1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * tries to allocate from the fullest chunk first. Each chunk is managed 41 * by a bitmap with metadata blocks. The allocation map is updated on 42 * every allocation and free to reflect the current state while the boundary 43 * map is only updated on allocation. Each metadata block contains 44 * information to help mitigate the need to iterate over large portions 45 * of the bitmap. The reverse mapping from page to chunk is stored in 46 * the page's index. Lastly, units are lazily backed and grow in unison. 47 * 48 * There is a unique conversion that goes on here between bytes and bits. 49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 50 * tracks the number of pages it is responsible for in nr_pages. Helper 51 * functions are used to convert from between the bytes, bits, and blocks. 52 * All hints are managed in bits unless explicitly stated. 53 * 54 * To use this allocator, arch code should do the following: 55 * 56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 57 * regular address to percpu pointer and back if they need to be 58 * different from the default 59 * 60 * - use pcpu_setup_first_chunk() during percpu area initialization to 61 * setup the first chunk containing the kernel static percpu area 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 66 #include <linux/bitmap.h> 67 #include <linux/memblock.h> 68 #include <linux/err.h> 69 #include <linux/lcm.h> 70 #include <linux/list.h> 71 #include <linux/log2.h> 72 #include <linux/mm.h> 73 #include <linux/module.h> 74 #include <linux/mutex.h> 75 #include <linux/percpu.h> 76 #include <linux/pfn.h> 77 #include <linux/slab.h> 78 #include <linux/spinlock.h> 79 #include <linux/vmalloc.h> 80 #include <linux/workqueue.h> 81 #include <linux/kmemleak.h> 82 #include <linux/sched.h> 83 84 #include <asm/cacheflush.h> 85 #include <asm/sections.h> 86 #include <asm/tlbflush.h> 87 #include <asm/io.h> 88 89 #define CREATE_TRACE_POINTS 90 #include <trace/events/percpu.h> 91 92 #include "percpu-internal.h" 93 94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ 95 #define PCPU_SLOT_BASE_SHIFT 5 96 /* chunks in slots below this are subject to being sidelined on failed alloc */ 97 #define PCPU_SLOT_FAIL_THRESHOLD 3 98 99 #define PCPU_EMPTY_POP_PAGES_LOW 2 100 #define PCPU_EMPTY_POP_PAGES_HIGH 4 101 102 #ifdef CONFIG_SMP 103 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 104 #ifndef __addr_to_pcpu_ptr 105 #define __addr_to_pcpu_ptr(addr) \ 106 (void __percpu *)((unsigned long)(addr) - \ 107 (unsigned long)pcpu_base_addr + \ 108 (unsigned long)__per_cpu_start) 109 #endif 110 #ifndef __pcpu_ptr_to_addr 111 #define __pcpu_ptr_to_addr(ptr) \ 112 (void __force *)((unsigned long)(ptr) + \ 113 (unsigned long)pcpu_base_addr - \ 114 (unsigned long)__per_cpu_start) 115 #endif 116 #else /* CONFIG_SMP */ 117 /* on UP, it's always identity mapped */ 118 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 119 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 120 #endif /* CONFIG_SMP */ 121 122 static int pcpu_unit_pages __ro_after_init; 123 static int pcpu_unit_size __ro_after_init; 124 static int pcpu_nr_units __ro_after_init; 125 static int pcpu_atom_size __ro_after_init; 126 int pcpu_nr_slots __ro_after_init; 127 static size_t pcpu_chunk_struct_size __ro_after_init; 128 129 /* cpus with the lowest and highest unit addresses */ 130 static unsigned int pcpu_low_unit_cpu __ro_after_init; 131 static unsigned int pcpu_high_unit_cpu __ro_after_init; 132 133 /* the address of the first chunk which starts with the kernel static area */ 134 void *pcpu_base_addr __ro_after_init; 135 EXPORT_SYMBOL_GPL(pcpu_base_addr); 136 137 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 138 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 139 140 /* group information, used for vm allocation */ 141 static int pcpu_nr_groups __ro_after_init; 142 static const unsigned long *pcpu_group_offsets __ro_after_init; 143 static const size_t *pcpu_group_sizes __ro_after_init; 144 145 /* 146 * The first chunk which always exists. Note that unlike other 147 * chunks, this one can be allocated and mapped in several different 148 * ways and thus often doesn't live in the vmalloc area. 149 */ 150 struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 151 152 /* 153 * Optional reserved chunk. This chunk reserves part of the first 154 * chunk and serves it for reserved allocations. When the reserved 155 * region doesn't exist, the following variable is NULL. 156 */ 157 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 158 159 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 160 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 161 162 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ 163 164 /* chunks which need their map areas extended, protected by pcpu_lock */ 165 static LIST_HEAD(pcpu_map_extend_chunks); 166 167 /* 168 * The number of empty populated pages, protected by pcpu_lock. The 169 * reserved chunk doesn't contribute to the count. 170 */ 171 int pcpu_nr_empty_pop_pages; 172 173 /* 174 * The number of populated pages in use by the allocator, protected by 175 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 176 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 177 * and increments/decrements this count by 1). 178 */ 179 static unsigned long pcpu_nr_populated; 180 181 /* 182 * Balance work is used to populate or destroy chunks asynchronously. We 183 * try to keep the number of populated free pages between 184 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 185 * empty chunk. 186 */ 187 static void pcpu_balance_workfn(struct work_struct *work); 188 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 189 static bool pcpu_async_enabled __read_mostly; 190 static bool pcpu_atomic_alloc_failed; 191 192 static void pcpu_schedule_balance_work(void) 193 { 194 if (pcpu_async_enabled) 195 schedule_work(&pcpu_balance_work); 196 } 197 198 /** 199 * pcpu_addr_in_chunk - check if the address is served from this chunk 200 * @chunk: chunk of interest 201 * @addr: percpu address 202 * 203 * RETURNS: 204 * True if the address is served from this chunk. 205 */ 206 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 207 { 208 void *start_addr, *end_addr; 209 210 if (!chunk) 211 return false; 212 213 start_addr = chunk->base_addr + chunk->start_offset; 214 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 215 chunk->end_offset; 216 217 return addr >= start_addr && addr < end_addr; 218 } 219 220 static int __pcpu_size_to_slot(int size) 221 { 222 int highbit = fls(size); /* size is in bytes */ 223 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 224 } 225 226 static int pcpu_size_to_slot(int size) 227 { 228 if (size == pcpu_unit_size) 229 return pcpu_nr_slots - 1; 230 return __pcpu_size_to_slot(size); 231 } 232 233 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 234 { 235 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 236 237 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 238 chunk_md->contig_hint == 0) 239 return 0; 240 241 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 242 } 243 244 /* set the pointer to a chunk in a page struct */ 245 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 246 { 247 page->index = (unsigned long)pcpu; 248 } 249 250 /* obtain pointer to a chunk from a page struct */ 251 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 252 { 253 return (struct pcpu_chunk *)page->index; 254 } 255 256 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 257 { 258 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 259 } 260 261 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 262 { 263 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 264 } 265 266 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 267 unsigned int cpu, int page_idx) 268 { 269 return (unsigned long)chunk->base_addr + 270 pcpu_unit_page_offset(cpu, page_idx); 271 } 272 273 /* 274 * The following are helper functions to help access bitmaps and convert 275 * between bitmap offsets to address offsets. 276 */ 277 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 278 { 279 return chunk->alloc_map + 280 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 281 } 282 283 static unsigned long pcpu_off_to_block_index(int off) 284 { 285 return off / PCPU_BITMAP_BLOCK_BITS; 286 } 287 288 static unsigned long pcpu_off_to_block_off(int off) 289 { 290 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 291 } 292 293 static unsigned long pcpu_block_off_to_off(int index, int off) 294 { 295 return index * PCPU_BITMAP_BLOCK_BITS + off; 296 } 297 298 /* 299 * pcpu_next_hint - determine which hint to use 300 * @block: block of interest 301 * @alloc_bits: size of allocation 302 * 303 * This determines if we should scan based on the scan_hint or first_free. 304 * In general, we want to scan from first_free to fulfill allocations by 305 * first fit. However, if we know a scan_hint at position scan_hint_start 306 * cannot fulfill an allocation, we can begin scanning from there knowing 307 * the contig_hint will be our fallback. 308 */ 309 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 310 { 311 /* 312 * The three conditions below determine if we can skip past the 313 * scan_hint. First, does the scan hint exist. Second, is the 314 * contig_hint after the scan_hint (possibly not true iff 315 * contig_hint == scan_hint). Third, is the allocation request 316 * larger than the scan_hint. 317 */ 318 if (block->scan_hint && 319 block->contig_hint_start > block->scan_hint_start && 320 alloc_bits > block->scan_hint) 321 return block->scan_hint_start + block->scan_hint; 322 323 return block->first_free; 324 } 325 326 /** 327 * pcpu_next_md_free_region - finds the next hint free area 328 * @chunk: chunk of interest 329 * @bit_off: chunk offset 330 * @bits: size of free area 331 * 332 * Helper function for pcpu_for_each_md_free_region. It checks 333 * block->contig_hint and performs aggregation across blocks to find the 334 * next hint. It modifies bit_off and bits in-place to be consumed in the 335 * loop. 336 */ 337 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 338 int *bits) 339 { 340 int i = pcpu_off_to_block_index(*bit_off); 341 int block_off = pcpu_off_to_block_off(*bit_off); 342 struct pcpu_block_md *block; 343 344 *bits = 0; 345 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 346 block++, i++) { 347 /* handles contig area across blocks */ 348 if (*bits) { 349 *bits += block->left_free; 350 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 351 continue; 352 return; 353 } 354 355 /* 356 * This checks three things. First is there a contig_hint to 357 * check. Second, have we checked this hint before by 358 * comparing the block_off. Third, is this the same as the 359 * right contig hint. In the last case, it spills over into 360 * the next block and should be handled by the contig area 361 * across blocks code. 362 */ 363 *bits = block->contig_hint; 364 if (*bits && block->contig_hint_start >= block_off && 365 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 366 *bit_off = pcpu_block_off_to_off(i, 367 block->contig_hint_start); 368 return; 369 } 370 /* reset to satisfy the second predicate above */ 371 block_off = 0; 372 373 *bits = block->right_free; 374 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 375 } 376 } 377 378 /** 379 * pcpu_next_fit_region - finds fit areas for a given allocation request 380 * @chunk: chunk of interest 381 * @alloc_bits: size of allocation 382 * @align: alignment of area (max PAGE_SIZE) 383 * @bit_off: chunk offset 384 * @bits: size of free area 385 * 386 * Finds the next free region that is viable for use with a given size and 387 * alignment. This only returns if there is a valid area to be used for this 388 * allocation. block->first_free is returned if the allocation request fits 389 * within the block to see if the request can be fulfilled prior to the contig 390 * hint. 391 */ 392 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 393 int align, int *bit_off, int *bits) 394 { 395 int i = pcpu_off_to_block_index(*bit_off); 396 int block_off = pcpu_off_to_block_off(*bit_off); 397 struct pcpu_block_md *block; 398 399 *bits = 0; 400 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 401 block++, i++) { 402 /* handles contig area across blocks */ 403 if (*bits) { 404 *bits += block->left_free; 405 if (*bits >= alloc_bits) 406 return; 407 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 408 continue; 409 } 410 411 /* check block->contig_hint */ 412 *bits = ALIGN(block->contig_hint_start, align) - 413 block->contig_hint_start; 414 /* 415 * This uses the block offset to determine if this has been 416 * checked in the prior iteration. 