xref: /openbmc/linux/mm/percpu.c (revision 110e6f26)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * This is percpu allocator which can handle both static and dynamic
10  * areas.  Percpu areas are allocated in chunks.  Each chunk is
11  * consisted of boot-time determined number of units and the first
12  * chunk is used for static percpu variables in the kernel image
13  * (special boot time alloc/init handling necessary as these areas
14  * need to be brought up before allocation services are running).
15  * Unit grows as necessary and all units grow or shrink in unison.
16  * When a chunk is filled up, another chunk is allocated.
17  *
18  *  c0                           c1                         c2
19  *  -------------------          -------------------        ------------
20  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
21  *  -------------------  ......  -------------------  ....  ------------
22  *
23  * Allocation is done in offset-size areas of single unit space.  Ie,
24  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
26  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
27  * Percpu access can be done by configuring percpu base registers
28  * according to cpu to unit mapping and pcpu_unit_size.
29  *
30  * There are usually many small percpu allocations many of them being
31  * as small as 4 bytes.  The allocator organizes chunks into lists
32  * according to free size and tries to allocate from the fullest one.
33  * Each chunk keeps the maximum contiguous area size hint which is
34  * guaranteed to be equal to or larger than the maximum contiguous
35  * area in the chunk.  This helps the allocator not to iterate the
36  * chunk maps unnecessarily.
37  *
38  * Allocation state in each chunk is kept using an array of integers
39  * on chunk->map.  A positive value in the map represents a free
40  * region and negative allocated.  Allocation inside a chunk is done
41  * by scanning this map sequentially and serving the first matching
42  * entry.  This is mostly copied from the percpu_modalloc() allocator.
43  * Chunks can be determined from the address using the index field
44  * in the page struct. The index field contains a pointer to the chunk.
45  *
46  * To use this allocator, arch code should do the followings.
47  *
48  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49  *   regular address to percpu pointer and back if they need to be
50  *   different from the default
51  *
52  * - use pcpu_setup_first_chunk() during percpu area initialization to
53  *   setup the first chunk containing the kernel static percpu area
54  */
55 
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
73 
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
78 
79 #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
80 #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
81 #define PCPU_ATOMIC_MAP_MARGIN_LOW	32
82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
83 #define PCPU_EMPTY_POP_PAGES_LOW	2
84 #define PCPU_EMPTY_POP_PAGES_HIGH	4
85 
86 #ifdef CONFIG_SMP
87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88 #ifndef __addr_to_pcpu_ptr
89 #define __addr_to_pcpu_ptr(addr)					\
90 	(void __percpu *)((unsigned long)(addr) -			\
91 			  (unsigned long)pcpu_base_addr	+		\
92 			  (unsigned long)__per_cpu_start)
93 #endif
94 #ifndef __pcpu_ptr_to_addr
95 #define __pcpu_ptr_to_addr(ptr)						\
96 	(void __force *)((unsigned long)(ptr) +				\
97 			 (unsigned long)pcpu_base_addr -		\
98 			 (unsigned long)__per_cpu_start)
99 #endif
100 #else	/* CONFIG_SMP */
101 /* on UP, it's always identity mapped */
102 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
103 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
104 #endif	/* CONFIG_SMP */
105 
106 struct pcpu_chunk {
107 	struct list_head	list;		/* linked to pcpu_slot lists */
108 	int			free_size;	/* free bytes in the chunk */
109 	int			contig_hint;	/* max contiguous size hint */
110 	void			*base_addr;	/* base address of this chunk */
111 
112 	int			map_used;	/* # of map entries used before the sentry */
113 	int			map_alloc;	/* # of map entries allocated */
114 	int			*map;		/* allocation map */
115 	struct work_struct	map_extend_work;/* async ->map[] extension */
116 
117 	void			*data;		/* chunk data */
118 	int			first_free;	/* no free below this */
119 	bool			immutable;	/* no [de]population allowed */
120 	int			nr_populated;	/* # of populated pages */
121 	unsigned long		populated[];	/* populated bitmap */
122 };
123 
124 static int pcpu_unit_pages __read_mostly;
125 static int pcpu_unit_size __read_mostly;
126 static int pcpu_nr_units __read_mostly;
127 static int pcpu_atom_size __read_mostly;
128 static int pcpu_nr_slots __read_mostly;
129 static size_t pcpu_chunk_struct_size __read_mostly;
130 
131 /* cpus with the lowest and highest unit addresses */
132 static unsigned int pcpu_low_unit_cpu __read_mostly;
133 static unsigned int pcpu_high_unit_cpu __read_mostly;
134 
135 /* the address of the first chunk which starts with the kernel static area */
136 void *pcpu_base_addr __read_mostly;
137 EXPORT_SYMBOL_GPL(pcpu_base_addr);
138 
139 static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
140 const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
141 
142 /* group information, used for vm allocation */
143 static int pcpu_nr_groups __read_mostly;
144 static const unsigned long *pcpu_group_offsets __read_mostly;
145 static const size_t *pcpu_group_sizes __read_mostly;
146 
147 /*
148  * The first chunk which always exists.  Note that unlike other
149  * chunks, this one can be allocated and mapped in several different
150  * ways and thus often doesn't live in the vmalloc area.
151  */
152 static struct pcpu_chunk *pcpu_first_chunk;
153 
154 /*
155  * Optional reserved chunk.  This chunk reserves part of the first
156  * chunk and serves it for reserved allocations.  The amount of
157  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
158  * area doesn't exist, the following variables contain NULL and 0
159  * respectively.
