xref: /openbmc/linux/mm/percpu.c (revision 275876e2)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71 
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76 
77 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 
80 #ifdef CONFIG_SMP
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr)					\
84 	(void __percpu *)((unsigned long)(addr) -			\
85 			  (unsigned long)pcpu_base_addr	+		\
86 			  (unsigned long)__per_cpu_start)
87 #endif
88 #ifndef __pcpu_ptr_to_addr
89 #define __pcpu_ptr_to_addr(ptr)						\
90 	(void __force *)((unsigned long)(ptr) +				\
91 			 (unsigned long)pcpu_base_addr -		\
92 			 (unsigned long)__per_cpu_start)
93 #endif
94 #else	/* CONFIG_SMP */
95 /* on UP, it's always identity mapped */
96 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
97 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
98 #endif	/* CONFIG_SMP */
99 
100 struct pcpu_chunk {
101 	struct list_head	list;		/* linked to pcpu_slot lists */
102 	int			free_size;	/* free bytes in the chunk */
103 	int			contig_hint;	/* max contiguous size hint */
104 	void			*base_addr;	/* base address of this chunk */
105 	int			map_used;	/* # of map entries used before the sentry */
106 	int			map_alloc;	/* # of map entries allocated */
107 	int			*map;		/* allocation map */
108 	void			*data;		/* chunk data */
109 	int			first_free;	/* no free below this */
110 	bool			immutable;	/* no [de]population allowed */
111 	unsigned long		populated[];	/* populated bitmap */
112 };
113 
114 static int pcpu_unit_pages __read_mostly;
115 static int pcpu_unit_size __read_mostly;
116 static int pcpu_nr_units __read_mostly;
117 static int pcpu_atom_size __read_mostly;
118 static int pcpu_nr_slots __read_mostly;
119 static size_t pcpu_chunk_struct_size __read_mostly;
120 
121 /* cpus with the lowest and highest unit addresses */
122 static unsigned int pcpu_low_unit_cpu __read_mostly;
123 static unsigned int pcpu_high_unit_cpu __read_mostly;
124 
125 /* the address of the first chunk which starts with the kernel static area */
126 void *pcpu_base_addr __read_mostly;
127 EXPORT_SYMBOL_GPL(pcpu_base_addr);
128 
129 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
130 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
131 
132 /* group information, used for vm allocation */
133 static int pcpu_nr_groups __read_mostly;
134 static const unsigned long *pcpu_group_offsets __read_mostly;
135 static const size_t *pcpu_group_sizes __read_mostly;
136 
137 /*
138  * The first chunk which always exists.  Note that unlike other
139  * chunks, this one can be allocated and mapped in several different
140  * ways and thus often doesn't live in the vmalloc area.
141  */
142 static struct pcpu_chunk *pcpu_first_chunk;
143 
144 /*
145  * Optional reserved chunk.  This chunk reserves part of the first
146  * chunk and serves it for reserved allocations.  The amount of
147  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
148  * area doesn't exist, the following variables contain NULL and 0
149  * respectively.
150  */
151 static struct pcpu_chunk *pcpu_reserved_chunk;
152 static int pcpu_reserved_chunk_limit;
153 
154 /*
155  * Synchronization rules.
156  *
157  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
158  * protects allocation/reclaim paths, chunks, populated bitmap and
159  * vmalloc mapping.  The latter is a spinlock and protects the index
160  * data structures - chunk slots, chunks and area maps in chunks.
161  *
162  * During allocation, pcpu_alloc_mutex is kept locked all the time and
163  * pcpu_lock is grabbed and released as necessary.  All actual memory
164  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
165  * general, percpu memory can't be allocated with irq off but
166  * irqsave/restore are still used in alloc path so that it can be used
167  * from early init path - sched_init() specifically.
168  *
169  * Free path accesses and alters only the index data structures, so it
170  * can be safely called from atomic context.  When memory needs to be
171  * returned to the system, free path schedules reclaim_work which
172  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
173  * reclaimed, release both locks and frees the chunks.  Note that it's
174  * necessary to grab both locks to remove a chunk from circulation as
175  * allocation path might be referencing the chunk with only
176  * pcpu_alloc_mutex locked.
177  */
178 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
179 static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
180 
181 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
182 
183 /* reclaim work to release fully free chunks, scheduled from free path */
184 static void pcpu_reclaim(struct work_struct *work);
185 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
186 
187 static bool pcpu_addr_in_first_chunk(void *addr)
188 {
189 	void *first_start = pcpu_first_chunk->base_addr;
190 
191 	return addr >= first_start && addr < first_start + pcpu_unit_size;
192 }
193 
194 static bool pcpu_addr_in_reserved_chunk(void *addr)
195 {
196 	void *first_start = pcpu_first_chunk->base_addr;
197 
198 	return addr >= first_start &&
199 		addr < first_start + pcpu_reserved_chunk_limit;
200 }
201 
202 static int __pcpu_size_to_slot(int size)
203 {
204 	int highbit = fls(size);	/* size is in bytes */
205 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206 }
207 
208 static int pcpu_size_to_slot(int size)
209 {
210 	if (size == pcpu_unit_size)
211 		return pcpu_nr_slots - 1;
212 	return __pcpu_size_to_slot(size);
213 }
214 
215 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
216 {
217 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
218 		return 0;
219 
220 	return pcpu_size_to_slot(chunk->free_size);
221 }
222 
223 /* set the pointer to a chunk in a page struct */
224 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
225 {
226 	page->index = (unsigned long)pcpu;
227 }
228 
229 /* obtain pointer to a chunk from a page struct */
230 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
231 {
232 	return (struct pcpu_chunk *)page->index;
233 }
234 
235 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
236 {
237 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
238 }
239 
240 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
241 				     unsigned int cpu, int page_idx)
242 {
243 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
244 		(page_idx << PAGE_SHIFT);
245 }
246 
247 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
248 					   int *rs, int *re, int end)
249 {
250 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
251 	*re = find_next_bit(chunk->populated, end, *rs + 1);
252 }
253 
254 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
255 					 int *rs, int *re, int end)
256 {
257 	*rs = find_next_bit(chunk->populated, end, *rs);
258 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259 }
260 
261 /*
262  * (Un)populated page region iterators.  Iterate over (un)populated
263  * page regions between @start and @end in @chunk.  @rs and @re should
264  * be integer variables and will be set to start and end page index of
265  * the current region.
266  */
267 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
268 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 	     (rs) < (re);						    \
270 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271 
272 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
273 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
274 	     (rs) < (re);						    \
275 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276 
277 /**
278  * pcpu_mem_zalloc - allocate memory
279  * @size: bytes to allocate
280  *
281  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
282  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
283  * memory is always zeroed.
284  *
285  * CONTEXT:
286  * Does GFP_KERNEL allocation.
287  *
288  * RETURNS:
289  * Pointer to the allocated area on success, NULL on failure.
290  */
291 static void *pcpu_mem_zalloc(size_t size)
292 {
293 	if (WARN_ON_ONCE(!slab_is_available()))
294 		return NULL;
295 
296 	if (size <= PAGE_SIZE)
297 		return kzalloc(size, GFP_KERNEL);
298 	else
299 		return vzalloc(size);
300 }
301 
302 /**
303  * pcpu_mem_free - free memory
304  * @ptr: memory to free
305  * @size: size of the area
306  *
307  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
308  */
309 static void pcpu_mem_free(void *ptr, size_t size)
310 {
311 	if (size <= PAGE_SIZE)
312 		kfree(ptr);
313 	else
314 		vfree(ptr);
315 }
316 
317 /**
318  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
319  * @chunk: chunk of interest
320  * @oslot: the previous slot it was on
321  *
322  * This function is called after an allocation or free changed @chunk.