417 */ 418 if (block->contig_hint && 419 block->contig_hint_start >= block_off && 420 block->contig_hint >= *bits + alloc_bits) { 421 int start = pcpu_next_hint(block, alloc_bits); 422 423 *bits += alloc_bits + block->contig_hint_start - 424 start; 425 *bit_off = pcpu_block_off_to_off(i, start); 426 return; 427 } 428 /* reset to satisfy the second predicate above */ 429 block_off = 0; 430 431 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 432 align); 433 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 434 *bit_off = pcpu_block_off_to_off(i, *bit_off); 435 if (*bits >= alloc_bits) 436 return; 437 } 438 439 /* no valid offsets were found - fail condition */ 440 *bit_off = pcpu_chunk_map_bits(chunk); 441 } 442 443 /* 444 * Metadata free area iterators. These perform aggregation of free areas 445 * based on the metadata blocks and return the offset @bit_off and size in 446 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 447 * a fit is found for the allocation request. 448 */ 449 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 450 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 451 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 452 (bit_off) += (bits) + 1, \ 453 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 454 455 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 456 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 457 &(bits)); \ 458 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 459 (bit_off) += (bits), \ 460 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 461 &(bits))) 462 463 /** 464 * pcpu_mem_zalloc - allocate memory 465 * @size: bytes to allocate 466 * @gfp: allocation flags 467 * 468 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 469 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 470 * This is to facilitate passing through whitelisted flags. The 471 * returned memory is always zeroed. 472 * 473 * RETURNS: 474 * Pointer to the allocated area on success, NULL on failure. 475 */ 476 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 477 { 478 if (WARN_ON_ONCE(!slab_is_available())) 479 return NULL; 480 481 if (size <= PAGE_SIZE) 482 return kzalloc(size, gfp); 483 else 484 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); 485 } 486 487 /** 488 * pcpu_mem_free - free memory 489 * @ptr: memory to free 490 * 491 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 492 */ 493 static void pcpu_mem_free(void *ptr) 494 { 495 kvfree(ptr); 496 } 497 498 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 499 bool move_front) 500 { 501 if (chunk != pcpu_reserved_chunk) { 502 if (move_front) 503 list_move(&chunk->list, &pcpu_slot[slot]); 504 else 505 list_move_tail(&chunk->list, &pcpu_slot[slot]); 506 } 507 } 508 509 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 510 { 511 __pcpu_chunk_move(chunk, slot, true); 512 } 513 514 /** 515 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 516 * @chunk: chunk of interest 517 * @oslot: the previous slot it was on 518 * 519 * This function is called after an allocation or free changed @chunk. 520 * New slot according to the changed state is determined and @chunk is 521 * moved to the slot. Note that the reserved chunk is never put on 522 * chunk slots. 523 * 524 * CONTEXT: 525 * pcpu_lock. 526 */ 527 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 528 { 529 int nslot = pcpu_chunk_slot(chunk); 530 531 if (oslot != nslot) 532 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 533 } 534 535 /* 536 * pcpu_update_empty_pages - update empty page counters 537 * @chunk: chunk of interest 538 * @nr: nr of empty pages 539 * 540 * This is used to keep track of the empty pages now based on the premise 541 * a md_block covers a page. The hint update functions recognize if a block 542 * is made full or broken to calculate deltas for keeping track of free pages. 543 */ 544 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 545 { 546 chunk->nr_empty_pop_pages += nr; 547 if (chunk != pcpu_reserved_chunk) 548 pcpu_nr_empty_pop_pages += nr; 549 } 550 551 /* 552 * pcpu_region_overlap - determines if two regions overlap 553 * @a: start of first region, inclusive 554 * @b: end of first region, exclusive 555 * @x: start of second region, inclusive 556 * @y: end of second region, exclusive 557 * 558 * This is used to determine if the hint region [a, b) overlaps with the 559 * allocated region [x, y). 560 */ 561 static inline bool pcpu_region_overlap(int a, int b, int x, int y) 562 { 563 return (a < y) && (x < b); 564 } 565 566 /** 567 * pcpu_block_update - updates a block given a free area 568 * @block: block of interest 569 * @start: start offset in block 570 * @end: end offset in block 571 * 572 * Updates a block given a known free area. The region [start, end) is 573 * expected to be the entirety of the free area within a block. Chooses 574 * the best starting offset if the contig hints are equal. 575 */ 576 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 577 { 578 int contig = end - start; 579 580 block->first_free = min(block->first_free, start); 581 if (start == 0) 582 block->left_free = contig; 583 584 if (end == block->nr_bits) 585 block->right_free = contig; 586 587 if (contig > block->contig_hint) { 588 /* promote the old contig_hint to be the new scan_hint */ 589 if (start > block->contig_hint_start) { 590 if (block->contig_hint > block->scan_hint) { 591 block->scan_hint_start = 592 block->contig_hint_start; 593 block->scan_hint = block->contig_hint; 594 } else if (start < block->scan_hint_start) { 595 /* 596 * The old contig_hint == scan_hint. But, the 597 * new contig is larger so hold the invariant 598 * scan_hint_start < contig_hint_start. 599 */ 600 block->scan_hint = 0; 601 } 602 } else { 603 block->scan_hint = 0; 604 } 605 block->contig_hint_start = start; 606 block->contig_hint = contig; 607 } else if (contig == block->contig_hint) { 608 if (block->contig_hint_start && 609 (!start || 610 __ffs(start) > __ffs(block->contig_hint_start))) { 611 /* start has a better alignment so use it */ 612 block->contig_hint_start = start; 613 if (start < block->scan_hint_start && 614 block->contig_hint > block->scan_hint) 615 block->scan_hint = 0; 616 } else if (start > block->scan_hint_start || 617 block->contig_hint > block->scan_hint) { 618 /* 619 * Knowing contig == contig_hint, update the scan_hint 620 * if it is farther than or larger than the current 621 * scan_hint. 622 */ 623 block->scan_hint_start = start; 624 block->scan_hint = contig; 625 } 626 } else { 627 /* 628 * The region is smaller than the contig_hint. So only update 629 * the scan_hint if it is larger than or equal and farther than 630 * the current scan_hint. 631 */ 632 if ((start < block->contig_hint_start && 633 (contig > block->scan_hint || 634 (contig == block->scan_hint && 635 start > block->scan_hint_start)))) { 636 block->scan_hint_start = start; 637 block->scan_hint = contig; 638 } 639 } 640 } 641 642 /* 643 * pcpu_block_update_scan - update a block given a free area from a scan 644 * @chunk: chunk of interest 645 * @bit_off: chunk offset 646 * @bits: size of free area 647 * 648 * Finding the final allocation spot first goes through pcpu_find_block_fit() 649 * to find a block that can hold the allocation and then pcpu_alloc_area() 650 * where a scan is used. When allocations require specific alignments, 651 * we can inadvertently create holes which will not be seen in the alloc 652 * or free paths. 653 * 654 * This takes a given free area hole and updates a block as it may change the 655 * scan_hint. We need to scan backwards to ensure we don't miss free bits 656 * from alignment. 657 */ 658 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 659 int bits) 660 { 661 int s_off = pcpu_off_to_block_off(bit_off); 662 int e_off = s_off + bits; 663 int s_index, l_bit; 664 struct pcpu_block_md *block; 665 666 if (e_off > PCPU_BITMAP_BLOCK_BITS) 667 return; 668 669 s_index = pcpu_off_to_block_index(bit_off); 670 block = chunk->md_blocks + s_index; 671 672 /* scan backwards in case of alignment skipping free bits */ 673 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 674 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 675 676 pcpu_block_update(block, s_off, e_off); 677 } 678 679 /** 680 * pcpu_chunk_refresh_hint - updates metadata about a chunk 681 * @chunk: chunk of interest 682 * @full_scan: if we should scan from the beginning 683 * 684 * Iterates over the metadata blocks to find the largest contig area. 685 * A full scan can be avoided on the allocation path as this is triggered 686 * if we broke the contig_hint. In doing so, the scan_hint will be before 687 * the contig_hint or after if the scan_hint == contig_hint. This cannot 688 * be prevented on freeing as we want to find the largest area possibly 689 * spanning blocks. 690 */ 691 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 692 { 693 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 694 int bit_off, bits; 695 696 /* promote scan_hint to contig_hint */ 697 if (!full_scan && chunk_md->scan_hint) { 698 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 699 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 700 chunk_md->contig_hint = chunk_md->scan_hint; 701 chunk_md->scan_hint = 0; 702 } else { 703 bit_off = chunk_md->first_free; 704 chunk_md->contig_hint = 0; 705 } 706 707 bits = 0; 708 pcpu_for_each_md_free_region(chunk, bit_off, bits) 709 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 710 } 711 712 /** 713 * pcpu_block_refresh_hint 714 * @chunk: chunk of interest 715 * @index: index of the metadata block 716 * 717 * Scans over the block beginning at first_free and updates the block 718 * metadata accordingly. 719 */ 720 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 721 { 722 struct pcpu_block_md *block = chunk->md_blocks + index; 723 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 724 unsigned int rs, re, start; /* region start, region end */ 725 726 /* promote scan_hint to contig_hint */ 727 if (block->scan_hint) { 728 start = block->scan_hint_start + block->scan_hint; 729 block->contig_hint_start = block->scan_hint_start; 730 block->contig_hint = block->scan_hint; 731 block->scan_hint = 0; 732 } else { 733 start = block->first_free; 734 block->contig_hint = 0; 735 } 736 737 block->right_free = 0; 738 739 /* iterate over free areas and update the contig hints */ 740 bitmap_for_each_clear_region(alloc_map, rs, re, start, 741 PCPU_BITMAP_BLOCK_BITS) 742 pcpu_block_update(block, rs, re); 743 } 744 745 /** 746 * pcpu_block_update_hint_alloc - update hint on allocation path 747 * @chunk: chunk of interest 748 * @bit_off: chunk offset 749 * @bits: size of request 750 * 751 * Updates metadata for the allocation path. The metadata only has to be 752 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 753 * scans are required if the block's contig hint is broken. 754 */ 755 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 756 int bits) 757 { 758 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 759 int nr_empty_pages = 0; 760 struct pcpu_block_md *s_block, *e_block, *block; 761 int s_index, e_index; /* block indexes of the freed allocation */ 762 int s_off, e_off; /* block offsets of the freed allocation */ 763 764 /* 765 * Calculate per block offsets. 766 * The calculation uses an inclusive range, but the resulting offsets 767 * are [start, end). e_index always points to the last block in the 768 * range. 769 */ 770 s_index = pcpu_off_to_block_index(bit_off); 771 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 772 s_off = pcpu_off_to_block_off(bit_off); 773 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 774 775 s_block = chunk->md_blocks + s_index; 776 e_block = chunk->md_blocks + e_index; 777 778 /* 779 * Update s_block. 780 * block->first_free must be updated if the allocation takes its place. 