160  */
161 static struct pcpu_chunk *pcpu_reserved_chunk;
162 static int pcpu_reserved_chunk_limit;
163 
164 static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
165 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
166 
167 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
168 
169 /*
170  * The number of empty populated pages, protected by pcpu_lock.  The
171  * reserved chunk doesn't contribute to the count.
172  */
173 static int pcpu_nr_empty_pop_pages;
174 
175 /*
176  * Balance work is used to populate or destroy chunks asynchronously.  We
177  * try to keep the number of populated free pages between
178  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
179  * empty chunk.
180  */
181 static void pcpu_balance_workfn(struct work_struct *work);
182 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
183 static bool pcpu_async_enabled __read_mostly;
184 static bool pcpu_atomic_alloc_failed;
185 
186 static void pcpu_schedule_balance_work(void)
187 {
188 	if (pcpu_async_enabled)
189 		schedule_work(&pcpu_balance_work);
190 }
191 
192 static bool pcpu_addr_in_first_chunk(void *addr)
193 {
194 	void *first_start = pcpu_first_chunk->base_addr;
195 
196 	return addr >= first_start && addr < first_start + pcpu_unit_size;
197 }
198 
199 static bool pcpu_addr_in_reserved_chunk(void *addr)
200 {
201 	void *first_start = pcpu_first_chunk->base_addr;
202 
203 	return addr >= first_start &&
204 		addr < first_start + pcpu_reserved_chunk_limit;
205 }
206 
207 static int __pcpu_size_to_slot(int size)
208 {
209 	int highbit = fls(size);	/* size is in bytes */
210 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
211 }
212 
213 static int pcpu_size_to_slot(int size)
214 {
215 	if (size == pcpu_unit_size)
216 		return pcpu_nr_slots - 1;
217 	return __pcpu_size_to_slot(size);
218 }
219 
220 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
221 {
222 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
223 		return 0;
224 
225 	return pcpu_size_to_slot(chunk->free_size);
226 }
227 
228 /* set the pointer to a chunk in a page struct */
229 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
230 {
231 	page->index = (unsigned long)pcpu;
232 }
233 
234 /* obtain pointer to a chunk from a page struct */
235 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
236 {
237 	return (struct pcpu_chunk *)page->index;
238 }
239 
240 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
241 {
242 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
243 }
244 
245 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
246 				     unsigned int cpu, int page_idx)
247 {
248 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
249 		(page_idx << PAGE_SHIFT);
250 }
251 
252 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
253 					   int *rs, int *re, int end)
254 {
255 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
256 	*re = find_next_bit(chunk->populated, end, *rs + 1);
257 }
258 
259 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
260 					 int *rs, int *re, int end)
261 {
262 	*rs = find_next_bit(chunk->populated, end, *rs);
263 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
264 }
265 
266 /*
267  * (Un)populated page region iterators.  Iterate over (un)populated
268  * page regions between @start and @end in @chunk.  @rs and @re should
269  * be integer variables and will be set to start and end page index of
270  * the current region.
271  */
272 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
273 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
274 	     (rs) < (re);						    \
275 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
276 
277 #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
278 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
279 	     (rs) < (re);						    \
280 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
281 
282 /**
283  * pcpu_mem_zalloc - allocate memory
284  * @size: bytes to allocate
285  *
286  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
287  * kzalloc() is used; otherwise, vzalloc() is used.  The returned
288  * memory is always zeroed.
289  *
290  * CONTEXT:
291  * Does GFP_KERNEL allocation.
292  *
293  * RETURNS:
294  * Pointer to the allocated area on success, NULL on failure.
295  */
296 static void *pcpu_mem_zalloc(size_t size)
297 {
298 	if (WARN_ON_ONCE(!slab_is_available()))
299 		return NULL;
300 
301 	if (size <= PAGE_SIZE)
302 		return kzalloc(size, GFP_KERNEL);
303 	else
304 		return vzalloc(size);
305 }
306 
307 /**
308  * pcpu_mem_free - free memory
309  * @ptr: memory to free
310  *
311  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
312  */
313 static void pcpu_mem_free(void *ptr)
314 {
315 	kvfree(ptr);
316 }
317 
318 /**
319  * pcpu_count_occupied_pages - count the number of pages an area occupies
320  * @chunk: chunk of interest
321  * @i: index of the area in question
322  *
323  * Count the number of pages chunk's @i'th area occupies.  When the area's
324  * start and/or end address isn't aligned to page boundary, the straddled
325  * page is included in the count iff the rest of the page is free.
326  */
327 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
328 {
329 	int off = chunk->map[i] & ~1;
330 	int end = chunk->map[i + 1] & ~1;
331 
332 	if (!PAGE_ALIGNED(off) && i > 0) {
333 		int prev = chunk->map[i - 1];
334 
335 		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
336 			off = round_down(off, PAGE_SIZE);
337 	}
338 
339 	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
340 		int next = chunk->map[i + 1];
341 		int nend = chunk->map[i + 2] & ~1;
342 
343 		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
344 			end = round_up(end, PAGE_SIZE);
345 	}
346 
347 	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
348 }
349 
350 /**
351  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
352  * @chunk: chunk of interest
353  * @oslot: the previous slot it was on
354  *
355  * This function is called after an allocation or free changed @chunk.
356  * New slot according to the changed state is determined and @chunk is
357  * moved to the slot.  Note that the reserved chunk is never put on
358  * chunk slots.