323  * New slot according to the changed state is determined and @chunk is
324  * moved to the slot.  Note that the reserved chunk is never put on
325  * chunk slots.
326  *
327  * CONTEXT:
328  * pcpu_lock.
329  */
330 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
331 {
332 	int nslot = pcpu_chunk_slot(chunk);
333 
334 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
335 		if (oslot < nslot)
336 			list_move(&chunk->list, &pcpu_slot[nslot]);
337 		else
338 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
339 	}
340 }
341 
342 /**
343  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
344  * @chunk: chunk of interest
345  *
346  * Determine whether area map of @chunk needs to be extended to
347  * accommodate a new allocation.
348  *
349  * CONTEXT:
350  * pcpu_lock.
351  *
352  * RETURNS:
353  * New target map allocation length if extension is necessary, 0
354  * otherwise.
355  */
356 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
357 {
358 	int new_alloc;
359 
360 	if (chunk->map_alloc >= chunk->map_used + 3)
361 		return 0;
362 
363 	new_alloc = PCPU_DFL_MAP_ALLOC;
364 	while (new_alloc < chunk->map_used + 3)
365 		new_alloc *= 2;
366 
367 	return new_alloc;
368 }
369 
370 /**
371  * pcpu_extend_area_map - extend area map of a chunk
372  * @chunk: chunk of interest
373  * @new_alloc: new target allocation length of the area map
374  *
375  * Extend area map of @chunk to have @new_alloc entries.
376  *
377  * CONTEXT:
378  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
379  *
380  * RETURNS:
381  * 0 on success, -errno on failure.
382  */
383 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
384 {
385 	int *old = NULL, *new = NULL;
386 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
387 	unsigned long flags;
388 
389 	new = pcpu_mem_zalloc(new_size);
390 	if (!new)
391 		return -ENOMEM;
392 
393 	/* acquire pcpu_lock and switch to new area map */
394 	spin_lock_irqsave(&pcpu_lock, flags);
395 
396 	if (new_alloc <= chunk->map_alloc)
397 		goto out_unlock;
398 
399 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
400 	old = chunk->map;
401 
402 	memcpy(new, old, old_size);
403 
404 	chunk->map_alloc = new_alloc;
405 	chunk->map = new;
406 	new = NULL;
407 
408 out_unlock:
409 	spin_unlock_irqrestore(&pcpu_lock, flags);
410 
411 	/*
412 	 * pcpu_mem_free() might end up calling vfree() which uses
413 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
414 	 */
415 	pcpu_mem_free(old, old_size);
416 	pcpu_mem_free(new, new_size);
417 
418 	return 0;
419 }
420 
421 /**
422  * pcpu_alloc_area - allocate area from a pcpu_chunk
423  * @chunk: chunk of interest
424  * @size: wanted size in bytes
425  * @align: wanted align
426  *
427  * Try to allocate @size bytes area aligned at @align from @chunk.
428  * Note that this function only allocates the offset.  It doesn't
429  * populate or map the area.
430  *
431  * @chunk->map must have at least two free slots.
432  *
433  * CONTEXT:
434  * pcpu_lock.
435  *
436  * RETURNS:
437  * Allocated offset in @chunk on success, -1 if no matching area is
438  * found.
439  */
440 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
441 {
442 	int oslot = pcpu_chunk_slot(chunk);
443 	int max_contig = 0;
444 	int i, off;
445 	bool seen_free = false;
446 	int *p;
447 
448 	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
449 		int head, tail;
450 		int this_size;
451 
452 		off = *p;
453 		if (off & 1)
454 			continue;
455 
456 		/* extra for alignment requirement */
457 		head = ALIGN(off, align) - off;
458 
459 		this_size = (p[1] & ~1) - off;
460 		if (this_size < head + size) {
461 			if (!seen_free) {
462 				chunk->first_free = i;
463 				seen_free = true;
464 			}
465 			max_contig = max(this_size, max_contig);
466 			continue;
467 		}
468 
469 		/*
470 		 * If head is small or the previous block is free,
471 		 * merge'em.  Note that 'small' is defined as smaller
472 		 * than sizeof(int), which is very small but isn't too
473 		 * uncommon for percpu allocations.
474 		 */
475 		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
476 			*p = off += head;
477 			if (p[-1] & 1)
478 				chunk->free_size -= head;
479 			else
480 				max_contig = max(*p - p[-1], max_contig);
481 			this_size -= head;
482 			head = 0;
483 		}
484 
485 		/* if tail is small, just keep it around */
486 		tail = this_size - head - size;
487 		if (tail < sizeof(int)) {
488 			tail = 0;
489 			size = this_size - head;
490 		}
491 
492 		/* split if warranted */
493 		if (head || tail) {
494 			int nr_extra = !!head + !!tail;
495 
496 			/* insert new subblocks */
497 			memmove(p + nr_extra + 1, p + 1,
498 				sizeof(chunk->map[0]) * (chunk->map_used - i));
499 			chunk->map_used += nr_extra;
500 
501 			if (head) {
502 				if (!seen_free) {
503 					chunk->first_free = i;
504 					seen_free = true;
505 				}
506 				*++p = off += head;
507 				++i;
508 				max_contig = max(head, max_contig);
509 			}
510 			if (tail) {
511 				p[1] = off + size;
512 				max_contig = max(tail, max_contig);
513 			}
514 		}
515 
516 		if (!seen_free)
517 			chunk->first_free = i + 1;
518 
519 		/* update hint and mark allocated */
520 		if (i + 1 == chunk->map_used)
521 			chunk->contig_hint = max_contig; /* fully scanned */
522 		else
523 			chunk->contig_hint = max(chunk->contig_hint,
524 						 max_contig);
525 
526 		chunk->free_size -= size;
527 		*p |= 1;
528 
529 		pcpu_chunk_relocate(chunk, oslot);
530 		return off;
531 	}
532 
533 	chunk->contig_hint = max_contig;	/* fully scanned */
534 	pcpu_chunk_relocate(chunk, oslot);
535 
536 	/* tell the upper layer that this chunk has no matching area */
537 	return -1;
538 }
539 
540 /**
541  * pcpu_free_area - free area to a pcpu_chunk
542  * @chunk: chunk of interest
543  * @freeme: offset of area to free
544  *
545  * Free area starting from @freeme to @chunk.  Note that this function
546  * only modifies the allocation map.  It doesn't depopulate or unmap
547  * the area.
548  *
549  * CONTEXT:
550  * pcpu_lock.
551  */
552 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
553 {
554 	int oslot = pcpu_chunk_slot(chunk);
555 	int off = 0;
556 	unsigned i, j;
557 	int to_free = 0;
558 	int *p;
559 
560 	freeme |= 1;	/* we are searching for <given offset, in use> pair */
561 
562 	i = 0;
563 	j = chunk->map_used;
564 	while (i != j) {
565 		unsigned k = (i + j) / 2;
566 		off = chunk->map[k];
567 		if (off < freeme)
568 			i = k + 1;
569 		else if (off > freeme)
570 			j = k;
571 		else
572 			i = j = k;
573 	}
574 	BUG_ON(off != freeme);
575 
576 	if (i < chunk->first_free)
577 		chunk->first_free = i;
578 
579 	p = chunk->map + i;
580 	*p = off &= ~1;
581 	chunk->free_size += (p[1] & ~1) - off;
582 
583 	/* merge with next? */
584 	if (!(p[1] & 1))
585 		to_free++;
586 	/* merge with previous? */
587 	if (i > 0 && !(p[-1] & 1)) {
588 		to_free++;
589 		i--;
590 		p--;
591 	}
592 	if (to_free) {
593 		chunk->map_used -= to_free;
594 		memmove(p + 1, p + 1 + to_free,
595 			(chunk->map_used - i) * sizeof(chunk->map[0]));
596 	}
597 
598 	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
599 	pcpu_chunk_relocate(chunk, oslot);
600 }
601 
602 static struct pcpu_chunk *pcpu_alloc_chunk(void)
603 {
604 	struct pcpu_chunk *chunk;
605 
606 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
607 	if (!chunk)
608 		return NULL;
609 
610 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
611 						sizeof(chunk->map[0]));
612 	if (!chunk->map) {
613 		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
614 		return NULL;
615 	}
616 
617 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
618 	chunk->map[0] = 0;
619 	chunk->map[1] = pcpu_unit_size | 1;
620 	chunk->map_used = 1;
621 
622 	INIT_LIST_HEAD(&chunk->list);
623 	chunk->free_size = pcpu_unit_size;
624 	chunk->contig_hint = pcpu_unit_size;
625 
626 	return chunk;
627 }
628 
629 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
630 {
631 	if (!chunk)
632 		return;
633 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
634 	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
635 }
636 
637 /*
638  * Chunk management implementation.