781 * If the allocation breaks the contig_hint, a scan is required to 782 * restore this hint. 783 */ 784 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 785 nr_empty_pages++; 786 787 if (s_off == s_block->first_free) 788 s_block->first_free = find_next_zero_bit( 789 pcpu_index_alloc_map(chunk, s_index), 790 PCPU_BITMAP_BLOCK_BITS, 791 s_off + bits); 792 793 if (pcpu_region_overlap(s_block->scan_hint_start, 794 s_block->scan_hint_start + s_block->scan_hint, 795 s_off, 796 s_off + bits)) 797 s_block->scan_hint = 0; 798 799 if (pcpu_region_overlap(s_block->contig_hint_start, 800 s_block->contig_hint_start + 801 s_block->contig_hint, 802 s_off, 803 s_off + bits)) { 804 /* block contig hint is broken - scan to fix it */ 805 if (!s_off) 806 s_block->left_free = 0; 807 pcpu_block_refresh_hint(chunk, s_index); 808 } else { 809 /* update left and right contig manually */ 810 s_block->left_free = min(s_block->left_free, s_off); 811 if (s_index == e_index) 812 s_block->right_free = min_t(int, s_block->right_free, 813 PCPU_BITMAP_BLOCK_BITS - e_off); 814 else 815 s_block->right_free = 0; 816 } 817 818 /* 819 * Update e_block. 820 */ 821 if (s_index != e_index) { 822 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 823 nr_empty_pages++; 824 825 /* 826 * When the allocation is across blocks, the end is along 827 * the left part of the e_block. 828 */ 829 e_block->first_free = find_next_zero_bit( 830 pcpu_index_alloc_map(chunk, e_index), 831 PCPU_BITMAP_BLOCK_BITS, e_off); 832 833 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 834 /* reset the block */ 835 e_block++; 836 } else { 837 if (e_off > e_block->scan_hint_start) 838 e_block->scan_hint = 0; 839 840 e_block->left_free = 0; 841 if (e_off > e_block->contig_hint_start) { 842 /* contig hint is broken - scan to fix it */ 843 pcpu_block_refresh_hint(chunk, e_index); 844 } else { 845 e_block->right_free = 846 min_t(int, e_block->right_free, 847 PCPU_BITMAP_BLOCK_BITS - e_off); 848 } 849 } 850 851 /* update in-between md_blocks */ 852 nr_empty_pages += (e_index - s_index - 1); 853 for (block = s_block + 1; block < e_block; block++) { 854 block->scan_hint = 0; 855 block->contig_hint = 0; 856 block->left_free = 0; 857 block->right_free = 0; 858 } 859 } 860 861 if (nr_empty_pages) 862 pcpu_update_empty_pages(chunk, -nr_empty_pages); 863 864 if (pcpu_region_overlap(chunk_md->scan_hint_start, 865 chunk_md->scan_hint_start + 866 chunk_md->scan_hint, 867 bit_off, 868 bit_off + bits)) 869 chunk_md->scan_hint = 0; 870 871 /* 872 * The only time a full chunk scan is required is if the chunk 873 * contig hint is broken. Otherwise, it means a smaller space 874 * was used and therefore the chunk contig hint is still correct. 875 */ 876 if (pcpu_region_overlap(chunk_md->contig_hint_start, 877 chunk_md->contig_hint_start + 878 chunk_md->contig_hint, 879 bit_off, 880 bit_off + bits)) 881 pcpu_chunk_refresh_hint(chunk, false); 882 } 883 884 /** 885 * pcpu_block_update_hint_free - updates the block hints on the free path 886 * @chunk: chunk of interest 887 * @bit_off: chunk offset 888 * @bits: size of request 889 * 890 * Updates metadata for the allocation path. This avoids a blind block 891 * refresh by making use of the block contig hints. If this fails, it scans 892 * forward and backward to determine the extent of the free area. This is 893 * capped at the boundary of blocks. 894 * 895 * A chunk update is triggered if a page becomes free, a block becomes free, 896 * or the free spans across blocks. This tradeoff is to minimize iterating 897 * over the block metadata to update chunk_md->contig_hint. 898 * chunk_md->contig_hint may be off by up to a page, but it will never be more 899 * than the available space. If the contig hint is contained in one block, it 900 * will be accurate. 901 */ 902 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 903 int bits) 904 { 905 int nr_empty_pages = 0; 906 struct pcpu_block_md *s_block, *e_block, *block; 907 int s_index, e_index; /* block indexes of the freed allocation */ 908 int s_off, e_off; /* block offsets of the freed allocation */ 909 int start, end; /* start and end of the whole free area */ 910 911 /* 912 * Calculate per block offsets. 913 * The calculation uses an inclusive range, but the resulting offsets 914 * are [start, end). e_index always points to the last block in the 915 * range. 916 */ 917 s_index = pcpu_off_to_block_index(bit_off); 918 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 919 s_off = pcpu_off_to_block_off(bit_off); 920 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 921 922 s_block = chunk->md_blocks + s_index; 923 e_block = chunk->md_blocks + e_index; 924 925 /* 926 * Check if the freed area aligns with the block->contig_hint. 927 * If it does, then the scan to find the beginning/end of the 928 * larger free area can be avoided. 929 * 930 * start and end refer to beginning and end of the free area 931 * within each their respective blocks. This is not necessarily 932 * the entire free area as it may span blocks past the beginning 933 * or end of the block. 934 */ 935 start = s_off; 936 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 937 start = s_block->contig_hint_start; 938 } else { 939 /* 940 * Scan backwards to find the extent of the free area. 941 * find_last_bit returns the starting bit, so if the start bit 942 * is returned, that means there was no last bit and the 943 * remainder of the chunk is free. 944 */ 945 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 946 start); 947 start = (start == l_bit) ? 0 : l_bit + 1; 948 } 949 950 end = e_off; 951 if (e_off == e_block->contig_hint_start) 952 end = e_block->contig_hint_start + e_block->contig_hint; 953 else 954 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 955 PCPU_BITMAP_BLOCK_BITS, end); 956 957 /* update s_block */ 958 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 959 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 960 nr_empty_pages++; 961 pcpu_block_update(s_block, start, e_off); 962 963 /* freeing in the same block */ 964 if (s_index != e_index) { 965 /* update e_block */ 966 if (end == PCPU_BITMAP_BLOCK_BITS) 967 nr_empty_pages++; 968 pcpu_block_update(e_block, 0, end); 969 970 /* reset md_blocks in the middle */ 971 nr_empty_pages += (e_index - s_index - 1); 972 for (block = s_block + 1; block < e_block; block++) { 973 block->first_free = 0; 974 block->scan_hint = 0; 975 block->contig_hint_start = 0; 976 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 977 block->left_free = PCPU_BITMAP_BLOCK_BITS; 978 block->right_free = PCPU_BITMAP_BLOCK_BITS; 979 } 980 } 981 982 if (nr_empty_pages) 983 pcpu_update_empty_pages(chunk, nr_empty_pages); 984 985 /* 986 * Refresh chunk metadata when the free makes a block free or spans 987 * across blocks. The contig_hint may be off by up to a page, but if 988 * the contig_hint is contained in a block, it will be accurate with 989 * the else condition below. 990 */ 991 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 992 pcpu_chunk_refresh_hint(chunk, true); 993 else 994 pcpu_block_update(&chunk->chunk_md, 995 pcpu_block_off_to_off(s_index, start), 996 end); 997 } 998 999 /** 1000 * pcpu_is_populated - determines if the region is populated 1001 * @chunk: chunk of interest 1002 * @bit_off: chunk offset 1003 * @bits: size of area 1004 * @next_off: return value for the next offset to start searching 1005 * 1006 * For atomic allocations, check if the backing pages are populated. 1007 * 1008 * RETURNS: 1009 * Bool if the backing pages are populated. 1010 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1011 */ 1012 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1013 int *next_off) 1014 { 1015 unsigned int page_start, page_end, rs, re; 1016 1017 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1018 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1019 1020 rs = page_start; 1021 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); 1022 if (rs >= page_end) 1023 return true; 1024 1025 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1026 return false; 1027 } 1028 1029 /** 1030 * pcpu_find_block_fit - finds the block index to start searching 1031 * @chunk: chunk of interest 1032 * @alloc_bits: size of request in allocation units 1033 * @align: alignment of area (max PAGE_SIZE bytes) 1034 * @pop_only: use populated regions only 1035 * 1036 * Given a chunk and an allocation spec, find the offset to begin searching 1037 * for a free region. This iterates over the bitmap metadata blocks to 1038 * find an offset that will be guaranteed to fit the requirements. It is 1039 * not quite first fit as if the allocation does not fit in the contig hint 1040 * of a block or chunk, it is skipped. This errs on the side of caution 1041 * to prevent excess iteration. Poor alignment can cause the allocator to 1042 * skip over blocks and chunks that have valid free areas. 1043 * 1044 * RETURNS: 1045 * The offset in the bitmap to begin searching. 1046 * -1 if no offset is found. 1047 */ 1048 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1049 size_t align, bool pop_only) 1050 { 1051 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1052 int bit_off, bits, next_off; 1053 1054 /* 1055 * Check to see if the allocation can fit in the chunk's contig hint. 1056 * This is an optimization to prevent scanning by assuming if it 1057 * cannot fit in the global hint, there is memory pressure and creating 1058 * a new chunk would happen soon. 1059 */ 1060 bit_off = ALIGN(chunk_md->contig_hint_start, align) - 1061 chunk_md->contig_hint_start; 1062 if (bit_off + alloc_bits > chunk_md->contig_hint) 1063 return -1; 1064 1065 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1066 bits = 0; 1067 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1068 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1069 &next_off)) 1070 break; 1071 1072 bit_off = next_off; 1073 bits = 0; 1074 } 1075 1076 if (bit_off == pcpu_chunk_map_bits(chunk)) 1077 return -1; 1078 1079 return bit_off; 1080 } 1081 1082 /* 1083 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1084 * @map: the address to base the search on 1085 * @size: the bitmap size in bits 1086 * @start: the bitnumber to start searching at 1087 * @nr: the number of zeroed bits we're looking for 1088 * @align_mask: alignment mask for zero area 1089 * @largest_off: offset of the largest area skipped 1090 * @largest_bits: size of the largest area skipped 1091 * 1092 * The @align_mask should be one less than a power of 2. 1093 * 1094 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1095 * the largest area that was skipped. This is imperfect, but in general is 1096 * good enough. The largest remembered region is the largest failed region 1097 * seen. This does not include anything we possibly skipped due to alignment. 1098 * pcpu_block_update_scan() does scan backwards to try and recover what was 1099 * lost to alignment. While this can cause scanning to miss earlier possible 1100 * free areas, smaller allocations will eventually fill those holes. 1101 */ 1102 static unsigned long pcpu_find_zero_area(unsigned long *map, 1103 unsigned long size, 1104 unsigned long start, 1105 unsigned long nr, 1106 unsigned long align_mask, 1107 unsigned long *largest_off, 1108 unsigned long *largest_bits) 1109 { 1110 unsigned long index, end, i, area_off, area_bits; 1111 again: 1112 index = find_next_zero_bit(map, size, start); 1113 1114 /* Align allocation */ 1115 index = __ALIGN_MASK(index, align_mask); 1116 area_off = index; 1117 1118 end = index + nr; 1119 if (end > size) 1120 return end; 1121 i = find_next_bit(map, end, index); 1122 if (i < end) { 1123 area_bits = i - area_off; 1124 /* remember largest unused area with best alignment */ 1125 if (area_bits > *largest_bits || 1126 (area_bits == *largest_bits && *largest_off && 1127 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1128 *largest_off = area_off; 1129 *largest_bits = area_bits; 1130 } 1131 1132 start = i + 1; 1133 goto again; 1134 } 1135 return index; 1136 } 1137 1138 /** 1139 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1140 * @chunk: chunk of interest 1141 * @alloc_bits: size of request in allocation units 1142 * @align: alignment of area (max PAGE_SIZE) 1143 * @start: bit_off to start searching 1144 * 1145 * This function takes in a @start offset to begin searching to fit an 1146 * allocation of @alloc_bits with alignment @align. It needs to scan 1147 * the allocation map because if it fits within the block's contig hint, 1148 * @start will be block->first_free. This is an attempt to fill the 1149 * allocation prior to breaking the contig hint. The allocation and 1150 * boundary maps are updated accordingly if it confirms a valid 1151 * free area. 1152 * 1153 * RETURNS: 1154 * Allocated addr offset in @chunk on success. 