359  *
360  * CONTEXT:
361  * pcpu_lock.
362  */
363 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
364 {
365 	int nslot = pcpu_chunk_slot(chunk);
366 
367 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
368 		if (oslot < nslot)
369 			list_move(&chunk->list, &pcpu_slot[nslot]);
370 		else
371 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
372 	}
373 }
374 
375 /**
376  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
377  * @chunk: chunk of interest
378  * @is_atomic: the allocation context
379  *
380  * Determine whether area map of @chunk needs to be extended.  If
381  * @is_atomic, only the amount necessary for a new allocation is
382  * considered; however, async extension is scheduled if the left amount is
383  * low.  If !@is_atomic, it aims for more empty space.  Combined, this
384  * ensures that the map is likely to have enough available space to
385  * accomodate atomic allocations which can't extend maps directly.
386  *
387  * CONTEXT:
388  * pcpu_lock.
389  *
390  * RETURNS:
391  * New target map allocation length if extension is necessary, 0
392  * otherwise.
393  */
394 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
395 {
396 	int margin, new_alloc;
397 
398 	if (is_atomic) {
399 		margin = 3;
400 
401 		if (chunk->map_alloc <
402 		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
403 		    pcpu_async_enabled)
404 			schedule_work(&chunk->map_extend_work);
405 	} else {
406 		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
407 	}
408 
409 	if (chunk->map_alloc >= chunk->map_used + margin)
410 		return 0;
411 
412 	new_alloc = PCPU_DFL_MAP_ALLOC;
413 	while (new_alloc < chunk->map_used + margin)
414 		new_alloc *= 2;
415 
416 	return new_alloc;
417 }
418 
419 /**
420  * pcpu_extend_area_map - extend area map of a chunk
421  * @chunk: chunk of interest
422  * @new_alloc: new target allocation length of the area map
423  *
424  * Extend area map of @chunk to have @new_alloc entries.
425  *
426  * CONTEXT:
427  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
428  *
429  * RETURNS:
430  * 0 on success, -errno on failure.
431  */
432 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
433 {
434 	int *old = NULL, *new = NULL;
435 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
436 	unsigned long flags;
437 
438 	new = pcpu_mem_zalloc(new_size);
439 	if (!new)
440 		return -ENOMEM;
441 
442 	/* acquire pcpu_lock and switch to new area map */
443 	spin_lock_irqsave(&pcpu_lock, flags);
444 
445 	if (new_alloc <= chunk->map_alloc)
446 		goto out_unlock;
447 
448 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
449 	old = chunk->map;
450 
451 	memcpy(new, old, old_size);
452 
453 	chunk->map_alloc = new_alloc;
454 	chunk->map = new;
455 	new = NULL;
456 
457 out_unlock:
458 	spin_unlock_irqrestore(&pcpu_lock, flags);
459 
460 	/*
461 	 * pcpu_mem_free() might end up calling vfree() which uses
462 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
463 	 */
464 	pcpu_mem_free(old);
465 	pcpu_mem_free(new);
466 
467 	return 0;
468 }
469 
470 static void pcpu_map_extend_workfn(struct work_struct *work)
471 {
472 	struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
473 						map_extend_work);
474 	int new_alloc;
475 
476 	spin_lock_irq(&pcpu_lock);
477 	new_alloc = pcpu_need_to_extend(chunk, false);
478 	spin_unlock_irq(&pcpu_lock);
479 
480 	if (new_alloc)
481 		pcpu_extend_area_map(chunk, new_alloc);
482 }
483 
484 /**
485  * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
486  * @chunk: chunk the candidate area belongs to
487  * @off: the offset to the start of the candidate area
488  * @this_size: the size of the candidate area
489  * @size: the size of the target allocation
490  * @align: the alignment of the target allocation
491  * @pop_only: only allocate from already populated region
492  *
493  * We're trying to allocate @size bytes aligned at @align.  @chunk's area
494  * at @off sized @this_size is a candidate.  This function determines
495  * whether the target allocation fits in the candidate area and returns the
496  * number of bytes to pad after @off.  If the target area doesn't fit, -1
497  * is returned.
498  *
499  * If @pop_only is %true, this function only considers the already
500  * populated part of the candidate area.
501  */
502 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
503 			    int size, int align, bool pop_only)
504 {
505 	int cand_off = off;
506 
507 	while (true) {
508 		int head = ALIGN(cand_off, align) - off;
509 		int page_start, page_end, rs, re;
510 
511 		if (this_size < head + size)
512 			return -1;
513 
514 		if (!pop_only)
515 			return head;
516 
517 		/*
518 		 * If the first unpopulated page is beyond the end of the
519 		 * allocation, the whole allocation is populated;
520 		 * otherwise, retry from the end of the unpopulated area.
521 		 */
522 		page_start = PFN_DOWN(head + off);
523 		page_end = PFN_UP(head + off + size);
524 
525 		rs = page_start;
526 		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
527 		if (rs >= page_end)
528 			return head;
529 		cand_off = re * PAGE_SIZE;
530 	}
531 }
532 
533 /**
534  * pcpu_alloc_area - allocate area from a pcpu_chunk
535  * @chunk: chunk of interest
536  * @size: wanted size in bytes
537  * @align: wanted align
538  * @pop_only: allocate only from the populated area
539  * @occ_pages_p: out param for the number of pages the area occupies
540  *
541  * Try to allocate @size bytes area aligned at @align from @chunk.
542  * Note that this function only allocates the offset.  It doesn't
543  * populate or map the area.