639  *
640  * To allow different implementations, chunk alloc/free and
641  * [de]population are implemented in a separate file which is pulled
642  * into this file and compiled together.  The following functions
643  * should be implemented.
644  *
645  * pcpu_populate_chunk		- populate the specified range of a chunk
646  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
647  * pcpu_create_chunk		- create a new chunk
648  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
649  * pcpu_addr_to_page		- translate address to physical address
650  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
651  */
652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
654 static struct pcpu_chunk *pcpu_create_chunk(void);
655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
656 static struct page *pcpu_addr_to_page(void *addr);
657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
658 
659 #ifdef CONFIG_NEED_PER_CPU_KM
660 #include "percpu-km.c"
661 #else
662 #include "percpu-vm.c"
663 #endif
664 
665 /**
666  * pcpu_chunk_addr_search - determine chunk containing specified address
667  * @addr: address for which the chunk needs to be determined.
668  *
669  * RETURNS:
670  * The address of the found chunk.
671  */
672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
673 {
674 	/* is it in the first chunk? */
675 	if (pcpu_addr_in_first_chunk(addr)) {
676 		/* is it in the reserved area? */
677 		if (pcpu_addr_in_reserved_chunk(addr))
678 			return pcpu_reserved_chunk;
679 		return pcpu_first_chunk;
680 	}
681 
682 	/*
683 	 * The address is relative to unit0 which might be unused and
684 	 * thus unmapped.  Offset the address to the unit space of the
685 	 * current processor before looking it up in the vmalloc
686 	 * space.  Note that any possible cpu id can be used here, so
687 	 * there's no need to worry about preemption or cpu hotplug.
688 	 */
689 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
690 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
691 }
692 
693 /**
694  * pcpu_alloc - the percpu allocator
695  * @size: size of area to allocate in bytes
696  * @align: alignment of area (max PAGE_SIZE)
697  * @reserved: allocate from the reserved chunk if available
698  *
699  * Allocate percpu area of @size bytes aligned at @align.
700  *
701  * CONTEXT:
702  * Does GFP_KERNEL allocation.
703  *
704  * RETURNS:
705  * Percpu pointer to the allocated area on success, NULL on failure.
706  */
707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
708 {
709 	static int warn_limit = 10;
710 	struct pcpu_chunk *chunk;
711 	const char *err;
712 	int slot, off, new_alloc;
713 	unsigned long flags;
714 	void __percpu *ptr;
715 
716 	/*
717 	 * We want the lowest bit of offset available for in-use/free
718 	 * indicator, so force >= 16bit alignment and make size even.
719 	 */
720 	if (unlikely(align < 2))
721 		align = 2;
722 
723 	size = ALIGN(size, 2);
724 
725 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
726 		WARN(true, "illegal size (%zu) or align (%zu) for "
727 		     "percpu allocation\n", size, align);
728 		return NULL;
729 	}
730 
731 	mutex_lock(&pcpu_alloc_mutex);
732 	spin_lock_irqsave(&pcpu_lock, flags);
733 
734 	/* serve reserved allocations from the reserved chunk if available */
735 	if (reserved && pcpu_reserved_chunk) {
736 		chunk = pcpu_reserved_chunk;
737 
738 		if (size > chunk->contig_hint) {
739 			err = "alloc from reserved chunk failed";
740 			goto fail_unlock;
741 		}
742 
743 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
744 			spin_unlock_irqrestore(&pcpu_lock, flags);
745 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
746 				err = "failed to extend area map of reserved chunk";
747 				goto fail_unlock_mutex;
748 			}
749 			spin_lock_irqsave(&pcpu_lock, flags);
750 		}
751 
752 		off = pcpu_alloc_area(chunk, size, align);
753 		if (off >= 0)
754 			goto area_found;
755 
756 		err = "alloc from reserved chunk failed";
757 		goto fail_unlock;
758 	}
759 
760 restart:
761 	/* search through normal chunks */
762 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
763 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
764 			if (size > chunk->contig_hint)
765 				continue;
766 
767 			new_alloc = pcpu_need_to_extend(chunk);
768 			if (new_alloc) {
769 				spin_unlock_irqrestore(&pcpu_lock, flags);
770 				if (pcpu_extend_area_map(chunk,
771 							 new_alloc) < 0) {
772 					err = "failed to extend area map";
773 					goto fail_unlock_mutex;
774 				}
775 				spin_lock_irqsave(&pcpu_lock, flags);
776 				/*
777 				 * pcpu_lock has been dropped, need to
778 				 * restart cpu_slot list walking.
779 				 */
780 				goto restart;
781 			}
782 
783 			off = pcpu_alloc_area(chunk, size, align);
784 			if (off >= 0)
785 				goto area_found;
786 		}
787 	}
788 
789 	/* hmmm... no space left, create a new chunk */
790 	spin_unlock_irqrestore(&pcpu_lock, flags);
791 
792 	chunk = pcpu_create_chunk();
793 	if (!chunk) {
794 		err = "failed to allocate new chunk";
795 		goto fail_unlock_mutex;
796 	}
797 
798 	spin_lock_irqsave(&pcpu_lock, flags);
799 	pcpu_chunk_relocate(chunk, -1);
800 	goto restart;
801 
802 area_found:
803 	spin_unlock_irqrestore(&pcpu_lock, flags);
804 
805 	/* populate, map and clear the area */
806 	if (pcpu_populate_chunk(chunk, off, size)) {
807 		spin_lock_irqsave(&pcpu_lock, flags);
808 		pcpu_free_area(chunk, off);
809 		err = "failed to populate";
810 		goto fail_unlock;
811 	}
812 
813 	mutex_unlock(&pcpu_alloc_mutex);
814 
815 	/* return address relative to base address */
816 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
817 	kmemleak_alloc_percpu(ptr, size);
818 	return ptr;
819 
820 fail_unlock:
821 	spin_unlock_irqrestore(&pcpu_lock, flags);
822 fail_unlock_mutex:
823 	mutex_unlock(&pcpu_alloc_mutex);
824 	if (warn_limit) {
825 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
826 			   "%s\n", size, align, err);
827 		dump_stack();
828 		if (!--warn_limit)
829 			pr_info("PERCPU: limit reached, disable warning\n");
830 	}
831 	return NULL;
832 }
833 
834 /**
835  * __alloc_percpu - allocate dynamic percpu area
836  * @size: size of area to allocate in bytes
837  * @align: alignment of area (max PAGE_SIZE)
838  *
839  * Allocate zero-filled percpu area of @size bytes aligned at @align.
840  * Might sleep.  Might trigger writeouts.