1155 * -1 if no matching area is found. 1156 */ 1157 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1158 size_t align, int start) 1159 { 1160 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1161 size_t align_mask = (align) ? (align - 1) : 0; 1162 unsigned long area_off = 0, area_bits = 0; 1163 int bit_off, end, oslot; 1164 1165 lockdep_assert_held(&pcpu_lock); 1166 1167 oslot = pcpu_chunk_slot(chunk); 1168 1169 /* 1170 * Search to find a fit. 1171 */ 1172 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1173 pcpu_chunk_map_bits(chunk)); 1174 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1175 align_mask, &area_off, &area_bits); 1176 if (bit_off >= end) 1177 return -1; 1178 1179 if (area_bits) 1180 pcpu_block_update_scan(chunk, area_off, area_bits); 1181 1182 /* update alloc map */ 1183 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1184 1185 /* update boundary map */ 1186 set_bit(bit_off, chunk->bound_map); 1187 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1188 set_bit(bit_off + alloc_bits, chunk->bound_map); 1189 1190 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1191 1192 /* update first free bit */ 1193 if (bit_off == chunk_md->first_free) 1194 chunk_md->first_free = find_next_zero_bit( 1195 chunk->alloc_map, 1196 pcpu_chunk_map_bits(chunk), 1197 bit_off + alloc_bits); 1198 1199 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1200 1201 pcpu_chunk_relocate(chunk, oslot); 1202 1203 return bit_off * PCPU_MIN_ALLOC_SIZE; 1204 } 1205 1206 /** 1207 * pcpu_free_area - frees the corresponding offset 1208 * @chunk: chunk of interest 1209 * @off: addr offset into chunk 1210 * 1211 * This function determines the size of an allocation to free using 1212 * the boundary bitmap and clears the allocation map. 1213 */ 1214 static void pcpu_free_area(struct pcpu_chunk *chunk, int off) 1215 { 1216 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1217 int bit_off, bits, end, oslot; 1218 1219 lockdep_assert_held(&pcpu_lock); 1220 pcpu_stats_area_dealloc(chunk); 1221 1222 oslot = pcpu_chunk_slot(chunk); 1223 1224 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1225 1226 /* find end index */ 1227 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1228 bit_off + 1); 1229 bits = end - bit_off; 1230 bitmap_clear(chunk->alloc_map, bit_off, bits); 1231 1232 /* update metadata */ 1233 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; 1234 1235 /* update first free bit */ 1236 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1237 1238 pcpu_block_update_hint_free(chunk, bit_off, bits); 1239 1240 pcpu_chunk_relocate(chunk, oslot); 1241 } 1242 1243 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1244 { 1245 block->scan_hint = 0; 1246 block->contig_hint = nr_bits; 1247 block->left_free = nr_bits; 1248 block->right_free = nr_bits; 1249 block->first_free = 0; 1250 block->nr_bits = nr_bits; 1251 } 1252 1253 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1254 { 1255 struct pcpu_block_md *md_block; 1256 1257 /* init the chunk's block */ 1258 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1259 1260 for (md_block = chunk->md_blocks; 1261 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1262 md_block++) 1263 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1264 } 1265 1266 /** 1267 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1268 * @tmp_addr: the start of the region served 1269 * @map_size: size of the region served 1270 * 1271 * This is responsible for creating the chunks that serve the first chunk. The 1272 * base_addr is page aligned down of @tmp_addr while the region end is page 1273 * aligned up. Offsets are kept track of to determine the region served. All 1274 * this is done to appease the bitmap allocator in avoiding partial blocks. 1275 * 1276 * RETURNS: 1277 * Chunk serving the region at @tmp_addr of @map_size. 1278 */ 1279 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1280 int map_size) 1281 { 1282 struct pcpu_chunk *chunk; 1283 unsigned long aligned_addr, lcm_align; 1284 int start_offset, offset_bits, region_size, region_bits; 1285 size_t alloc_size; 1286 1287 /* region calculations */ 1288 aligned_addr = tmp_addr & PAGE_MASK; 1289 1290 start_offset = tmp_addr - aligned_addr; 1291 1292 /* 1293 * Align the end of the region with the LCM of PAGE_SIZE and 1294 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1295 * the other. 1296 */ 1297 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1298 region_size = ALIGN(start_offset + map_size, lcm_align); 1299 1300 /* allocate chunk */ 1301 alloc_size = sizeof(struct pcpu_chunk) + 1302 BITS_TO_LONGS(region_size >> PAGE_SHIFT); 1303 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1304 if (!chunk) 1305 panic("%s: Failed to allocate %zu bytes\n", __func__, 1306 alloc_size); 1307 1308 INIT_LIST_HEAD(&chunk->list); 1309 1310 chunk->base_addr = (void *)aligned_addr; 1311 chunk->start_offset = start_offset; 1312 chunk->end_offset = region_size - chunk->start_offset - map_size; 1313 1314 chunk->nr_pages = region_size >> PAGE_SHIFT; 1315 region_bits = pcpu_chunk_map_bits(chunk); 1316 1317 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1318 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1319 if (!chunk->alloc_map) 1320 panic("%s: Failed to allocate %zu bytes\n", __func__, 1321 alloc_size); 1322 1323 alloc_size = 1324 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1325 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1326 if (!chunk->bound_map) 1327 panic("%s: Failed to allocate %zu bytes\n", __func__, 1328 alloc_size); 1329 1330 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1331 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1332 if (!chunk->md_blocks) 1333 panic("%s: Failed to allocate %zu bytes\n", __func__, 1334 alloc_size); 1335 1336 pcpu_init_md_blocks(chunk); 1337 1338 /* manage populated page bitmap */ 1339 chunk->immutable = true; 1340 bitmap_fill(chunk->populated, chunk->nr_pages); 1341 chunk->nr_populated = chunk->nr_pages; 1342 chunk->nr_empty_pop_pages = chunk->nr_pages; 1343 1344 chunk->free_bytes = map_size; 1345 1346 if (chunk->start_offset) { 1347 /* hide the beginning of the bitmap */ 1348 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1349 bitmap_set(chunk->alloc_map, 0, offset_bits); 1350 set_bit(0, chunk->bound_map); 1351 set_bit(offset_bits, chunk->bound_map); 1352 1353 chunk->chunk_md.first_free = offset_bits; 1354 1355 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1356 } 1357 1358 if (chunk->end_offset) { 1359 /* hide the end of the bitmap */ 1360 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1361 bitmap_set(chunk->alloc_map, 1362 pcpu_chunk_map_bits(chunk) - offset_bits, 1363 offset_bits); 1364 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1365 chunk->bound_map); 1366 set_bit(region_bits, chunk->bound_map); 1367 1368 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1369 - offset_bits, offset_bits); 1370 } 1371 1372 return chunk; 1373 } 1374 1375 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1376 { 1377 struct pcpu_chunk *chunk; 1378 int region_bits; 1379 1380 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1381 if (!chunk) 1382 return NULL; 1383 1384 INIT_LIST_HEAD(&chunk->list); 1385 chunk->nr_pages = pcpu_unit_pages; 1386 region_bits = pcpu_chunk_map_bits(chunk); 1387 1388 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1389 sizeof(chunk->alloc_map[0]), gfp); 1390 if (!chunk->alloc_map) 1391 goto alloc_map_fail; 1392 1393 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1394 sizeof(chunk->bound_map[0]), gfp); 1395 if (!chunk->bound_map) 1396 goto bound_map_fail; 1397 1398 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1399 sizeof(chunk->md_blocks[0]), gfp); 1400 if (!chunk->md_blocks) 1401 goto md_blocks_fail; 1402 1403 pcpu_init_md_blocks(chunk); 1404 1405 /* init metadata */ 1406 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1407 1408 return chunk; 1409 1410 md_blocks_fail: 1411 pcpu_mem_free(chunk->bound_map); 1412 bound_map_fail: 1413 pcpu_mem_free(chunk->alloc_map); 1414 alloc_map_fail: 1415 pcpu_mem_free(chunk); 1416 1417 return NULL; 1418 } 1419 1420 static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1421 { 1422 if (!chunk) 1423 return; 1424 pcpu_mem_free(chunk->md_blocks); 1425 pcpu_mem_free(chunk->bound_map); 1426 pcpu_mem_free(chunk->alloc_map); 1427 pcpu_mem_free(chunk); 1428 } 1429 1430 /** 1431 * pcpu_chunk_populated - post-population bookkeeping 1432 * @chunk: pcpu_chunk which got populated 1433 * @page_start: the start page 1434 * @page_end: the end page 1435 * 1436 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1437 * the bookkeeping information accordingly. Must be called after each 1438 * successful population. 1439 * 1440 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it 1441 * is to serve an allocation in that area. 1442 */ 1443 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1444 int page_end) 1445 { 1446 int nr = page_end - page_start; 1447 1448 lockdep_assert_held(&pcpu_lock); 1449 1450 bitmap_set(chunk->populated, page_start, nr); 1451 chunk->nr_populated += nr; 1452 pcpu_nr_populated += nr; 1453 1454 pcpu_update_empty_pages(chunk, nr); 1455 } 1456 1457 /** 1458 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1459 * @chunk: pcpu_chunk which got depopulated 1460 * @page_start: the start page 1461 * @page_end: the end page 1462 * 1463 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1464 * Update the bookkeeping information accordingly. Must be called after 1465 * each successful depopulation. 1466 */ 1467 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1468 int page_start, int page_end) 1469 { 1470 int nr = page_end - page_start; 1471 1472 lockdep_assert_held(&pcpu_lock); 1473 1474 bitmap_clear(chunk->populated, page_start, nr); 1475 chunk->nr_populated -= nr; 1476 pcpu_nr_populated -= nr; 1477 1478 pcpu_update_empty_pages(chunk, -nr); 1479 } 1480 1481 /* 1482 * Chunk management implementation. 1483 * 1484 * To allow different implementations, chunk alloc/free and 1485 * [de]population are implemented in a separate file which is pulled 1486 * into this file and compiled together. The following functions 1487 * should be implemented. 1488 * 1489 * pcpu_populate_chunk - populate the specified range of a chunk 1490 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1491 * pcpu_create_chunk - create a new chunk 1492 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1493 * pcpu_addr_to_page - translate address to physical address 1494 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1495 */ 1496 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1497 int page_start, int page_end, gfp_t gfp); 1498 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1499 int page_start, int page_end); 1500 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1501 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1502 static struct page *pcpu_addr_to_page(void *addr); 1503 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1504 1505 #ifdef CONFIG_NEED_PER_CPU_KM 1506 #include "percpu-km.c" 1507 #else 1508 #include "percpu-vm.c" 1509 #endif 1510 1511 /** 1512 * pcpu_chunk_addr_search - determine chunk containing specified address 1513 * @addr: address for which the chunk needs to be determined. 1514 * 1515 * This is an internal function that handles all but static allocations. 1516 * Static percpu address values should never be passed into the allocator. 1517 * 1518 * RETURNS: 1519 * The address of the found chunk. 1520 */ 1521 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1522 { 1523 /* is it in the dynamic region (first chunk)? */ 1524 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1525 return pcpu_first_chunk; 1526 1527 /* is it in the reserved region? */ 1528 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1529 return pcpu_reserved_chunk; 1530 1531 /* 1532 * The address is relative to unit0 which might be unused and 1533 * thus unmapped. Offset the address to the unit space of the 1534 * current processor before looking it up in the vmalloc 1535 * space. Note that any possible cpu id can be used here, so 1536 * there's no need to worry about preemption or cpu hotplug. 