544  *
545  * @chunk->map must have at least two free slots.
546  *
547  * CONTEXT:
548  * pcpu_lock.
549  *
550  * RETURNS:
551  * Allocated offset in @chunk on success, -1 if no matching area is
552  * found.
553  */
554 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
555 			   bool pop_only, int *occ_pages_p)
556 {
557 	int oslot = pcpu_chunk_slot(chunk);
558 	int max_contig = 0;
559 	int i, off;
560 	bool seen_free = false;
561 	int *p;
562 
563 	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
564 		int head, tail;
565 		int this_size;
566 
567 		off = *p;
568 		if (off & 1)
569 			continue;
570 
571 		this_size = (p[1] & ~1) - off;
572 
573 		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
574 					pop_only);
575 		if (head < 0) {
576 			if (!seen_free) {
577 				chunk->first_free = i;
578 				seen_free = true;
579 			}
580 			max_contig = max(this_size, max_contig);
581 			continue;
582 		}
583 
584 		/*
585 		 * If head is small or the previous block is free,
586 		 * merge'em.  Note that 'small' is defined as smaller
587 		 * than sizeof(int), which is very small but isn't too
588 		 * uncommon for percpu allocations.
589 		 */
590 		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
591 			*p = off += head;
592 			if (p[-1] & 1)
593 				chunk->free_size -= head;
594 			else
595 				max_contig = max(*p - p[-1], max_contig);
596 			this_size -= head;
597 			head = 0;
598 		}
599 
600 		/* if tail is small, just keep it around */
601 		tail = this_size - head - size;
602 		if (tail < sizeof(int)) {
603 			tail = 0;
604 			size = this_size - head;
605 		}
606 
607 		/* split if warranted */
608 		if (head || tail) {
609 			int nr_extra = !!head + !!tail;
610 
611 			/* insert new subblocks */
612 			memmove(p + nr_extra + 1, p + 1,
613 				sizeof(chunk->map[0]) * (chunk->map_used - i));
614 			chunk->map_used += nr_extra;
615 
616 			if (head) {
617 				if (!seen_free) {
618 					chunk->first_free = i;
619 					seen_free = true;
620 				}
621 				*++p = off += head;
622 				++i;
623 				max_contig = max(head, max_contig);
624 			}
625 			if (tail) {
626 				p[1] = off + size;
627 				max_contig = max(tail, max_contig);
628 			}
629 		}
630 
631 		if (!seen_free)
632 			chunk->first_free = i + 1;
633 
634 		/* update hint and mark allocated */
635 		if (i + 1 == chunk->map_used)
636 			chunk->contig_hint = max_contig; /* fully scanned */
637 		else
638 			chunk->contig_hint = max(chunk->contig_hint,
639 						 max_contig);
640 
641 		chunk->free_size -= size;
642 		*p |= 1;
643 
644 		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
645 		pcpu_chunk_relocate(chunk, oslot);
646 		return off;
647 	}
648 
649 	chunk->contig_hint = max_contig;	/* fully scanned */
650 	pcpu_chunk_relocate(chunk, oslot);
651 
652 	/* tell the upper layer that this chunk has no matching area */
653 	return -1;
654 }
655 
656 /**
657  * pcpu_free_area - free area to a pcpu_chunk
658  * @chunk: chunk of interest
659  * @freeme: offset of area to free
660  * @occ_pages_p: out param for the number of pages the area occupies
661  *
662  * Free area starting from @freeme to @chunk.  Note that this function
663  * only modifies the allocation map.  It doesn't depopulate or unmap
664  * the area.
665  *
666  * CONTEXT:
667  * pcpu_lock.
668  */
669 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
670 			   int *occ_pages_p)
671 {
672 	int oslot = pcpu_chunk_slot(chunk);
673 	int off = 0;
674 	unsigned i, j;
675 	int to_free = 0;
676 	int *p;
677 
678 	freeme |= 1;	/* we are searching for <given offset, in use> pair */
679 
680 	i = 0;
681 	j = chunk->map_used;
682 	while (i != j) {
683 		unsigned k = (i + j) / 2;
684 		off = chunk->map[k];
685 		if (off < freeme)
686 			i = k + 1;
687 		else if (off > freeme)
688 			j = k;
689 		else
690 			i = j = k;
691 	}
692 	BUG_ON(off != freeme);
693 
694 	if (i < chunk->first_free)
695 		chunk->first_free = i;
696 
697 	p = chunk->map + i;
698 	*p = off &= ~1;
699 	chunk->free_size += (p[1] & ~1) - off;
700 
701 	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
702 
703 	/* merge with next? */
704 	if (!(p[1] & 1))
705 		to_free++;
706 	/* merge with previous? */
707 	if (i > 0 && !(p[-1] & 1)) {
708 		to_free++;
709 		i--;
710 		p--;
711 	}
712 	if (to_free) {
713 		chunk->map_used -= to_free;
714 		memmove(p + 1, p + 1 + to_free,
715 			(chunk->map_used - i) * sizeof(chunk->map[0]));
716 	}
717 
718 	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
719 	pcpu_chunk_relocate(chunk, oslot);
720 }
721 
722 static struct pcpu_chunk *pcpu_alloc_chunk(void)
723 {
724 	struct pcpu_chunk *chunk;
725 
726 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
727 	if (!chunk)
728 		return NULL;
729 
730 	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
731 						sizeof(chunk->map[0]));
732 	if (!chunk->map) {
733 		pcpu_mem_free(chunk);
734 		return NULL;
735 	}
736 
737 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
738 	chunk->map[0] = 0;
739 	chunk->map[1] = pcpu_unit_size | 1;
740 	chunk->map_used = 1;
741 
742 	INIT_LIST_HEAD(&chunk->list);
743 	INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
744 	chunk->free_size = pcpu_unit_size;
745 	chunk->contig_hint = pcpu_unit_size;
746 
747 	return chunk;
748 }
749 
750 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
751 {
752 	if (!chunk)
753 		return;
754 	pcpu_mem_free(chunk->map);
755 	pcpu_mem_free(chunk);
756 }
757 
758 /**
759  * pcpu_chunk_populated - post-population bookkeeping
760  * @chunk: pcpu_chunk which got populated
761  * @page_start: the start page
762  * @page_end: the end page
763  *
764  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
765  * the bookkeeping information accordingly.  Must be called after each
766  * successful population.