841  *
842  * CONTEXT:
843  * Does GFP_KERNEL allocation.
844  *
845  * RETURNS:
846  * Percpu pointer to the allocated area on success, NULL on failure.
847  */
848 void __percpu *__alloc_percpu(size_t size, size_t align)
849 {
850 	return pcpu_alloc(size, align, false);
851 }
852 EXPORT_SYMBOL_GPL(__alloc_percpu);
853 
854 /**
855  * __alloc_reserved_percpu - allocate reserved percpu area
856  * @size: size of area to allocate in bytes
857  * @align: alignment of area (max PAGE_SIZE)
858  *
859  * Allocate zero-filled percpu area of @size bytes aligned at @align
860  * from reserved percpu area if arch has set it up; otherwise,
861  * allocation is served from the same dynamic area.  Might sleep.
862  * Might trigger writeouts.
863  *
864  * CONTEXT:
865  * Does GFP_KERNEL allocation.
866  *
867  * RETURNS:
868  * Percpu pointer to the allocated area on success, NULL on failure.
869  */
870 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
871 {
872 	return pcpu_alloc(size, align, true);
873 }
874 
875 /**
876  * pcpu_reclaim - reclaim fully free chunks, workqueue function
877  * @work: unused
878  *
879  * Reclaim all fully free chunks except for the first one.
880  *
881  * CONTEXT:
882  * workqueue context.
883  */
884 static void pcpu_reclaim(struct work_struct *work)
885 {
886 	LIST_HEAD(todo);
887 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
888 	struct pcpu_chunk *chunk, *next;
889 
890 	mutex_lock(&pcpu_alloc_mutex);
891 	spin_lock_irq(&pcpu_lock);
892 
893 	list_for_each_entry_safe(chunk, next, head, list) {
894 		WARN_ON(chunk->immutable);
895 
896 		/* spare the first one */
897 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
898 			continue;
899 
900 		list_move(&chunk->list, &todo);
901 	}
902 
903 	spin_unlock_irq(&pcpu_lock);
904 
905 	list_for_each_entry_safe(chunk, next, &todo, list) {
906 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
907 		pcpu_destroy_chunk(chunk);
908 	}
909 
910 	mutex_unlock(&pcpu_alloc_mutex);
911 }
912 
913 /**
914  * free_percpu - free percpu area
915  * @ptr: pointer to area to free
916  *
917  * Free percpu area @ptr.
918  *
919  * CONTEXT:
920  * Can be called from atomic context.
921  */
922 void free_percpu(void __percpu *ptr)
923 {
924 	void *addr;
925 	struct pcpu_chunk *chunk;
926 	unsigned long flags;
927 	int off;
928 
929 	if (!ptr)
930 		return;
931 
932 	kmemleak_free_percpu(ptr);
933 
934 	addr = __pcpu_ptr_to_addr(ptr);
935 
936 	spin_lock_irqsave(&pcpu_lock, flags);
937 
938 	chunk = pcpu_chunk_addr_search(addr);
939 	off = addr - chunk->base_addr;
940 
941 	pcpu_free_area(chunk, off);
942 
943 	/* if there are more than one fully free chunks, wake up grim reaper */
944 	if (chunk->free_size == pcpu_unit_size) {
945 		struct pcpu_chunk *pos;
946 
947 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
948 			if (pos != chunk) {
949 				schedule_work(&pcpu_reclaim_work);
950 				break;
951 			}
952 	}
953 
954 	spin_unlock_irqrestore(&pcpu_lock, flags);
955 }
956 EXPORT_SYMBOL_GPL(free_percpu);
957 
958 /**
959  * is_kernel_percpu_address - test whether address is from static percpu area
960  * @addr: address to test
961  *
962  * Test whether @addr belongs to in-kernel static percpu area.  Module
963  * static percpu areas are not considered.  For those, use
964  * is_module_percpu_address().
965  *
966  * RETURNS:
967  * %true if @addr is from in-kernel static percpu area, %false otherwise.
968  */
969 bool is_kernel_percpu_address(unsigned long addr)
970 {
971 #ifdef CONFIG_SMP
972 	const size_t static_size = __per_cpu_end - __per_cpu_start;
973 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
974 	unsigned int cpu;
975 
976 	for_each_possible_cpu(cpu) {
977 		void *start = per_cpu_ptr(base, cpu);
978 
979 		if ((void *)addr >= start && (void *)addr < start + static_size)
980 			return true;
981         }
982 #endif
983 	/* on UP, can't distinguish from other static vars, always false */
984 	return false;
985 }
986 
987 /**
988  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
989  * @addr: the address to be converted to physical address
990  *
991  * Given @addr which is dereferenceable address obtained via one of
992  * percpu access macros, this function translates it into its physical
993  * address.  The caller is responsible for ensuring @addr stays valid
994  * until this function finishes.
995  *
996  * percpu allocator has special setup for the first chunk, which currently
997  * supports either embedding in linear address space or vmalloc mapping,
998  * and, from the second one, the backing allocator (currently either vm or
999  * km) provides translation.
1000  *
1001  * The addr can be tranlated simply without checking if it falls into the
1002  * first chunk. But the current code reflects better how percpu allocator
1003  * actually works, and the verification can discover both bugs in percpu
1004  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1005  * code.
1006  *
1007  * RETURNS:
1008  * The physical address for @addr.
1009  */
1010 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1011 {
1012 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1013 	bool in_first_chunk = false;
1014 	unsigned long first_low, first_high;
1015 	unsigned int cpu;
1016 
1017 	/*
1018 	 * The following test on unit_low/high isn't strictly
1019 	 * necessary but will speed up lookups of addresses which
1020 	 * aren't in the first chunk.
1021 	 */
1022 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1023 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1024 				     pcpu_unit_pages);
1025 	if ((unsigned long)addr >= first_low &&
1026 	    (unsigned long)addr < first_high) {
1027 		for_each_possible_cpu(cpu) {
1028 			void *start = per_cpu_ptr(base, cpu);
1029 
1030 			if (addr >= start && addr < start + pcpu_unit_size) {
1031 				in_first_chunk = true;
1032 				break;
1033 			}
1034 		}
1035 	}
1036 
1037 	if (in_first_chunk) {
1038 		if (!is_vmalloc_addr(addr))
1039 			return __pa(addr);
1040 		else
1041 			return page_to_phys(vmalloc_to_page(addr)) +
1042 			       offset_in_page(addr);
1043 	} else
1044 		return page_to_phys(pcpu_addr_to_page(addr)) +
1045 		       offset_in_page(addr);
1046 }
1047 
1048 /**
1049  * pcpu_alloc_alloc_info - allocate percpu allocation info
1050  * @nr_groups: the number of groups
1051  * @nr_units: the number of units
1052  *
1053  * Allocate ai which is large enough for @nr_groups groups containing
1054  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1055  * cpu_map array which is long enough for @nr_units and filled with
1056  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1057  * pointer of other groups.
1058  *
1059  * RETURNS:
1060  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1061  * failure.
1062  */
1063 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1064 						      int nr_units)
1065 {
1066 	struct pcpu_alloc_info *ai;
1067 	size_t base_size, ai_size;
1068 	void *ptr;
1069 	int unit;
1070 
1071 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1072 			  __alignof__(ai->groups[0].cpu_map[0]));
1073 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1074 
1075 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1076 	if (!ptr)
1077 		return NULL;
1078 	ai = ptr;
1079 	ptr += base_size;
1080 
1081 	ai->groups[0].cpu_map = ptr;
1082 
1083 	for (unit = 0; unit < nr_units; unit++)
1084 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1085 
1086 	ai->nr_groups = nr_groups;
1087 	ai->__ai_size = PFN_ALIGN(ai_size);
1088 
1089 	return ai;
1090 }
1091 
1092 /**
1093  * pcpu_free_alloc_info - free percpu allocation info
1094  * @ai: pcpu_alloc_info to free
1095  *
1096  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1097  */
1098 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1099 {
1100 	memblock_free_early(__pa(ai), ai->__ai_size);
1101 }
1102 
1103 /**
1104  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1105  * @lvl: loglevel
1106  * @ai: allocation info to dump
1107  *
1108  * Print out information about @ai using loglevel @lvl.