1537 */ 1538 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1539 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1540 } 1541 1542 /** 1543 * pcpu_alloc - the percpu allocator 1544 * @size: size of area to allocate in bytes 1545 * @align: alignment of area (max PAGE_SIZE) 1546 * @reserved: allocate from the reserved chunk if available 1547 * @gfp: allocation flags 1548 * 1549 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1550 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1551 * then no warning will be triggered on invalid or failed allocation 1552 * requests. 1553 * 1554 * RETURNS: 1555 * Percpu pointer to the allocated area on success, NULL on failure. 1556 */ 1557 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1558 gfp_t gfp) 1559 { 1560 /* whitelisted flags that can be passed to the backing allocators */ 1561 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1562 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1563 bool do_warn = !(gfp & __GFP_NOWARN); 1564 static int warn_limit = 10; 1565 struct pcpu_chunk *chunk, *next; 1566 const char *err; 1567 int slot, off, cpu, ret; 1568 unsigned long flags; 1569 void __percpu *ptr; 1570 size_t bits, bit_align; 1571 1572 /* 1573 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1574 * therefore alignment must be a minimum of that many bytes. 1575 * An allocation may have internal fragmentation from rounding up 1576 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1577 */ 1578 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1579 align = PCPU_MIN_ALLOC_SIZE; 1580 1581 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1582 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1583 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1584 1585 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1586 !is_power_of_2(align))) { 1587 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1588 size, align); 1589 return NULL; 1590 } 1591 1592 if (!is_atomic) { 1593 /* 1594 * pcpu_balance_workfn() allocates memory under this mutex, 1595 * and it may wait for memory reclaim. Allow current task 1596 * to become OOM victim, in case of memory pressure. 1597 */ 1598 if (gfp & __GFP_NOFAIL) 1599 mutex_lock(&pcpu_alloc_mutex); 1600 else if (mutex_lock_killable(&pcpu_alloc_mutex)) 1601 return NULL; 1602 } 1603 1604 spin_lock_irqsave(&pcpu_lock, flags); 1605 1606 /* serve reserved allocations from the reserved chunk if available */ 1607 if (reserved && pcpu_reserved_chunk) { 1608 chunk = pcpu_reserved_chunk; 1609 1610 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1611 if (off < 0) { 1612 err = "alloc from reserved chunk failed"; 1613 goto fail_unlock; 1614 } 1615 1616 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1617 if (off >= 0) 1618 goto area_found; 1619 1620 err = "alloc from reserved chunk failed"; 1621 goto fail_unlock; 1622 } 1623 1624 restart: 1625 /* search through normal chunks */ 1626 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { 1627 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) { 1628 off = pcpu_find_block_fit(chunk, bits, bit_align, 1629 is_atomic); 1630 if (off < 0) { 1631 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1632 pcpu_chunk_move(chunk, 0); 1633 continue; 1634 } 1635 1636 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1637 if (off >= 0) 1638 goto area_found; 1639 1640 } 1641 } 1642 1643 spin_unlock_irqrestore(&pcpu_lock, flags); 1644 1645 /* 1646 * No space left. Create a new chunk. We don't want multiple 1647 * tasks to create chunks simultaneously. Serialize and create iff 1648 * there's still no empty chunk after grabbing the mutex. 1649 */ 1650 if (is_atomic) { 1651 err = "atomic alloc failed, no space left"; 1652 goto fail; 1653 } 1654 1655 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { 1656 chunk = pcpu_create_chunk(pcpu_gfp); 1657 if (!chunk) { 1658 err = "failed to allocate new chunk"; 1659 goto fail; 1660 } 1661 1662 spin_lock_irqsave(&pcpu_lock, flags); 1663 pcpu_chunk_relocate(chunk, -1); 1664 } else { 1665 spin_lock_irqsave(&pcpu_lock, flags); 1666 } 1667 1668 goto restart; 1669 1670 area_found: 1671 pcpu_stats_area_alloc(chunk, size); 1672 spin_unlock_irqrestore(&pcpu_lock, flags); 1673 1674 /* populate if not all pages are already there */ 1675 if (!is_atomic) { 1676 unsigned int page_start, page_end, rs, re; 1677 1678 page_start = PFN_DOWN(off); 1679 page_end = PFN_UP(off + size); 1680 1681 bitmap_for_each_clear_region(chunk->populated, rs, re, 1682 page_start, page_end) { 1683 WARN_ON(chunk->immutable); 1684 1685 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1686 1687 spin_lock_irqsave(&pcpu_lock, flags); 1688 if (ret) { 1689 pcpu_free_area(chunk, off); 1690 err = "failed to populate"; 1691 goto fail_unlock; 1692 } 1693 pcpu_chunk_populated(chunk, rs, re); 1694 spin_unlock_irqrestore(&pcpu_lock, flags); 1695 } 1696 1697 mutex_unlock(&pcpu_alloc_mutex); 1698 } 1699 1700 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1701 pcpu_schedule_balance_work(); 1702 1703 /* clear the areas and return address relative to base address */ 1704 for_each_possible_cpu(cpu) 1705 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1706 1707 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1708 kmemleak_alloc_percpu(ptr, size, gfp); 1709 1710 trace_percpu_alloc_percpu(reserved, is_atomic, size, align, 1711 chunk->base_addr, off, ptr); 1712 1713 return ptr; 1714 1715 fail_unlock: 1716 spin_unlock_irqrestore(&pcpu_lock, flags); 1717 fail: 1718 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1719 1720 if (!is_atomic && do_warn && warn_limit) { 1721 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1722 size, align, is_atomic, err); 1723 dump_stack(); 1724 if (!--warn_limit) 1725 pr_info("limit reached, disable warning\n"); 1726 } 1727 if (is_atomic) { 1728 /* see the flag handling in pcpu_blance_workfn() */ 1729 pcpu_atomic_alloc_failed = true; 1730 pcpu_schedule_balance_work(); 1731 } else { 1732 mutex_unlock(&pcpu_alloc_mutex); 1733 } 1734 return NULL; 1735 } 1736 1737 /** 1738 * __alloc_percpu_gfp - allocate dynamic percpu area 1739 * @size: size of area to allocate in bytes 1740 * @align: alignment of area (max PAGE_SIZE) 1741 * @gfp: allocation flags 1742 * 1743 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1744 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1745 * be called from any context but is a lot more likely to fail. If @gfp 1746 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1747 * allocation requests. 1748 * 1749 * RETURNS: 1750 * Percpu pointer to the allocated area on success, NULL on failure. 1751 */ 1752 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1753 { 1754 return pcpu_alloc(size, align, false, gfp); 1755 } 1756 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1757 1758 /** 1759 * __alloc_percpu - allocate dynamic percpu area 1760 * @size: size of area to allocate in bytes 1761 * @align: alignment of area (max PAGE_SIZE) 1762 * 1763 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1764 */ 1765 void __percpu *__alloc_percpu(size_t size, size_t align) 1766 { 1767 return pcpu_alloc(size, align, false, GFP_KERNEL); 1768 } 1769 EXPORT_SYMBOL_GPL(__alloc_percpu); 1770 1771 /** 1772 * __alloc_reserved_percpu - allocate reserved percpu area 1773 * @size: size of area to allocate in bytes 1774 * @align: alignment of area (max PAGE_SIZE) 1775 * 1776 * Allocate zero-filled percpu area of @size bytes aligned at @align 1777 * from reserved percpu area if arch has set it up; otherwise, 1778 * allocation is served from the same dynamic area. Might sleep. 1779 * Might trigger writeouts. 1780 * 1781 * CONTEXT: 1782 * Does GFP_KERNEL allocation. 1783 * 1784 * RETURNS: 1785 * Percpu pointer to the allocated area on success, NULL on failure. 1786 */ 1787 void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1788 { 1789 return pcpu_alloc(size, align, true, GFP_KERNEL); 1790 } 1791 1792 /** 1793 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 1794 * @work: unused 1795 * 1796 * Reclaim all fully free chunks except for the first one. This is also 1797 * responsible for maintaining the pool of empty populated pages. However, 1798 * it is possible that this is called when physical memory is scarce causing 1799 * OOM killer to be triggered. We should avoid doing so until an actual 1800 * allocation causes the failure as it is possible that requests can be 1801 * serviced from already backed regions. 1802 */ 1803 static void pcpu_balance_workfn(struct work_struct *work) 1804 { 1805 /* gfp flags passed to underlying allocators */ 1806 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 1807 LIST_HEAD(to_free); 1808 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; 1809 struct pcpu_chunk *chunk, *next; 1810 int slot, nr_to_pop, ret; 1811 1812 /* 1813 * There's no reason to keep around multiple unused chunks and VM 1814 * areas can be scarce. Destroy all free chunks except for one. 1815 */ 1816 mutex_lock(&pcpu_alloc_mutex); 1817 spin_lock_irq(&pcpu_lock); 1818 1819 list_for_each_entry_safe(chunk, next, free_head, list) { 1820 WARN_ON(chunk->immutable); 1821 1822 /* spare the first one */ 1823 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 1824 continue; 1825 1826 list_move(&chunk->list, &to_free); 1827 } 1828 1829 spin_unlock_irq(&pcpu_lock); 1830 1831 list_for_each_entry_safe(chunk, next, &to_free, list) { 1832 unsigned int rs, re; 1833 1834 bitmap_for_each_set_region(chunk->populated, rs, re, 0, 1835 chunk->nr_pages) { 1836 pcpu_depopulate_chunk(chunk, rs, re); 1837 spin_lock_irq(&pcpu_lock); 1838 pcpu_chunk_depopulated(chunk, rs, re); 1839 spin_unlock_irq(&pcpu_lock); 1840 } 1841 pcpu_destroy_chunk(chunk); 1842 cond_resched(); 1843 } 1844 1845 /* 1846 * Ensure there are certain number of free populated pages for 1847 * atomic allocs. Fill up from the most packed so that atomic 1848 * allocs don't increase fragmentation. If atomic allocation 1849 * failed previously, always populate the maximum amount. This 1850 * should prevent atomic allocs larger than PAGE_SIZE from keeping 1851 * failing indefinitely; however, large atomic allocs are not 1852 * something we support properly and can be highly unreliable and 1853 * inefficient. 1854 */ 1855 retry_pop: 1856 if (pcpu_atomic_alloc_failed) { 1857 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 1858 /* best effort anyway, don't worry about synchronization */ 1859 pcpu_atomic_alloc_failed = false; 1860 } else { 1861 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 1862 pcpu_nr_empty_pop_pages, 1863 0, PCPU_EMPTY_POP_PAGES_HIGH); 1864 } 1865 1866 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { 1867 unsigned int nr_unpop = 0, rs, re; 1868 1869 if (!nr_to_pop) 1870 break; 1871 1872 spin_lock_irq(&pcpu_lock); 1873 list_for_each_entry(chunk, &pcpu_slot[slot], list) { 1874 nr_unpop = chunk->nr_pages - chunk->nr_populated; 1875 if (nr_unpop) 1876 break; 1877 } 1878 spin_unlock_irq(&pcpu_lock); 1879 1880 if (!nr_unpop) 1881 continue; 1882 1883 /* @chunk can't go away while pcpu_alloc_mutex is held */ 1884 bitmap_for_each_clear_region(chunk->populated, rs, re, 0, 1885 chunk->nr_pages) { 1886 int nr = min_t(int, re - rs, nr_to_pop); 1887 1888 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 1889 if (!ret) { 1890 nr_to_pop -= nr; 1891 spin_lock_irq(&pcpu_lock); 1892 pcpu_chunk_populated(chunk, rs, rs + nr); 1893 spin_unlock_irq(&pcpu_lock); 1894 } else { 1895 nr_to_pop = 0; 1896 } 1897 1898 if (!nr_to_pop) 1899 break; 1900 } 1901 } 1902 1903 if (nr_to_pop) { 1904 /* ran out of chunks to populate, create a new one and retry */ 1905 chunk = pcpu_create_chunk(gfp); 1906 if (chunk) { 1907 spin_lock_irq(&pcpu_lock); 1908 pcpu_chunk_relocate(chunk, -1); 1909 spin_unlock_irq(&pcpu_lock); 1910 goto retry_pop; 1911 } 1912 } 1913 1914 mutex_unlock(&pcpu_alloc_mutex); 1915 } 1916 1917 /** 1918 * free_percpu - free percpu area 1919 * @ptr: pointer to area to free 1920 * 1921 * Free percpu area @ptr. 1922 * 1923 * CONTEXT: 1924 * Can be called from atomic context. 