767  */
768 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
769 				 int page_start, int page_end)
770 {
771 	int nr = page_end - page_start;
772 
773 	lockdep_assert_held(&pcpu_lock);
774 
775 	bitmap_set(chunk->populated, page_start, nr);
776 	chunk->nr_populated += nr;
777 	pcpu_nr_empty_pop_pages += nr;
778 }
779 
780 /**
781  * pcpu_chunk_depopulated - post-depopulation bookkeeping
782  * @chunk: pcpu_chunk which got depopulated
783  * @page_start: the start page
784  * @page_end: the end page
785  *
786  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
787  * Update the bookkeeping information accordingly.  Must be called after
788  * each successful depopulation.
789  */
790 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
791 				   int page_start, int page_end)
792 {
793 	int nr = page_end - page_start;
794 
795 	lockdep_assert_held(&pcpu_lock);
796 
797 	bitmap_clear(chunk->populated, page_start, nr);
798 	chunk->nr_populated -= nr;
799 	pcpu_nr_empty_pop_pages -= nr;
800 }
801 
802 /*
803  * Chunk management implementation.
804  *
805  * To allow different implementations, chunk alloc/free and
806  * [de]population are implemented in a separate file which is pulled
807  * into this file and compiled together.  The following functions
808  * should be implemented.
809  *
810  * pcpu_populate_chunk		- populate the specified range of a chunk
811  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
812  * pcpu_create_chunk		- create a new chunk
813  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
814  * pcpu_addr_to_page		- translate address to physical address
815  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
816  */
817 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
818 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
819 static struct pcpu_chunk *pcpu_create_chunk(void);
820 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
821 static struct page *pcpu_addr_to_page(void *addr);
822 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
823 
824 #ifdef CONFIG_NEED_PER_CPU_KM
825 #include "percpu-km.c"
826 #else
827 #include "percpu-vm.c"
828 #endif
829 
830 /**
831  * pcpu_chunk_addr_search - determine chunk containing specified address
832  * @addr: address for which the chunk needs to be determined.
833  *
834  * RETURNS:
835  * The address of the found chunk.
836  */
837 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
838 {
839 	/* is it in the first chunk? */
840 	if (pcpu_addr_in_first_chunk(addr)) {
841 		/* is it in the reserved area? */
842 		if (pcpu_addr_in_reserved_chunk(addr))
843 			return pcpu_reserved_chunk;
844 		return pcpu_first_chunk;
845 	}
846 
847 	/*
848 	 * The address is relative to unit0 which might be unused and
849 	 * thus unmapped.  Offset the address to the unit space of the
850 	 * current processor before looking it up in the vmalloc
851 	 * space.  Note that any possible cpu id can be used here, so
852 	 * there's no need to worry about preemption or cpu hotplug.
853 	 */
854 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
855 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
856 }
857 
858 /**
859  * pcpu_alloc - the percpu allocator
860  * @size: size of area to allocate in bytes
861  * @align: alignment of area (max PAGE_SIZE)
862  * @reserved: allocate from the reserved chunk if available
863  * @gfp: allocation flags
864  *
865  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
866  * contain %GFP_KERNEL, the allocation is atomic.
867  *
868  * RETURNS:
869  * Percpu pointer to the allocated area on success, NULL on failure.
870  */
871 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
872 				 gfp_t gfp)
873 {
874 	static int warn_limit = 10;
875 	struct pcpu_chunk *chunk;
876 	const char *err;
877 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
878 	int occ_pages = 0;
879 	int slot, off, new_alloc, cpu, ret;
880 	unsigned long flags;
881 	void __percpu *ptr;
882 
883 	/*
884 	 * We want the lowest bit of offset available for in-use/free
885 	 * indicator, so force >= 16bit alignment and make size even.