1109  */
1110 static void pcpu_dump_alloc_info(const char *lvl,
1111 				 const struct pcpu_alloc_info *ai)
1112 {
1113 	int group_width = 1, cpu_width = 1, width;
1114 	char empty_str[] = "--------";
1115 	int alloc = 0, alloc_end = 0;
1116 	int group, v;
1117 	int upa, apl;	/* units per alloc, allocs per line */
1118 
1119 	v = ai->nr_groups;
1120 	while (v /= 10)
1121 		group_width++;
1122 
1123 	v = num_possible_cpus();
1124 	while (v /= 10)
1125 		cpu_width++;
1126 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1127 
1128 	upa = ai->alloc_size / ai->unit_size;
1129 	width = upa * (cpu_width + 1) + group_width + 3;
1130 	apl = rounddown_pow_of_two(max(60 / width, 1));
1131 
1132 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1133 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1134 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1135 
1136 	for (group = 0; group < ai->nr_groups; group++) {
1137 		const struct pcpu_group_info *gi = &ai->groups[group];
1138 		int unit = 0, unit_end = 0;
1139 
1140 		BUG_ON(gi->nr_units % upa);
1141 		for (alloc_end += gi->nr_units / upa;
1142 		     alloc < alloc_end; alloc++) {
1143 			if (!(alloc % apl)) {
1144 				printk(KERN_CONT "\n");
1145 				printk("%spcpu-alloc: ", lvl);
1146 			}
1147 			printk(KERN_CONT "[%0*d] ", group_width, group);
1148 
1149 			for (unit_end += upa; unit < unit_end; unit++)
1150 				if (gi->cpu_map[unit] != NR_CPUS)
1151 					printk(KERN_CONT "%0*d ", cpu_width,
1152 					       gi->cpu_map[unit]);
1153 				else
1154 					printk(KERN_CONT "%s ", empty_str);
1155 		}
1156 	}
1157 	printk(KERN_CONT "\n");
1158 }
1159 
1160 /**
1161  * pcpu_setup_first_chunk - initialize the first percpu chunk
1162  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1163  * @base_addr: mapped address
1164  *
1165  * Initialize the first percpu chunk which contains the kernel static
1166  * perpcu area.  This function is to be called from arch percpu area
1167  * setup path.
1168  *
1169  * @ai contains all information necessary to initialize the first
1170  * chunk and prime the dynamic percpu allocator.
1171  *
1172  * @ai->static_size is the size of static percpu area.
1173  *
1174  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1175  * reserve after the static area in the first chunk.  This reserves
1176  * the first chunk such that it's available only through reserved
1177  * percpu allocation.  This is primarily used to serve module percpu
1178  * static areas on architectures where the addressing model has
1179  * limited offset range for symbol relocations to guarantee module
1180  * percpu symbols fall inside the relocatable range.
1181  *
1182  * @ai->dyn_size determines the number of bytes available for dynamic
1183  * allocation in the first chunk.  The area between @ai->static_size +
1184  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1185  *
1186  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1187  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1188  * @ai->dyn_size.
1189  *
1190  * @ai->atom_size is the allocation atom size and used as alignment
1191  * for vm areas.
1192  *
1193  * @ai->alloc_size is the allocation size and always multiple of
1194  * @ai->atom_size.  This is larger than @ai->atom_size if
1195  * @ai->unit_size is larger than @ai->atom_size.
1196  *
1197  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1198  * percpu areas.  Units which should be colocated are put into the
1199  * same group.  Dynamic VM areas will be allocated according to these
1200  * groupings.  If @ai->nr_groups is zero, a single group containing
1201  * all units is assumed.
1202  *
1203  * The caller should have mapped the first chunk at @base_addr and
1204  * copied static data to each unit.
1205  *
1206  * If the first chunk ends up with both reserved and dynamic areas, it
1207  * is served by two chunks - one to serve the core static and reserved
1208  * areas and the other for the dynamic area.  They share the same vm
1209  * and page map but uses different area allocation map to stay away
1210  * from each other.  The latter chunk is circulated in the chunk slots
1211  * and available for dynamic allocation like any other chunks.
1212  *
1213  * RETURNS:
1214  * 0 on success, -errno on failure.
1215  */
1216 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1217 				  void *base_addr)
1218 {
1219 	static char cpus_buf[4096] __initdata;
1220 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1221 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1222 	size_t dyn_size = ai->dyn_size;
1223 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1224 	struct pcpu_chunk *schunk, *dchunk = NULL;
1225 	unsigned long *group_offsets;
1226 	size_t *group_sizes;
1227 	unsigned long *unit_off;
1228 	unsigned int cpu;
1229 	int *unit_map;
1230 	int group, unit, i;
1231 
1232 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1233 
1234 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1235 	if (unlikely(cond)) {						\
1236 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1237 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1238 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1239 		BUG();							\
1240 	}								\
1241 } while (0)
1242 
1243 	/* sanity checks */
1244 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1245 #ifdef CONFIG_SMP
1246 	PCPU_SETUP_BUG_ON(!ai->static_size);
1247 	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1248 #endif
1249 	PCPU_SETUP_BUG_ON(!base_addr);
1250 	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1251 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1252 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1253 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1254 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1255 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1256 
1257 	/* process group information and build config tables accordingly */
1258 	group_offsets = memblock_virt_alloc(ai->nr_groups *
1259 					     sizeof(group_offsets[0]), 0);
1260 	group_sizes = memblock_virt_alloc(ai->nr_groups *
1261 					   sizeof(group_sizes[0]), 0);
1262 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1263 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1264 
1265 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1266 		unit_map[cpu] = UINT_MAX;
1267 
1268 	pcpu_low_unit_cpu = NR_CPUS;
1269 	pcpu_high_unit_cpu = NR_CPUS;
1270 
1271 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1272 		const struct pcpu_group_info *gi = &ai->groups[group];
1273 
1274 		group_offsets[group] = gi->base_offset;
1275 		group_sizes[group] = gi->nr_units * ai->unit_size;
1276 
1277 		for (i = 0; i < gi->nr_units; i++) {
1278 			cpu = gi->cpu_map[i];
1279 			if (cpu == NR_CPUS)
1280 				continue;
1281 
1282 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1283 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1284 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1285 
1286 			unit_map[cpu] = unit + i;
1287 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1288 
1289 			/* determine low/high unit_cpu */
1290 			if (pcpu_low_unit_cpu == NR_CPUS ||
1291 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1292 				pcpu_low_unit_cpu = cpu;
1293 			if (pcpu_high_unit_cpu == NR_CPUS ||
1294 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1295 				pcpu_high_unit_cpu = cpu;
1296 		}
1297 	}
1298 	pcpu_nr_units = unit;
1299 
1300 	for_each_possible_cpu(cpu)
1301 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1302 
1303 	/* we're done parsing the input, undefine BUG macro and dump config */
1304 #undef PCPU_SETUP_BUG_ON
1305 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1306 
1307 	pcpu_nr_groups = ai->nr_groups;
1308 	pcpu_group_offsets = group_offsets;
1309 	pcpu_group_sizes = group_sizes;
1310 	pcpu_unit_map = unit_map;
1311 	pcpu_unit_offsets = unit_off;
1312 
1313 	/* determine basic parameters */
1314 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1315 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1316 	pcpu_atom_size = ai->atom_size;
1317 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1318 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1319 
1320 	/*
1321 	 * Allocate chunk slots.  The additional last slot is for
1322 	 * empty chunks.