1925 */ 1926 void free_percpu(void __percpu *ptr) 1927 { 1928 void *addr; 1929 struct pcpu_chunk *chunk; 1930 unsigned long flags; 1931 int off; 1932 bool need_balance = false; 1933 1934 if (!ptr) 1935 return; 1936 1937 kmemleak_free_percpu(ptr); 1938 1939 addr = __pcpu_ptr_to_addr(ptr); 1940 1941 spin_lock_irqsave(&pcpu_lock, flags); 1942 1943 chunk = pcpu_chunk_addr_search(addr); 1944 off = addr - chunk->base_addr; 1945 1946 pcpu_free_area(chunk, off); 1947 1948 /* if there are more than one fully free chunks, wake up grim reaper */ 1949 if (chunk->free_bytes == pcpu_unit_size) { 1950 struct pcpu_chunk *pos; 1951 1952 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) 1953 if (pos != chunk) { 1954 need_balance = true; 1955 break; 1956 } 1957 } 1958 1959 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 1960 1961 spin_unlock_irqrestore(&pcpu_lock, flags); 1962 1963 if (need_balance) 1964 pcpu_schedule_balance_work(); 1965 } 1966 EXPORT_SYMBOL_GPL(free_percpu); 1967 1968 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 1969 { 1970 #ifdef CONFIG_SMP 1971 const size_t static_size = __per_cpu_end - __per_cpu_start; 1972 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 1973 unsigned int cpu; 1974 1975 for_each_possible_cpu(cpu) { 1976 void *start = per_cpu_ptr(base, cpu); 1977 void *va = (void *)addr; 1978 1979 if (va >= start && va < start + static_size) { 1980 if (can_addr) { 1981 *can_addr = (unsigned long) (va - start); 1982 *can_addr += (unsigned long) 1983 per_cpu_ptr(base, get_boot_cpu_id()); 1984 } 1985 return true; 1986 } 1987 } 1988 #endif 1989 /* on UP, can't distinguish from other static vars, always false */ 1990 return false; 1991 } 1992 1993 /** 1994 * is_kernel_percpu_address - test whether address is from static percpu area 1995 * @addr: address to test 1996 * 1997 * Test whether @addr belongs to in-kernel static percpu area. Module 1998 * static percpu areas are not considered. For those, use 1999 * is_module_percpu_address(). 2000 * 2001 * RETURNS: 2002 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2003 */ 2004 bool is_kernel_percpu_address(unsigned long addr) 2005 { 2006 return __is_kernel_percpu_address(addr, NULL); 2007 } 2008 2009 /** 2010 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2011 * @addr: the address to be converted to physical address 2012 * 2013 * Given @addr which is dereferenceable address obtained via one of 2014 * percpu access macros, this function translates it into its physical 2015 * address. The caller is responsible for ensuring @addr stays valid 2016 * until this function finishes. 2017 * 2018 * percpu allocator has special setup for the first chunk, which currently 2019 * supports either embedding in linear address space or vmalloc mapping, 2020 * and, from the second one, the backing allocator (currently either vm or 2021 * km) provides translation. 2022 * 2023 * The addr can be translated simply without checking if it falls into the 2024 * first chunk. But the current code reflects better how percpu allocator 2025 * actually works, and the verification can discover both bugs in percpu 2026 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2027 * code. 2028 * 2029 * RETURNS: 2030 * The physical address for @addr. 2031 */ 2032 phys_addr_t per_cpu_ptr_to_phys(void *addr) 2033 { 2034 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2035 bool in_first_chunk = false; 2036 unsigned long first_low, first_high; 2037 unsigned int cpu; 2038 2039 /* 2040 * The following test on unit_low/high isn't strictly 2041 * necessary but will speed up lookups of addresses which 2042 * aren't in the first chunk. 2043 * 2044 * The address check is against full chunk sizes. pcpu_base_addr 2045 * points to the beginning of the first chunk including the 2046 * static region. Assumes good intent as the first chunk may 2047 * not be full (ie. < pcpu_unit_pages in size). 2048 */ 2049 first_low = (unsigned long)pcpu_base_addr + 2050 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2051 first_high = (unsigned long)pcpu_base_addr + 2052 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2053 if ((unsigned long)addr >= first_low && 2054 (unsigned long)addr < first_high) { 2055 for_each_possible_cpu(cpu) { 2056 void *start = per_cpu_ptr(base, cpu); 2057 2058 if (addr >= start && addr < start + pcpu_unit_size) { 2059 in_first_chunk = true; 2060 break; 2061 } 2062 } 2063 } 2064 2065 if (in_first_chunk) { 2066 if (!is_vmalloc_addr(addr)) 2067 return __pa(addr); 2068 else 2069 return page_to_phys(vmalloc_to_page(addr)) + 2070 offset_in_page(addr); 2071 } else 2072 return page_to_phys(pcpu_addr_to_page(addr)) + 2073 offset_in_page(addr); 2074 } 2075 2076 /** 2077 * pcpu_alloc_alloc_info - allocate percpu allocation info 2078 * @nr_groups: the number of groups 2079 * @nr_units: the number of units 2080 * 2081 * Allocate ai which is large enough for @nr_groups groups containing 2082 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2083 * cpu_map array which is long enough for @nr_units and filled with 2084 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2085 * pointer of other groups. 2086 * 2087 * RETURNS: 2088 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2089 * failure. 2090 */ 2091 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2092 int nr_units) 2093 { 2094 struct pcpu_alloc_info *ai; 2095 size_t base_size, ai_size; 2096 void *ptr; 2097 int unit; 2098 2099 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2100 __alignof__(ai->groups[0].cpu_map[0])); 2101 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2102 2103 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2104 if (!ptr) 2105 return NULL; 2106 ai = ptr; 2107 ptr += base_size; 2108 2109 ai->groups[0].cpu_map = ptr; 2110 2111 for (unit = 0; unit < nr_units; unit++) 2112 ai->groups[0].cpu_map[unit] = NR_CPUS; 2113 2114 ai->nr_groups = nr_groups; 2115 ai->__ai_size = PFN_ALIGN(ai_size); 2116 2117 return ai; 2118 } 2119 2120 /** 2121 * pcpu_free_alloc_info - free percpu allocation info 2122 * @ai: pcpu_alloc_info to free 2123 * 2124 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2125 */ 2126 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2127 { 2128 memblock_free_early(__pa(ai), ai->__ai_size); 2129 } 2130 2131 /** 2132 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2133 * @lvl: loglevel 2134 * @ai: allocation info to dump 2135 * 2136 * Print out information about @ai using loglevel @lvl. 2137 */ 2138 static void pcpu_dump_alloc_info(const char *lvl, 2139 const struct pcpu_alloc_info *ai) 2140 { 2141 int group_width = 1, cpu_width = 1, width; 2142 char empty_str[] = "--------"; 2143 int alloc = 0, alloc_end = 0; 2144 int group, v; 2145 int upa, apl; /* units per alloc, allocs per line */ 2146 2147 v = ai->nr_groups; 2148 while (v /= 10) 2149 group_width++; 2150 2151 v = num_possible_cpus(); 2152 while (v /= 10) 2153 cpu_width++; 2154 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2155 2156 upa = ai->alloc_size / ai->unit_size; 2157 width = upa * (cpu_width + 1) + group_width + 3; 2158 apl = rounddown_pow_of_two(max(60 / width, 1)); 2159 2160 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2161 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2162 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2163 2164 for (group = 0; group < ai->nr_groups; group++) { 2165 const struct pcpu_group_info *gi = &ai->groups[group]; 2166 int unit = 0, unit_end = 0; 2167 2168 BUG_ON(gi->nr_units % upa); 2169 for (alloc_end += gi->nr_units / upa; 2170 alloc < alloc_end; alloc++) { 2171 if (!(alloc % apl)) { 2172 pr_cont("\n"); 2173 printk("%spcpu-alloc: ", lvl); 2174 } 2175 pr_cont("[%0*d] ", group_width, group); 2176 2177 for (unit_end += upa; unit < unit_end; unit++) 2178 if (gi->cpu_map[unit] != NR_CPUS) 2179 pr_cont("%0*d ", 2180 cpu_width, gi->cpu_map[unit]); 2181 else 2182 pr_cont("%s ", empty_str); 2183 } 2184 } 2185 pr_cont("\n"); 2186 } 2187 2188 /** 2189 * pcpu_setup_first_chunk - initialize the first percpu chunk 2190 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2191 * @base_addr: mapped address 2192 * 2193 * Initialize the first percpu chunk which contains the kernel static 2194 * percpu area. This function is to be called from arch percpu area 2195 * setup path. 2196 * 2197 * @ai contains all information necessary to initialize the first 2198 * chunk and prime the dynamic percpu allocator. 2199 * 2200 * @ai->static_size is the size of static percpu area. 2201 * 2202 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2203 * reserve after the static area in the first chunk. This reserves 2204 * the first chunk such that it's available only through reserved 2205 * percpu allocation. This is primarily used to serve module percpu 2206 * static areas on architectures where the addressing model has 2207 * limited offset range for symbol relocations to guarantee module 2208 * percpu symbols fall inside the relocatable range. 2209 * 2210 * @ai->dyn_size determines the number of bytes available for dynamic 2211 * allocation in the first chunk. The area between @ai->static_size + 2212 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2213 * 2214 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2215 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2216 * @ai->dyn_size. 2217 * 2218 * @ai->atom_size is the allocation atom size and used as alignment 2219 * for vm areas. 2220 * 2221 * @ai->alloc_size is the allocation size and always multiple of 2222 * @ai->atom_size. This is larger than @ai->atom_size if 2223 * @ai->unit_size is larger than @ai->atom_size. 2224 * 2225 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2226 * percpu areas. Units which should be colocated are put into the 2227 * same group. Dynamic VM areas will be allocated according to these 2228 * groupings. If @ai->nr_groups is zero, a single group containing 2229 * all units is assumed. 2230 * 2231 * The caller should have mapped the first chunk at @base_addr and 2232 * copied static data to each unit. 2233 * 2234 * The first chunk will always contain a static and a dynamic region. 2235 * However, the static region is not managed by any chunk. If the first 2236 * chunk also contains a reserved region, it is served by two chunks - 2237 * one for the reserved region and one for the dynamic region. They 2238 * share the same vm, but use offset regions in the area allocation map. 2239 * The chunk serving the dynamic region is circulated in the chunk slots 2240 * and available for dynamic allocation like any other chunk. 