886 	 */
887 	if (unlikely(align < 2))
888 		align = 2;
889 
890 	size = ALIGN(size, 2);
891 
892 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
893 		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
894 		     size, align);
895 		return NULL;
896 	}
897 
898 	spin_lock_irqsave(&pcpu_lock, flags);
899 
900 	/* serve reserved allocations from the reserved chunk if available */
901 	if (reserved && pcpu_reserved_chunk) {
902 		chunk = pcpu_reserved_chunk;
903 
904 		if (size > chunk->contig_hint) {
905 			err = "alloc from reserved chunk failed";
906 			goto fail_unlock;
907 		}
908 
909 		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
910 			spin_unlock_irqrestore(&pcpu_lock, flags);
911 			if (is_atomic ||
912 			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
913 				err = "failed to extend area map of reserved chunk";
914 				goto fail;
915 			}
916 			spin_lock_irqsave(&pcpu_lock, flags);
917 		}
918 
919 		off = pcpu_alloc_area(chunk, size, align, is_atomic,
920 				      &occ_pages);
921 		if (off >= 0)
922 			goto area_found;
923 
924 		err = "alloc from reserved chunk failed";
925 		goto fail_unlock;
926 	}
927 
928 restart:
929 	/* search through normal chunks */
930 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
931 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
932 			if (size > chunk->contig_hint)
933 				continue;
934 
935 			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
936 			if (new_alloc) {
937 				if (is_atomic)
938 					continue;
939 				spin_unlock_irqrestore(&pcpu_lock, flags);
940 				if (pcpu_extend_area_map(chunk,
941 							 new_alloc) < 0) {
942 					err = "failed to extend area map";
943 					goto fail;
944 				}
945 				spin_lock_irqsave(&pcpu_lock, flags);
946 				/*
947 				 * pcpu_lock has been dropped, need to
948 				 * restart cpu_slot list walking.
949 				 */
950 				goto restart;
951 			}
952 
953 			off = pcpu_alloc_area(chunk, size, align, is_atomic,
954 					      &occ_pages);
955 			if (off >= 0)
956 				goto area_found;
957 		}
958 	}
959 
960 	spin_unlock_irqrestore(&pcpu_lock, flags);
961 
962 	/*
963 	 * No space left.  Create a new chunk.  We don't want multiple
964 	 * tasks to create chunks simultaneously.  Serialize and create iff
965 	 * there's still no empty chunk after grabbing the mutex.
966 	 */
967 	if (is_atomic)
968 		goto fail;
969 
970 	mutex_lock(&pcpu_alloc_mutex);
971 
972 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
973 		chunk = pcpu_create_chunk();
974 		if (!chunk) {
975 			mutex_unlock(&pcpu_alloc_mutex);
976 			err = "failed to allocate new chunk";
977 			goto fail;
978 		}
979 
980 		spin_lock_irqsave(&pcpu_lock, flags);
981 		pcpu_chunk_relocate(chunk, -1);
982 	} else {
983 		spin_lock_irqsave(&pcpu_lock, flags);
984 	}
985 
986 	mutex_unlock(&pcpu_alloc_mutex);
987 	goto restart;
988 
989 area_found:
990 	spin_unlock_irqrestore(&pcpu_lock, flags);
991 
992 	/* populate if not all pages are already there */
993 	if (!is_atomic) {
994 		int page_start, page_end, rs, re;
995 
996 		mutex_lock(&pcpu_alloc_mutex);
997 
998 		page_start = PFN_DOWN(off);
999 		page_end = PFN_UP(off + size);
1000 
1001 		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1002 			WARN_ON(chunk->immutable);
1003 
1004 			ret = pcpu_populate_chunk(chunk, rs, re);
1005 
1006 			spin_lock_irqsave(&pcpu_lock, flags);
1007 			if (ret) {
1008 				mutex_unlock(&pcpu_alloc_mutex);
1009 				pcpu_free_area(chunk, off, &occ_pages);
1010 				err = "failed to populate";
1011 				goto fail_unlock;
1012 			}
1013 			pcpu_chunk_populated(chunk, rs, re);
1014 			spin_unlock_irqrestore(&pcpu_lock, flags);
1015 		}
1016 
1017 		mutex_unlock(&pcpu_alloc_mutex);
1018 	}
1019 
1020 	if (chunk != pcpu_reserved_chunk)
1021 		pcpu_nr_empty_pop_pages -= occ_pages;
1022 
1023 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1024 		pcpu_schedule_balance_work();
1025 
1026 	/* clear the areas and return address relative to base address */
1027 	for_each_possible_cpu(cpu)
1028 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1029 
1030 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1031 	kmemleak_alloc_percpu(ptr, size, gfp);
1032 	return ptr;
1033 
1034 fail_unlock:
1035 	spin_unlock_irqrestore(&pcpu_lock, flags);
1036 fail:
1037 	if (!is_atomic && warn_limit) {
1038 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1039 			size, align, is_atomic, err);
1040 		dump_stack();
1041 		if (!--warn_limit)
1042 			pr_info("limit reached, disable warning\n");
1043 	}
1044 	if (is_atomic) {
1045 		/* see the flag handling in pcpu_blance_workfn() */
1046 		pcpu_atomic_alloc_failed = true;
1047 		pcpu_schedule_balance_work();
1048 	}
1049 	return NULL;
1050 }
1051 
1052 /**
1053  * __alloc_percpu_gfp - allocate dynamic percpu area
1054  * @size: size of area to allocate in bytes
1055  * @align: alignment of area (max PAGE_SIZE)
1056  * @gfp: allocation flags
1057  *
1058  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1059  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1060  * be called from any context but is a lot more likely to fail.
1061  *
1062  * RETURNS:
1063  * Percpu pointer to the allocated area on success, NULL on failure.
1064  */
1065 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1066 {
1067 	return pcpu_alloc(size, align, false, gfp);
1068 }
1069 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1070 
1071 /**
1072  * __alloc_percpu - allocate dynamic percpu area
1073  * @size: size of area to allocate in bytes
1074  * @align: alignment of area (max PAGE_SIZE)
1075  *
1076  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1077  */
1078 void __percpu *__alloc_percpu(size_t size, size_t align)
1079 {
1080 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1081 }
1082 EXPORT_SYMBOL_GPL(__alloc_percpu);
1083 
1084 /**
1085  * __alloc_reserved_percpu - allocate reserved percpu area
1086  * @size: size of area to allocate in bytes
1087  * @align: alignment of area (max PAGE_SIZE)
1088  *
1089  * Allocate zero-filled percpu area of @size bytes aligned at @align
1090  * from reserved percpu area if arch has set it up; otherwise,
1091  * allocation is served from the same dynamic area.  Might sleep.