1323 	 */
1324 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1325 	pcpu_slot = memblock_virt_alloc(
1326 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1327 	for (i = 0; i < pcpu_nr_slots; i++)
1328 		INIT_LIST_HEAD(&pcpu_slot[i]);
1329 
1330 	/*
1331 	 * Initialize static chunk.  If reserved_size is zero, the
1332 	 * static chunk covers static area + dynamic allocation area
1333 	 * in the first chunk.  If reserved_size is not zero, it
1334 	 * covers static area + reserved area (mostly used for module
1335 	 * static percpu allocation).
1336 	 */
1337 	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1338 	INIT_LIST_HEAD(&schunk->list);
1339 	schunk->base_addr = base_addr;
1340 	schunk->map = smap;
1341 	schunk->map_alloc = ARRAY_SIZE(smap);
1342 	schunk->immutable = true;
1343 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1344 
1345 	if (ai->reserved_size) {
1346 		schunk->free_size = ai->reserved_size;
1347 		pcpu_reserved_chunk = schunk;
1348 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1349 	} else {
1350 		schunk->free_size = dyn_size;
1351 		dyn_size = 0;			/* dynamic area covered */
1352 	}
1353 	schunk->contig_hint = schunk->free_size;
1354 
1355 	schunk->map[0] = 1;
1356 	schunk->map[1] = ai->static_size;
1357 	schunk->map_used = 1;
1358 	if (schunk->free_size)
1359 		schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1360 	else
1361 		schunk->map[1] |= 1;
1362 
1363 	/* init dynamic chunk if necessary */
1364 	if (dyn_size) {
1365 		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1366 		INIT_LIST_HEAD(&dchunk->list);
1367 		dchunk->base_addr = base_addr;
1368 		dchunk->map = dmap;
1369 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1370 		dchunk->immutable = true;
1371 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1372 
1373 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1374 		dchunk->map[0] = 1;
1375 		dchunk->map[1] = pcpu_reserved_chunk_limit;
1376 		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1377 		dchunk->map_used = 2;
1378 	}
1379 
1380 	/* link the first chunk in */
1381 	pcpu_first_chunk = dchunk ?: schunk;
1382 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1383 
1384 	/* we're done */
1385 	pcpu_base_addr = base_addr;
1386 	return 0;
1387 }
1388 
1389 #ifdef CONFIG_SMP
1390 
1391 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1392 	[PCPU_FC_AUTO]	= "auto",
1393 	[PCPU_FC_EMBED]	= "embed",
1394 	[PCPU_FC_PAGE]	= "page",
1395 };
1396 
1397 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1398 
1399 static int __init percpu_alloc_setup(char *str)
1400 {
1401 	if (!str)
1402 		return -EINVAL;
1403 
1404 	if (0)
1405 		/* nada */;
1406 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1407 	else if (!strcmp(str, "embed"))
1408 		pcpu_chosen_fc = PCPU_FC_EMBED;
1409 #endif
1410 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1411 	else if (!strcmp(str, "page"))
1412 		pcpu_chosen_fc = PCPU_FC_PAGE;
1413 #endif
1414 	else
1415 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1416 
1417 	return 0;
1418 }
1419 early_param("percpu_alloc", percpu_alloc_setup);
1420 
1421 /*
1422  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1423  * Build it if needed by the arch config or the generic setup is going
1424  * to be used.
1425  */
1426 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1427 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1428 #define BUILD_EMBED_FIRST_CHUNK
1429 #endif
1430 
1431 /* build pcpu_page_first_chunk() iff needed by the arch config */
1432 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1433 #define BUILD_PAGE_FIRST_CHUNK
1434 #endif
1435 
1436 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1437 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1438 /**
1439  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1440  * @reserved_size: the size of reserved percpu area in bytes
1441  * @dyn_size: minimum free size for dynamic allocation in bytes
1442  * @atom_size: allocation atom size
1443  * @cpu_distance_fn: callback to determine distance between cpus, optional
1444  *
1445  * This function determines grouping of units, their mappings to cpus
1446  * and other parameters considering needed percpu size, allocation
1447  * atom size and distances between CPUs.
1448  *
1449  * Groups are always mutliples of atom size and CPUs which are of
1450  * LOCAL_DISTANCE both ways are grouped together and share space for
1451  * units in the same group.  The returned configuration is guaranteed
1452  * to have CPUs on different nodes on different groups and >=75% usage
1453  * of allocated virtual address space.
1454  *
1455  * RETURNS:
1456  * On success, pointer to the new allocation_info is returned.  On
1457  * failure, ERR_PTR value is returned.
1458  */
1459 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1460 				size_t reserved_size, size_t dyn_size,
1461 				size_t atom_size,
1462 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1463 {
1464 	static int group_map[NR_CPUS] __initdata;
1465 	static int group_cnt[NR_CPUS] __initdata;
1466 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1467 	int nr_groups = 1, nr_units = 0;
1468 	size_t size_sum, min_unit_size, alloc_size;
1469 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1470 	int last_allocs, group, unit;
1471 	unsigned int cpu, tcpu;
1472 	struct pcpu_alloc_info *ai;
1473 	unsigned int *cpu_map;
1474 
1475 	/* this function may be called multiple times */
1476 	memset(group_map, 0, sizeof(group_map));
1477 	memset(group_cnt, 0, sizeof(group_cnt));
1478 
1479 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1480 	size_sum = PFN_ALIGN(static_size + reserved_size +
1481 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1482 	dyn_size = size_sum - static_size - reserved_size;
1483 
1484 	/*
1485 	 * Determine min_unit_size, alloc_size and max_upa such that
1486 	 * alloc_size is multiple of atom_size and is the smallest
1487 	 * which can accommodate 4k aligned segments which are equal to
1488 	 * or larger than min_unit_size.
1489 	 */
1490 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1491 
1492 	alloc_size = roundup(min_unit_size, atom_size);
1493 	upa = alloc_size / min_unit_size;
1494 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1495 		upa--;
1496 	max_upa = upa;
1497 
1498 	/* group cpus according to their proximity */
1499 	for_each_possible_cpu(cpu) {
1500 		group = 0;
1501 	next_group:
1502 		for_each_possible_cpu(tcpu) {
1503 			if (cpu == tcpu)
1504 				break;
1505 			if (group_map[tcpu] == group && cpu_distance_fn &&
1506 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1507 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1508 				group++;
1509 				nr_groups = max(nr_groups, group + 1);
1510 				goto next_group;
1511 			}
1512 		}
1513 		group_map[cpu] = group;
1514 		group_cnt[group]++;
1515 	}
1516 
1517 	/*
1518 	 * Expand unit size until address space usage goes over 75%
1519 	 * and then as much as possible without using more address
1520 	 * space.
1521 	 */
1522 	last_allocs = INT_MAX;
1523 	for (upa = max_upa; upa; upa--) {
1524 		int allocs = 0, wasted = 0;
1525 
1526 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1527 			continue;
1528 
1529 		for (group = 0; group < nr_groups; group++) {
1530 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1531 			allocs += this_allocs;
1532 			wasted += this_allocs * upa - group_cnt[group];
1533 		}
1534 
1535 		/*
1536 		 * Don't accept if wastage is over 1/3.  The
1537 		 * greater-than comparison ensures upa==1 always
1538 		 * passes the following check.