2241 */ 2242 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2243 void *base_addr) 2244 { 2245 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2246 size_t static_size, dyn_size; 2247 struct pcpu_chunk *chunk; 2248 unsigned long *group_offsets; 2249 size_t *group_sizes; 2250 unsigned long *unit_off; 2251 unsigned int cpu; 2252 int *unit_map; 2253 int group, unit, i; 2254 int map_size; 2255 unsigned long tmp_addr; 2256 size_t alloc_size; 2257 2258 #define PCPU_SETUP_BUG_ON(cond) do { \ 2259 if (unlikely(cond)) { \ 2260 pr_emerg("failed to initialize, %s\n", #cond); \ 2261 pr_emerg("cpu_possible_mask=%*pb\n", \ 2262 cpumask_pr_args(cpu_possible_mask)); \ 2263 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2264 BUG(); \ 2265 } \ 2266 } while (0) 2267 2268 /* sanity checks */ 2269 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2270 #ifdef CONFIG_SMP 2271 PCPU_SETUP_BUG_ON(!ai->static_size); 2272 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2273 #endif 2274 PCPU_SETUP_BUG_ON(!base_addr); 2275 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2276 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2277 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2278 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2279 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2280 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2281 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2282 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2283 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2284 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2285 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2286 2287 /* process group information and build config tables accordingly */ 2288 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2289 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2290 if (!group_offsets) 2291 panic("%s: Failed to allocate %zu bytes\n", __func__, 2292 alloc_size); 2293 2294 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2295 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2296 if (!group_sizes) 2297 panic("%s: Failed to allocate %zu bytes\n", __func__, 2298 alloc_size); 2299 2300 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2301 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2302 if (!unit_map) 2303 panic("%s: Failed to allocate %zu bytes\n", __func__, 2304 alloc_size); 2305 2306 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2307 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2308 if (!unit_off) 2309 panic("%s: Failed to allocate %zu bytes\n", __func__, 2310 alloc_size); 2311 2312 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2313 unit_map[cpu] = UINT_MAX; 2314 2315 pcpu_low_unit_cpu = NR_CPUS; 2316 pcpu_high_unit_cpu = NR_CPUS; 2317 2318 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2319 const struct pcpu_group_info *gi = &ai->groups[group]; 2320 2321 group_offsets[group] = gi->base_offset; 2322 group_sizes[group] = gi->nr_units * ai->unit_size; 2323 2324 for (i = 0; i < gi->nr_units; i++) { 2325 cpu = gi->cpu_map[i]; 2326 if (cpu == NR_CPUS) 2327 continue; 2328 2329 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2330 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2331 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2332 2333 unit_map[cpu] = unit + i; 2334 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2335 2336 /* determine low/high unit_cpu */ 2337 if (pcpu_low_unit_cpu == NR_CPUS || 2338 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2339 pcpu_low_unit_cpu = cpu; 2340 if (pcpu_high_unit_cpu == NR_CPUS || 2341 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2342 pcpu_high_unit_cpu = cpu; 2343 } 2344 } 2345 pcpu_nr_units = unit; 2346 2347 for_each_possible_cpu(cpu) 2348 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2349 2350 /* we're done parsing the input, undefine BUG macro and dump config */ 2351 #undef PCPU_SETUP_BUG_ON 2352 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2353 2354 pcpu_nr_groups = ai->nr_groups; 2355 pcpu_group_offsets = group_offsets; 2356 pcpu_group_sizes = group_sizes; 2357 pcpu_unit_map = unit_map; 2358 pcpu_unit_offsets = unit_off; 2359 2360 /* determine basic parameters */ 2361 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2362 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2363 pcpu_atom_size = ai->atom_size; 2364 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + 2365 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); 2366 2367 pcpu_stats_save_ai(ai); 2368 2369 /* 2370 * Allocate chunk slots. The additional last slot is for 2371 * empty chunks. 2372 */ 2373 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; 2374 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]), 2375 SMP_CACHE_BYTES); 2376 if (!pcpu_slot) 2377 panic("%s: Failed to allocate %zu bytes\n", __func__, 2378 pcpu_nr_slots * sizeof(pcpu_slot[0])); 2379 for (i = 0; i < pcpu_nr_slots; i++) 2380 INIT_LIST_HEAD(&pcpu_slot[i]); 2381 2382 /* 2383 * The end of the static region needs to be aligned with the 2384 * minimum allocation size as this offsets the reserved and 2385 * dynamic region. The first chunk ends page aligned by 2386 * expanding the dynamic region, therefore the dynamic region 2387 * can be shrunk to compensate while still staying above the 2388 * configured sizes. 2389 */ 2390 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2391 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2392 2393 /* 2394 * Initialize first chunk. 2395 * If the reserved_size is non-zero, this initializes the reserved 2396 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2397 * and the dynamic region is initialized here. The first chunk, 2398 * pcpu_first_chunk, will always point to the chunk that serves 2399 * the dynamic region. 2400 */ 2401 tmp_addr = (unsigned long)base_addr + static_size; 2402 map_size = ai->reserved_size ?: dyn_size; 2403 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2404 2405 /* init dynamic chunk if necessary */ 2406 if (ai->reserved_size) { 2407 pcpu_reserved_chunk = chunk; 2408 2409 tmp_addr = (unsigned long)base_addr + static_size + 2410 ai->reserved_size; 2411 map_size = dyn_size; 2412 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2413 } 2414 2415 /* link the first chunk in */ 2416 pcpu_first_chunk = chunk; 2417 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2418 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2419 2420 /* include all regions of the first chunk */ 2421 pcpu_nr_populated += PFN_DOWN(size_sum); 2422 2423 pcpu_stats_chunk_alloc(); 2424 trace_percpu_create_chunk(base_addr); 2425 2426 /* we're done */ 2427 pcpu_base_addr = base_addr; 2428 } 2429 2430 #ifdef CONFIG_SMP 2431 2432 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2433 [PCPU_FC_AUTO] = "auto", 2434 [PCPU_FC_EMBED] = "embed", 2435 [PCPU_FC_PAGE] = "page", 2436 }; 2437 2438 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2439 2440 static int __init percpu_alloc_setup(char *str) 2441 { 2442 if (!str) 2443 return -EINVAL; 2444 2445 if (0) 2446 /* nada */; 2447 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2448 else if (!strcmp(str, "embed")) 2449 pcpu_chosen_fc = PCPU_FC_EMBED; 2450 #endif 2451 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2452 else if (!strcmp(str, "page")) 2453 pcpu_chosen_fc = PCPU_FC_PAGE; 2454 #endif 2455 else 2456 pr_warn("unknown allocator %s specified\n", str); 2457 2458 return 0; 2459 } 2460 early_param("percpu_alloc", percpu_alloc_setup); 2461 2462 /* 2463 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2464 * Build it if needed by the arch config or the generic setup is going 2465 * to be used. 2466 */ 2467 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2468 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2469 #define BUILD_EMBED_FIRST_CHUNK 2470 #endif 2471 2472 /* build pcpu_page_first_chunk() iff needed by the arch config */ 2473 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2474 #define BUILD_PAGE_FIRST_CHUNK 2475 #endif 2476 2477 /* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2478 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2479 /** 2480 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2481 * @reserved_size: the size of reserved percpu area in bytes 2482 * @dyn_size: minimum free size for dynamic allocation in bytes 2483 * @atom_size: allocation atom size 2484 * @cpu_distance_fn: callback to determine distance between cpus, optional 2485 * 2486 * This function determines grouping of units, their mappings to cpus 2487 * and other parameters considering needed percpu size, allocation 2488 * atom size and distances between CPUs. 2489 * 2490 * Groups are always multiples of atom size and CPUs which are of 2491 * LOCAL_DISTANCE both ways are grouped together and share space for 2492 * units in the same group. The returned configuration is guaranteed 2493 * to have CPUs on different nodes on different groups and >=75% usage 2494 * of allocated virtual address space. 2495 * 2496 * RETURNS: 2497 * On success, pointer to the new allocation_info is returned. On 2498 * failure, ERR_PTR value is returned. 2499 */ 2500 static struct pcpu_alloc_info * __init pcpu_build_alloc_info( 2501 size_t reserved_size, size_t dyn_size, 2502 size_t atom_size, 2503 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2504 { 2505 static int group_map[NR_CPUS] __initdata; 2506 static int group_cnt[NR_CPUS] __initdata; 2507 const size_t static_size = __per_cpu_end - __per_cpu_start; 2508 int nr_groups = 1, nr_units = 0; 2509 size_t size_sum, min_unit_size, alloc_size; 2510 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ 2511 int last_allocs, group, unit; 2512 unsigned int cpu, tcpu; 2513 struct pcpu_alloc_info *ai; 2514 unsigned int *cpu_map; 2515 2516 /* this function may be called multiple times */ 2517 memset(group_map, 0, sizeof(group_map)); 2518 memset(group_cnt, 0, sizeof(group_cnt)); 2519 2520 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2521 size_sum = PFN_ALIGN(static_size + reserved_size + 2522 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2523 dyn_size = size_sum - static_size - reserved_size; 2524 2525 /* 2526 * Determine min_unit_size, alloc_size and max_upa such that 2527 * alloc_size is multiple of atom_size and is the smallest 2528 * which can accommodate 4k aligned segments which are equal to 2529 * or larger than min_unit_size. 2530 */ 2531 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2532 2533 /* determine the maximum # of units that can fit in an allocation */ 2534 alloc_size = roundup(min_unit_size, atom_size); 2535 upa = alloc_size / min_unit_size; 2536 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2537 upa--; 2538 max_upa = upa; 2539 2540 /* group cpus according to their proximity */ 2541 for_each_possible_cpu(cpu) { 2542 group = 0; 2543 next_group: 2544 for_each_possible_cpu(tcpu) { 2545 if (cpu == tcpu) 2546 break; 2547 if (group_map[tcpu] == group && cpu_distance_fn && 2548 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || 2549 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { 2550 group++; 2551 nr_groups = max(nr_groups, group + 1); 2552 goto next_group; 2553 } 2554 } 2555 group_map[cpu] = group; 2556 group_cnt[group]++; 2557 } 2558 2559 /* 2560 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2561 * Expand the unit_size until we use >= 75% of the units allocated. 2562 * Related to atom_size, which could be much larger than the unit_size. 2563 */ 2564 last_allocs = INT_MAX; 2565 for (upa = max_upa; upa; upa--) { 2566 int allocs = 0, wasted = 0; 2567 2568 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2569 continue; 2570 2571 for (group = 0; group < nr_groups; group++) { 2572 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2573 allocs += this_allocs; 2574 wasted += this_allocs * upa - group_cnt[group]; 2575 } 2576 2577 /* 2578 * Don't accept if wastage is over 1/3. The 2579 * greater-than comparison ensures upa==1 always 2580 * passes the following check. 2581 */ 2582 if (wasted > num_possible_cpus() / 3) 2583 continue; 2584 2585 /* and then don't consume more memory */ 2586 if (allocs > last_allocs) 2587 break; 2588 last_allocs = allocs; 2589 best_upa = upa; 2590 } 2591 upa = best_upa; 2592 2593 /* allocate and fill alloc_info */ 2594 for (group = 0; group < nr_groups; group++) 2595 nr_units += roundup(group_cnt[group], upa); 2596 2597 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2598 if (!ai) 2599 return ERR_PTR(-ENOMEM); 2600 cpu_map = ai->groups[0].cpu_map; 2601 2602 for (group = 0; group < nr_groups; group++) { 2603 ai->groups[group].cpu_map = cpu_map; 2604 cpu_map += roundup(group_cnt[group], upa); 2605 } 2606 2607 ai->static_size = static_size; 2608 ai->reserved_size = reserved_size; 2609 ai->dyn_size = dyn_size; 2610 ai->unit_size = alloc_size / upa; 2611 ai->atom_size = atom_size; 2612 ai->alloc_size = alloc_size; 2613 2614 for (group = 0, unit = 0; group < nr_groups; group++) { 2615 struct pcpu_group_info *gi = &ai->groups[group]; 2616 2617 /* 2618 * Initialize base_offset as if all groups are located 2619 * back-to-back. The caller should update this to 2620 * reflect actual allocation. 2621 */ 2622 gi->base_offset = unit * ai->unit_size; 2623 2624 for_each_possible_cpu(cpu) 2625 if (group_map[cpu] == group) 2626 gi->cpu_map[gi->nr_units++] = cpu; 2627 gi->nr_units = roundup(gi->nr_units, upa); 2628 unit += gi->nr_units; 2629 } 2630 BUG_ON(unit != nr_units); 2631 2632 return ai; 2633 } 2634 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 2635 2636 #if defined(BUILD_EMBED_FIRST_CHUNK) 2637 /** 2638 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 2639 * @reserved_size: the size of reserved percpu area in bytes 2640 * @dyn_size: minimum free size for dynamic allocation in bytes 2641 * @atom_size: allocation atom size 2642 * @cpu_distance_fn: callback to determine distance between cpus, optional 2643 * @alloc_fn: function to allocate percpu page 2644 * @free_fn: function to free percpu page 2645 * 2646 * This is a helper to ease setting up embedded first percpu chunk and 2647 * can be called where pcpu_setup_first_chunk() is expected. 