1092  * Might trigger writeouts.
1093  *
1094  * CONTEXT:
1095  * Does GFP_KERNEL allocation.
1096  *
1097  * RETURNS:
1098  * Percpu pointer to the allocated area on success, NULL on failure.
1099  */
1100 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1101 {
1102 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1103 }
1104 
1105 /**
1106  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1107  * @work: unused
1108  *
1109  * Reclaim all fully free chunks except for the first one.
1110  */
1111 static void pcpu_balance_workfn(struct work_struct *work)
1112 {
1113 	LIST_HEAD(to_free);
1114 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1115 	struct pcpu_chunk *chunk, *next;
1116 	int slot, nr_to_pop, ret;
1117 
1118 	/*
1119 	 * There's no reason to keep around multiple unused chunks and VM
1120 	 * areas can be scarce.  Destroy all free chunks except for one.
1121 	 */
1122 	mutex_lock(&pcpu_alloc_mutex);
1123 	spin_lock_irq(&pcpu_lock);
1124 
1125 	list_for_each_entry_safe(chunk, next, free_head, list) {
1126 		WARN_ON(chunk->immutable);
1127 
1128 		/* spare the first one */
1129 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1130 			continue;
1131 
1132 		list_move(&chunk->list, &to_free);
1133 	}
1134 
1135 	spin_unlock_irq(&pcpu_lock);
1136 
1137 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1138 		int rs, re;
1139 
1140 		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 			pcpu_depopulate_chunk(chunk, rs, re);
1142 			spin_lock_irq(&pcpu_lock);
1143 			pcpu_chunk_depopulated(chunk, rs, re);
1144 			spin_unlock_irq(&pcpu_lock);
1145 		}
1146 		pcpu_destroy_chunk(chunk);
1147 	}
1148 
1149 	/*
1150 	 * Ensure there are certain number of free populated pages for
1151 	 * atomic allocs.  Fill up from the most packed so that atomic
1152 	 * allocs don't increase fragmentation.  If atomic allocation
1153 	 * failed previously, always populate the maximum amount.  This
1154 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1155 	 * failing indefinitely; however, large atomic allocs are not
1156 	 * something we support properly and can be highly unreliable and
1157 	 * inefficient.
1158 	 */
1159 retry_pop:
1160 	if (pcpu_atomic_alloc_failed) {
1161 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1162 		/* best effort anyway, don't worry about synchronization */
1163 		pcpu_atomic_alloc_failed = false;
1164 	} else {
1165 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1166 				  pcpu_nr_empty_pop_pages,
1167 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1168 	}
1169 
1170 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1171 		int nr_unpop = 0, rs, re;
1172 
1173 		if (!nr_to_pop)
1174 			break;
1175 
1176 		spin_lock_irq(&pcpu_lock);
1177 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1178 			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1179 			if (nr_unpop)
1180 				break;
1181 		}
1182 		spin_unlock_irq(&pcpu_lock);
1183 
1184 		if (!nr_unpop)
1185 			continue;
1186 
1187 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1188 		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1189 			int nr = min(re - rs, nr_to_pop);
1190 
1191 			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1192 			if (!ret) {
1193 				nr_to_pop -= nr;
1194 				spin_lock_irq(&pcpu_lock);
1195 				pcpu_chunk_populated(chunk, rs, rs + nr);
1196 				spin_unlock_irq(&pcpu_lock);
1197 			} else {
1198 				nr_to_pop = 0;
1199 			}
1200 
1201 			if (!nr_to_pop)
1202 				break;
1203 		}
1204 	}
1205 
1206 	if (nr_to_pop) {
1207 		/* ran out of chunks to populate, create a new one and retry */
1208 		chunk = pcpu_create_chunk();
1209 		if (chunk) {
1210 			spin_lock_irq(&pcpu_lock);
1211 			pcpu_chunk_relocate(chunk, -1);
1212 			spin_unlock_irq(&pcpu_lock);
1213 			goto retry_pop;
1214 		}
1215 	}
1216 
1217 	mutex_unlock(&pcpu_alloc_mutex);
1218 }
1219 
1220 /**
1221  * free_percpu - free percpu area
1222  * @ptr: pointer to area to free
1223  *
1224  * Free percpu area @ptr.
1225  *
1226  * CONTEXT:
1227  * Can be called from atomic context.