1539 		 */
1540 		if (wasted > num_possible_cpus() / 3)
1541 			continue;
1542 
1543 		/* and then don't consume more memory */
1544 		if (allocs > last_allocs)
1545 			break;
1546 		last_allocs = allocs;
1547 		best_upa = upa;
1548 	}
1549 	upa = best_upa;
1550 
1551 	/* allocate and fill alloc_info */
1552 	for (group = 0; group < nr_groups; group++)
1553 		nr_units += roundup(group_cnt[group], upa);
1554 
1555 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1556 	if (!ai)
1557 		return ERR_PTR(-ENOMEM);
1558 	cpu_map = ai->groups[0].cpu_map;
1559 
1560 	for (group = 0; group < nr_groups; group++) {
1561 		ai->groups[group].cpu_map = cpu_map;
1562 		cpu_map += roundup(group_cnt[group], upa);
1563 	}
1564 
1565 	ai->static_size = static_size;
1566 	ai->reserved_size = reserved_size;
1567 	ai->dyn_size = dyn_size;
1568 	ai->unit_size = alloc_size / upa;
1569 	ai->atom_size = atom_size;
1570 	ai->alloc_size = alloc_size;
1571 
1572 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1573 		struct pcpu_group_info *gi = &ai->groups[group];
1574 
1575 		/*
1576 		 * Initialize base_offset as if all groups are located
1577 		 * back-to-back.  The caller should update this to
1578 		 * reflect actual allocation.
1579 		 */
1580 		gi->base_offset = unit * ai->unit_size;
1581 
1582 		for_each_possible_cpu(cpu)
1583 			if (group_map[cpu] == group)
1584 				gi->cpu_map[gi->nr_units++] = cpu;
1585 		gi->nr_units = roundup(gi->nr_units, upa);
1586 		unit += gi->nr_units;
1587 	}
1588 	BUG_ON(unit != nr_units);
1589 
1590 	return ai;
1591 }
1592 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1593 
1594 #if defined(BUILD_EMBED_FIRST_CHUNK)
1595 /**
1596  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1597  * @reserved_size: the size of reserved percpu area in bytes
1598  * @dyn_size: minimum free size for dynamic allocation in bytes
1599  * @atom_size: allocation atom size
1600  * @cpu_distance_fn: callback to determine distance between cpus, optional
1601  * @alloc_fn: function to allocate percpu page
1602  * @free_fn: function to free percpu page
1603  *
1604  * This is a helper to ease setting up embedded first percpu chunk and
1605  * can be called where pcpu_setup_first_chunk() is expected.
1606  *
1607  * If this function is used to setup the first chunk, it is allocated
1608  * by calling @alloc_fn and used as-is without being mapped into
1609  * vmalloc area.  Allocations are always whole multiples of @atom_size
1610  * aligned to @atom_size.
1611  *
1612  * This enables the first chunk to piggy back on the linear physical
1613  * mapping which often uses larger page size.  Please note that this
1614  * can result in very sparse cpu->unit mapping on NUMA machines thus
1615  * requiring large vmalloc address space.  Don't use this allocator if
1616  * vmalloc space is not orders of magnitude larger than distances
1617  * between node memory addresses (ie. 32bit NUMA machines).
1618  *
1619  * @dyn_size specifies the minimum dynamic area size.
1620  *
1621  * If the needed size is smaller than the minimum or specified unit
1622  * size, the leftover is returned using @free_fn.
1623  *
1624  * RETURNS:
1625  * 0 on success, -errno on failure.
1626  */
1627 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1628 				  size_t atom_size,
1629 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1630 				  pcpu_fc_alloc_fn_t alloc_fn,
1631 				  pcpu_fc_free_fn_t free_fn)
1632 {
1633 	void *base = (void *)ULONG_MAX;
1634 	void **areas = NULL;
1635 	struct pcpu_alloc_info *ai;
1636 	size_t size_sum, areas_size, max_distance;
1637 	int group, i, rc;
1638 
1639 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1640 				   cpu_distance_fn);
1641 	if (IS_ERR(ai))
1642 		return PTR_ERR(ai);
1643 
1644 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1645 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1646 
1647 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1648 	if (!areas) {
1649 		rc = -ENOMEM;
1650 		goto out_free;
1651 	}
1652 
1653 	/* allocate, copy and determine base address */
1654 	for (group = 0; group < ai->nr_groups; group++) {
1655 		struct pcpu_group_info *gi = &ai->groups[group];
1656 		unsigned int cpu = NR_CPUS;
1657 		void *ptr;
1658 
1659 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1660 			cpu = gi->cpu_map[i];
1661 		BUG_ON(cpu == NR_CPUS);
1662 
1663 		/* allocate space for the whole group */
1664 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1665 		if (!ptr) {
1666 			rc = -ENOMEM;
1667 			goto out_free_areas;
1668 		}
1669 		/* kmemleak tracks the percpu allocations separately */
1670 		kmemleak_free(ptr);
1671 		areas[group] = ptr;
1672 
1673 		base = min(ptr, base);
1674 	}
1675 
1676 	/*
1677 	 * Copy data and free unused parts.  This should happen after all
1678 	 * allocations are complete; otherwise, we may end up with
1679 	 * overlapping groups.
1680 	 */
1681 	for (group = 0; group < ai->nr_groups; group++) {
1682 		struct pcpu_group_info *gi = &ai->groups[group];
1683 		void *ptr = areas[group];
1684 
1685 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1686 			if (gi->cpu_map[i] == NR_CPUS) {
1687 				/* unused unit, free whole */
1688 				free_fn(ptr, ai->unit_size);
1689 				continue;
1690 			}
1691 			/* copy and return the unused part */
1692 			memcpy(ptr, __per_cpu_load, ai->static_size);
1693 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1694 		}
1695 	}
1696 
1697 	/* base address is now known, determine group base offsets */
1698 	max_distance = 0;
1699 	for (group = 0; group < ai->nr_groups; group++) {
1700 		ai->groups[group].base_offset = areas[group] - base;
1701 		max_distance = max_t(size_t, max_distance,
1702 				     ai->groups[group].base_offset);
1703 	}
1704 	max_distance += ai->unit_size;
1705 
1706 	/* warn if maximum distance is further than 75% of vmalloc space */
1707 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1708 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1709 			   "space 0x%lx\n", max_distance,
1710 			   VMALLOC_TOTAL);
1711 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1712 		/* and fail if we have fallback */
1713 		rc = -EINVAL;
1714 		goto out_free;
1715 #endif
1716 	}
1717 
1718 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1719 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1720 		ai->dyn_size, ai->unit_size);
1721 
1722 	rc = pcpu_setup_first_chunk(ai, base);
1723 	goto out_free;
1724 
1725 out_free_areas:
1726 	for (group = 0; group < ai->nr_groups; group++)
1727 		if (areas[group])
1728 			free_fn(areas[group],
1729 				ai->groups[group].nr_units * ai->unit_size);
1730 out_free:
1731 	pcpu_free_alloc_info(ai);
1732 	if (areas)
1733 		memblock_free_early(__pa(areas), areas_size);
1734 	return rc;
1735 }
1736 #endif /* BUILD_EMBED_FIRST_CHUNK */
1737 
1738 #ifdef BUILD_PAGE_FIRST_CHUNK
1739 /**
1740  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1741  * @reserved_size: the size of reserved percpu area in bytes
1742  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1743  * @free_fn: function to free percpu page, always called with PAGE_SIZE
1744  * @populate_pte_fn: function to populate pte
1745  *
1746  * This is a helper to ease setting up page-remapped first percpu
1747  * chunk and can be called where pcpu_setup_first_chunk() is expected.
1748  *
1749  * This is the basic allocator.  Static percpu area is allocated
1750  * page-by-page into vmalloc area.