2648 * 2649 * If this function is used to setup the first chunk, it is allocated 2650 * by calling @alloc_fn and used as-is without being mapped into 2651 * vmalloc area. Allocations are always whole multiples of @atom_size 2652 * aligned to @atom_size. 2653 * 2654 * This enables the first chunk to piggy back on the linear physical 2655 * mapping which often uses larger page size. Please note that this 2656 * can result in very sparse cpu->unit mapping on NUMA machines thus 2657 * requiring large vmalloc address space. Don't use this allocator if 2658 * vmalloc space is not orders of magnitude larger than distances 2659 * between node memory addresses (ie. 32bit NUMA machines). 2660 * 2661 * @dyn_size specifies the minimum dynamic area size. 2662 * 2663 * If the needed size is smaller than the minimum or specified unit 2664 * size, the leftover is returned using @free_fn. 2665 * 2666 * RETURNS: 2667 * 0 on success, -errno on failure. 2668 */ 2669 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 2670 size_t atom_size, 2671 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 2672 pcpu_fc_alloc_fn_t alloc_fn, 2673 pcpu_fc_free_fn_t free_fn) 2674 { 2675 void *base = (void *)ULONG_MAX; 2676 void **areas = NULL; 2677 struct pcpu_alloc_info *ai; 2678 size_t size_sum, areas_size; 2679 unsigned long max_distance; 2680 int group, i, highest_group, rc = 0; 2681 2682 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 2683 cpu_distance_fn); 2684 if (IS_ERR(ai)) 2685 return PTR_ERR(ai); 2686 2687 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2688 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 2689 2690 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 2691 if (!areas) { 2692 rc = -ENOMEM; 2693 goto out_free; 2694 } 2695 2696 /* allocate, copy and determine base address & max_distance */ 2697 highest_group = 0; 2698 for (group = 0; group < ai->nr_groups; group++) { 2699 struct pcpu_group_info *gi = &ai->groups[group]; 2700 unsigned int cpu = NR_CPUS; 2701 void *ptr; 2702 2703 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 2704 cpu = gi->cpu_map[i]; 2705 BUG_ON(cpu == NR_CPUS); 2706 2707 /* allocate space for the whole group */ 2708 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); 2709 if (!ptr) { 2710 rc = -ENOMEM; 2711 goto out_free_areas; 2712 } 2713 /* kmemleak tracks the percpu allocations separately */ 2714 kmemleak_free(ptr); 2715 areas[group] = ptr; 2716 2717 base = min(ptr, base); 2718 if (ptr > areas[highest_group]) 2719 highest_group = group; 2720 } 2721 max_distance = areas[highest_group] - base; 2722 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 2723 2724 /* warn if maximum distance is further than 75% of vmalloc space */ 2725 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 2726 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 2727 max_distance, VMALLOC_TOTAL); 2728 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2729 /* and fail if we have fallback */ 2730 rc = -EINVAL; 2731 goto out_free_areas; 2732 #endif 2733 } 2734 2735 /* 2736 * Copy data and free unused parts. This should happen after all 2737 * allocations are complete; otherwise, we may end up with 2738 * overlapping groups. 2739 */ 2740 for (group = 0; group < ai->nr_groups; group++) { 2741 struct pcpu_group_info *gi = &ai->groups[group]; 2742 void *ptr = areas[group]; 2743 2744 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 2745 if (gi->cpu_map[i] == NR_CPUS) { 2746 /* unused unit, free whole */ 2747 free_fn(ptr, ai->unit_size); 2748 continue; 2749 } 2750 /* copy and return the unused part */ 2751 memcpy(ptr, __per_cpu_load, ai->static_size); 2752 free_fn(ptr + size_sum, ai->unit_size - size_sum); 2753 } 2754 } 2755 2756 /* base address is now known, determine group base offsets */ 2757 for (group = 0; group < ai->nr_groups; group++) { 2758 ai->groups[group].base_offset = areas[group] - base; 2759 } 2760 2761 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 2762 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 2763 ai->dyn_size, ai->unit_size); 2764 2765 pcpu_setup_first_chunk(ai, base); 2766 goto out_free; 2767 2768 out_free_areas: 2769 for (group = 0; group < ai->nr_groups; group++) 2770 if (areas[group]) 2771 free_fn(areas[group], 2772 ai->groups[group].nr_units * ai->unit_size); 2773 out_free: 2774 pcpu_free_alloc_info(ai); 2775 if (areas) 2776 memblock_free_early(__pa(areas), areas_size); 2777 return rc; 2778 } 2779 #endif /* BUILD_EMBED_FIRST_CHUNK */ 2780 2781 #ifdef BUILD_PAGE_FIRST_CHUNK 2782 /** 2783 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 2784 * @reserved_size: the size of reserved percpu area in bytes 2785 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE 2786 * @free_fn: function to free percpu page, always called with PAGE_SIZE 2787 * @populate_pte_fn: function to populate pte 2788 * 2789 * This is a helper to ease setting up page-remapped first percpu 2790 * chunk and can be called where pcpu_setup_first_chunk() is expected. 2791 * 2792 * This is the basic allocator. Static percpu area is allocated 2793 * page-by-page into vmalloc area. 2794 * 2795 * RETURNS: 2796 * 0 on success, -errno on failure. 2797 */ 2798 int __init pcpu_page_first_chunk(size_t reserved_size, 2799 pcpu_fc_alloc_fn_t alloc_fn, 2800 pcpu_fc_free_fn_t free_fn, 2801 pcpu_fc_populate_pte_fn_t populate_pte_fn) 2802 { 2803 static struct vm_struct vm; 2804 struct pcpu_alloc_info *ai; 2805 char psize_str[16]; 2806 int unit_pages; 2807 size_t pages_size; 2808 struct page **pages; 2809 int unit, i, j, rc = 0; 2810 int upa; 2811 int nr_g0_units; 2812 2813 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 2814 2815 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 2816 if (IS_ERR(ai)) 2817 return PTR_ERR(ai); 2818 BUG_ON(ai->nr_groups != 1); 2819 upa = ai->alloc_size/ai->unit_size; 2820 nr_g0_units = roundup(num_possible_cpus(), upa); 2821 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 2822 pcpu_free_alloc_info(ai); 2823 return -EINVAL; 2824 } 2825 2826 unit_pages = ai->unit_size >> PAGE_SHIFT; 2827 2828 /* unaligned allocations can't be freed, round up to page size */ 2829 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 2830 sizeof(pages[0])); 2831 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 2832 if (!pages) 2833 panic("%s: Failed to allocate %zu bytes\n", __func__, 2834 pages_size); 2835 2836 /* allocate pages */ 2837 j = 0; 2838 for (unit = 0; unit < num_possible_cpus(); unit++) { 2839 unsigned int cpu = ai->groups[0].cpu_map[unit]; 2840 for (i = 0; i < unit_pages; i++) { 2841 void *ptr; 2842 2843 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); 2844 if (!ptr) { 2845 pr_warn("failed to allocate %s page for cpu%u\n", 2846 psize_str, cpu); 2847 goto enomem; 2848 } 2849 /* kmemleak tracks the percpu allocations separately */ 2850 kmemleak_free(ptr); 2851 pages[j++] = virt_to_page(ptr); 2852 } 2853 } 2854 2855 /* allocate vm area, map the pages and copy static data */ 2856 vm.flags = VM_ALLOC; 2857 vm.size = num_possible_cpus() * ai->unit_size; 2858 vm_area_register_early(&vm, PAGE_SIZE); 2859 2860 for (unit = 0; unit < num_possible_cpus(); unit++) { 2861 unsigned long unit_addr = 2862 (unsigned long)vm.addr + unit * ai->unit_size; 2863 2864 for (i = 0; i < unit_pages; i++) 2865 populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); 2866 2867 /* pte already populated, the following shouldn't fail */ 2868 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 2869 unit_pages); 2870 if (rc < 0) 2871 panic("failed to map percpu area, err=%d\n", rc); 2872 2873 /* 2874 * FIXME: Archs with virtual cache should flush local 2875 * cache for the linear mapping here - something 2876 * equivalent to flush_cache_vmap() on the local cpu. 2877 * flush_cache_vmap() can't be used as most supporting 2878 * data structures are not set up yet. 2879 */ 2880 2881 /* copy static data */ 2882 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 2883 } 2884 2885 /* we're ready, commit */ 2886 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 2887 unit_pages, psize_str, ai->static_size, 2888 ai->reserved_size, ai->dyn_size); 2889 2890 pcpu_setup_first_chunk(ai, vm.addr); 2891 goto out_free_ar; 2892 2893 enomem: 2894 while (--j >= 0) 2895 free_fn(page_address(pages[j]), PAGE_SIZE); 2896 rc = -ENOMEM; 2897 out_free_ar: 2898 memblock_free_early(__pa(pages), pages_size); 2899 pcpu_free_alloc_info(ai); 2900 return rc; 2901 } 2902 #endif /* BUILD_PAGE_FIRST_CHUNK */ 2903 2904 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 2905 /* 2906 * Generic SMP percpu area setup. 2907 * 2908 * The embedding helper is used because its behavior closely resembles 2909 * the original non-dynamic generic percpu area setup. This is 2910 * important because many archs have addressing restrictions and might 2911 * fail if the percpu area is located far away from the previous 2912 * location. As an added bonus, in non-NUMA cases, embedding is 2913 * generally a good idea TLB-wise because percpu area can piggy back 2914 * on the physical linear memory mapping which uses large page 2915 * mappings on applicable archs. 2916 */ 2917 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 2918 EXPORT_SYMBOL(__per_cpu_offset); 2919 2920 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, 2921 size_t align) 2922 { 2923 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); 2924 } 2925 2926 static void __init pcpu_dfl_fc_free(void *ptr, size_t size) 2927 { 2928 memblock_free_early(__pa(ptr), size); 2929 } 2930 2931 void __init setup_per_cpu_areas(void) 2932 { 2933 unsigned long delta; 2934 unsigned int cpu; 2935 int rc; 2936 2937 /* 2938 * Always reserve area for module percpu variables. That's 2939 * what the legacy allocator did. 2940 */ 2941 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 2942 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, 2943 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); 2944 if (rc < 0) 2945 panic("Failed to initialize percpu areas."); 2946 2947 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 2948 for_each_possible_cpu(cpu) 2949 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 2950 } 2951 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 2952 2953 #else /* CONFIG_SMP */ 2954 2955 /* 2956 * UP percpu area setup. 2957 * 2958 * UP always uses km-based percpu allocator with identity mapping. 2959 * Static percpu variables are indistinguishable from the usual static 2960 * variables and don't require any special preparation. 2961 */ 2962 void __init setup_per_cpu_areas(void) 2963 { 2964 const size_t unit_size = 2965 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 2966 PERCPU_DYNAMIC_RESERVE)); 2967 struct pcpu_alloc_info *ai; 2968 void *fc; 2969 2970 ai = pcpu_alloc_alloc_info(1, 1); 2971 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 2972 if (!ai || !fc) 2973 panic("Failed to allocate memory for percpu areas."); 2974 /* kmemleak tracks the percpu allocations separately */ 2975 kmemleak_free(fc); 2976 2977 ai->dyn_size = unit_size; 2978 ai->unit_size = unit_size; 2979 ai->atom_size = unit_size; 2980 ai->alloc_size = unit_size; 2981 ai->groups[0].nr_units = 1; 2982 ai->groups[0].cpu_map[0] = 0; 2983 2984 pcpu_setup_first_chunk(ai, fc); 2985 pcpu_free_alloc_info(ai); 2986 } 2987 2988 #endif /* CONFIG_SMP */ 2989 2990 /* 2991 * pcpu_nr_pages - calculate total number of populated backing pages 2992 * 2993 * This reflects the number of pages populated to back chunks. Metadata is 2994 * excluded in the number exposed in meminfo as the number of backing pages 2995 * scales with the number of cpus and can quickly outweigh the memory used for 2996 * metadata. It also keeps this calculation nice and simple. 2997 * 2998 * RETURNS: 2999 * Total number of populated backing pages in use by the allocator. 3000 */ 3001 unsigned long pcpu_nr_pages(void) 3002 { 3003 return pcpu_nr_populated * pcpu_nr_units; 3004 } 3005 3006 /* 3007 * Percpu allocator is initialized early during boot when neither slab or 3008 * workqueue is available. Plug async management until everything is up 3009 * and running. 3010 */ 3011 static int __init percpu_enable_async(void) 3012 { 3013 pcpu_async_enabled = true; 3014 return 0; 3015 } 3016 subsys_initcall(percpu_enable_async); 3017