
2278 	int i;
2279 
2280 	for (i = 0; (chunk = target_chunks[i]); i++) {
2281 		int *map;
2282 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2283 
2284 		BUILD_BUG_ON(size > PAGE_SIZE);
2285 
2286 		map = pcpu_mem_zalloc(size);
2287 		BUG_ON(!map);
2288 
2289 		spin_lock_irqsave(&pcpu_lock, flags);
2290 		memcpy(map, chunk->map, size);
2291 		chunk->map = map;
2292 		spin_unlock_irqrestore(&pcpu_lock, flags);
2293 	}
2294 }
2295 
2296 /*
2297  * Percpu allocator is initialized early during boot when neither slab or
2298  * workqueue is available.  Plug async management until everything is up
2299  * and running.
2300  */
2301 static int __init percpu_enable_async(void)
2302 {
2303 	pcpu_async_enabled = true;
2304 	return 0;
2305 }
2306 subsys_initcall(percpu_enable_async);
2307