1751  *
1752  * RETURNS:
1753  * 0 on success, -errno on failure.
1754  */
1755 int __init pcpu_page_first_chunk(size_t reserved_size,
1756 				 pcpu_fc_alloc_fn_t alloc_fn,
1757 				 pcpu_fc_free_fn_t free_fn,
1758 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1759 {
1760 	static struct vm_struct vm;
1761 	struct pcpu_alloc_info *ai;
1762 	char psize_str[16];
1763 	int unit_pages;
1764 	size_t pages_size;
1765 	struct page **pages;
1766 	int unit, i, j, rc;
1767 
1768 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1769 
1770 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1771 	if (IS_ERR(ai))
1772 		return PTR_ERR(ai);
1773 	BUG_ON(ai->nr_groups != 1);
1774 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1775 
1776 	unit_pages = ai->unit_size >> PAGE_SHIFT;
1777 
1778 	/* unaligned allocations can't be freed, round up to page size */
1779 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1780 			       sizeof(pages[0]));
1781 	pages = memblock_virt_alloc(pages_size, 0);
1782 
1783 	/* allocate pages */
1784 	j = 0;
1785 	for (unit = 0; unit < num_possible_cpus(); unit++)
1786 		for (i = 0; i < unit_pages; i++) {
1787 			unsigned int cpu = ai->groups[0].cpu_map[unit];
1788 			void *ptr;
1789 
1790 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1791 			if (!ptr) {
1792 				pr_warning("PERCPU: failed to allocate %s page "
1793 					   "for cpu%u\n", psize_str, cpu);
1794 				goto enomem;
1795 			}
1796 			/* kmemleak tracks the percpu allocations separately */
1797 			kmemleak_free(ptr);
1798 			pages[j++] = virt_to_page(ptr);
1799 		}
1800 
1801 	/* allocate vm area, map the pages and copy static data */
1802 	vm.flags = VM_ALLOC;
1803 	vm.size = num_possible_cpus() * ai->unit_size;
1804 	vm_area_register_early(&vm, PAGE_SIZE);
1805 
1806 	for (unit = 0; unit < num_possible_cpus(); unit++) {
1807 		unsigned long unit_addr =
1808 			(unsigned long)vm.addr + unit * ai->unit_size;
1809 
1810 		for (i = 0; i < unit_pages; i++)
1811 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1812 
1813 		/* pte already populated, the following shouldn't fail */
1814 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1815 				      unit_pages);
1816 		if (rc < 0)
1817 			panic("failed to map percpu area, err=%d\n", rc);
1818 
1819 		/*
1820 		 * FIXME: Archs with virtual cache should flush local
1821 		 * cache for the linear mapping here - something
1822 		 * equivalent to flush_cache_vmap() on the local cpu.
1823 		 * flush_cache_vmap() can't be used as most supporting
1824 		 * data structures are not set up yet.
1825 		 */
1826 
1827 		/* copy static data */
1828 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1829 	}
1830 
1831 	/* we're ready, commit */
1832 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1833 		unit_pages, psize_str, vm.addr, ai->static_size,
1834 		ai->reserved_size, ai->dyn_size);
1835 
1836 	rc = pcpu_setup_first_chunk(ai, vm.addr);
1837 	goto out_free_ar;
1838 
1839 enomem:
1840 	while (--j >= 0)
1841 		free_fn(page_address(pages[j]), PAGE_SIZE);
1842 	rc = -ENOMEM;
1843 out_free_ar:
1844 	memblock_free_early(__pa(pages), pages_size);
1845 	pcpu_free_alloc_info(ai);
1846 	return rc;
1847 }
1848 #endif /* BUILD_PAGE_FIRST_CHUNK */
1849 
1850 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1851 /*
1852  * Generic SMP percpu area setup.
1853  *
1854  * The embedding helper is used because its behavior closely resembles
1855  * the original non-dynamic generic percpu area setup.  This is
1856  * important because many archs have addressing restrictions and might
1857  * fail if the percpu area is located far away from the previous
1858  * location.  As an added bonus, in non-NUMA cases, embedding is
1859  * generally a good idea TLB-wise because percpu area can piggy back
1860  * on the physical linear memory mapping which uses large page
1861  * mappings on applicable archs.
1862  */
1863 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1864 EXPORT_SYMBOL(__per_cpu_offset);
1865 
1866 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1867 				       size_t align)
1868 {
1869 	return  memblock_virt_alloc_from_nopanic(
1870 			size, align, __pa(MAX_DMA_ADDRESS));
1871 }
1872 
1873 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1874 {
1875 	memblock_free_early(__pa(ptr), size);
1876 }
1877 
1878 void __init setup_per_cpu_areas(void)
1879 {
1880 	unsigned long delta;
1881 	unsigned int cpu;
1882 	int rc;
1883 
1884 	/*
1885 	 * Always reserve area for module percpu variables.  That's
1886 	 * what the legacy allocator did.
1887 	 */
1888 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1889 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1890 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1891 	if (rc < 0)
1892 		panic("Failed to initialize percpu areas.");
1893 
1894 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1895 	for_each_possible_cpu(cpu)
1896 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1897 }
1898 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1899 
1900 #else	/* CONFIG_SMP */
1901 
1902 /*
1903  * UP percpu area setup.
1904  *
1905  * UP always uses km-based percpu allocator with identity mapping.
1906  * Static percpu variables are indistinguishable from the usual static
1907  * variables and don't require any special preparation.
1908  */
1909 void __init setup_per_cpu_areas(void)
1910 {
1911 	const size_t unit_size =
1912 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1913 					 PERCPU_DYNAMIC_RESERVE));
1914 	struct pcpu_alloc_info *ai;
1915 	void *fc;
1916 
1917 	ai = pcpu_alloc_alloc_info(1, 1);
1918 	fc = memblock_virt_alloc_from_nopanic(unit_size,
1919 					      PAGE_SIZE,
1920 					      __pa(MAX_DMA_ADDRESS));
1921 	if (!ai || !fc)
1922 		panic("Failed to allocate memory for percpu areas.");
1923 	/* kmemleak tracks the percpu allocations separately */
1924 	kmemleak_free(fc);
1925 
1926 	ai->dyn_size = unit_size;
1927 	ai->unit_size = unit_size;
1928 	ai->atom_size = unit_size;
1929 	ai->alloc_size = unit_size;
1930 	ai->groups[0].nr_units = 1;
1931 	ai->groups[0].cpu_map[0] = 0;
1932 
1933 	if (pcpu_setup_first_chunk(ai, fc) < 0)
1934 		panic("Failed to initialize percpu areas.");
1935 }
1936 
1937 #endif	/* CONFIG_SMP */
1938 
1939 /*
1940  * First and reserved chunks are initialized with temporary allocation
1941  * map in initdata so that they can be used before slab is online.
1942  * This function is called after slab is brought up and replaces those
1943  * with properly allocated maps.
1944  */
1945 void __init percpu_init_late(void)
1946 {
1947 	struct pcpu_chunk *target_chunks[] =
1948 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1949 	struct pcpu_chunk *chunk;
1950 	unsigned long flags;
1951 	int i;
1952 
1953 	for (i = 0; (chunk = target_chunks[i]); i++) {
1954 		int *map;
1955 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1956 
1957 		BUILD_BUG_ON(size > PAGE_SIZE);
1958 
1959 		map = pcpu_mem_zalloc(size);
1960 		BUG_ON(!map);
1961 
1962 		spin_lock_irqsave(&pcpu_lock, flags);
1963 		memcpy(map, chunk->map, size);
1964 		chunk->map = map;
1965 		spin_unlock_irqrestore(&pcpu_lock, flags);
1966 	}
1967 }
1968