1228  */
1229 void free_percpu(void __percpu *ptr)
1230 {
1231 	void *addr;
1232 	struct pcpu_chunk *chunk;
1233 	unsigned long flags;
1234 	int off, occ_pages;
1235 
1236 	if (!ptr)
1237 		return;
1238 
1239 	kmemleak_free_percpu(ptr);
1240 
1241 	addr = __pcpu_ptr_to_addr(ptr);
1242 
1243 	spin_lock_irqsave(&pcpu_lock, flags);
1244 
1245 	chunk = pcpu_chunk_addr_search(addr);
1246 	off = addr - chunk->base_addr;
1247 
1248 	pcpu_free_area(chunk, off, &occ_pages);
1249 
1250 	if (chunk != pcpu_reserved_chunk)
1251 		pcpu_nr_empty_pop_pages += occ_pages;
1252 
1253 	/* if there are more than one fully free chunks, wake up grim reaper */
1254 	if (chunk->free_size == pcpu_unit_size) {
1255 		struct pcpu_chunk *pos;
1256 
1257 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1258 			if (pos != chunk) {
1259 				pcpu_schedule_balance_work();
1260 				break;
1261 			}
1262 	}
1263 
1264 	spin_unlock_irqrestore(&pcpu_lock, flags);
1265 }
1266 EXPORT_SYMBOL_GPL(free_percpu);
1267 
1268 /**
1269  * is_kernel_percpu_address - test whether address is from static percpu area
1270  * @addr: address to test
1271  *
1272  * Test whether @addr belongs to in-kernel static percpu area.  Module
1273  * static percpu areas are not considered.  For those, use
1274  * is_module_percpu_address().
1275  *
1276  * RETURNS:
1277  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1278  */
1279 bool is_kernel_percpu_address(unsigned long addr)
1280 {
1281 #ifdef CONFIG_SMP
1282 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1283 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1284 	unsigned int cpu;
1285 
1286 	for_each_possible_cpu(cpu) {
1287 		void *start = per_cpu_ptr(base, cpu);
1288 
1289 		if ((void *)addr >= start && (void *)addr < start + static_size)
1290 			return true;
1291         }
1292 #endif
1293 	/* on UP, can't distinguish from other static vars, always false */
1294 	return false;
1295 }
1296 
1297 /**
1298  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1299  * @addr: the address to be converted to physical address
1300  *
1301  * Given @addr which is dereferenceable address obtained via one of
1302  * percpu access macros, this function translates it into its physical
1303  * address.  The caller is responsible for ensuring @addr stays valid
1304  * until this function finishes.
1305  *
1306  * percpu allocator has special setup for the first chunk, which currently
1307  * supports either embedding in linear address space or vmalloc mapping,
1308  * and, from the second one, the backing allocator (currently either vm or
1309  * km) provides translation.
1310  *
1311  * The addr can be translated simply without checking if it falls into the
1312  * first chunk. But the current code reflects better how percpu allocator
1313  * actually works, and the verification can discover both bugs in percpu
1314  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1315  * code.
1316  *
1317  * RETURNS:
1318  * The physical address for @addr.
1319  */
1320 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1321 {
1322 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1323 	bool in_first_chunk = false;
1324 	unsigned long first_low, first_high;
1325 	unsigned int cpu;
1326 
1327 	/*
1328 	 * The following test on unit_low/high isn't strictly
1329 	 * necessary but will speed up lookups of addresses which
1330 	 * aren't in the first chunk.
1331 	 */
1332 	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1333 	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1334 				     pcpu_unit_pages);
1335 	if ((unsigned long)addr >= first_low &&
1336 	    (unsigned long)addr < first_high) {
1337 		for_each_possible_cpu(cpu) {
1338 			void *start = per_cpu_ptr(base, cpu);
1339 
1340 			if (addr >= start && addr < start + pcpu_unit_size) {
1341 				in_first_chunk = true;
1342 				break;
1343 			}
1344 		}
1345 	}
1346 
1347 	if (in_first_chunk) {
1348 		if (!is_vmalloc_addr(addr))
1349 			return __pa(addr);
1350 		else
1351 			return page_to_phys(vmalloc_to_page(addr)) +
1352 			       offset_in_page(addr);
1353 	} else
1354 		return page_to_phys(pcpu_addr_to_page(addr)) +
1355 		       offset_in_page(addr);
1356 }
1357 
1358 /**
1359  * pcpu_alloc_alloc_info - allocate percpu allocation info
1360  * @nr_groups: the number of groups
1361  * @nr_units: the number of units
1362  *
1363  * Allocate ai which is large enough for @nr_groups groups containing
1364  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1365  * cpu_map array which is long enough for @nr_units and filled with
1366  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1367  * pointer of other groups.
1368  *
1369  * RETURNS:
1370  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1371  * failure.
1372  */
1373 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1374 						      int nr_units)
1375 {
1376 	struct pcpu_alloc_info *ai;
1377 	size_t base_size, ai_size;
1378 	void *ptr;
1379 	int unit;
1380 
1381 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1382 			  __alignof__(ai->groups[0].cpu_map[0]));
1383 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1384 
1385 	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1386 	if (!ptr)
1387 		return NULL;
1388 	ai = ptr;
1389 	ptr += base_size;
1390 
1391 	ai->groups[0].cpu_map = ptr;
1392 
1393 	for (unit = 0; unit < nr_units; unit++)
1394 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1395 
1396 	ai->nr_groups = nr_groups;
1397 	ai->__ai_size = PFN_ALIGN(ai_size);
1398 
1399 	return ai;
1400 }
1401 
1402 /**
1403  * pcpu_free_alloc_info - free percpu allocation info
1404  * @ai: pcpu_alloc_info to free
1405  *
1406  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1407  */
1408 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1409 {
1410 	memblock_free_early(__pa(ai), ai->__ai_size);
1411 }
1412 
1413 /**
1414  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1415  * @lvl: loglevel
1416  * @ai: allocation info to dump
1417  *
1418  * Print out information about @ai using loglevel @lvl.
1419  */
1420 static void pcpu_dump_alloc_info(const char *lvl,
1421 				 const struct pcpu_alloc_info *ai)
1422 {
1423 	int group_width = 1, cpu_width = 1, width;
1424 	char empty_str[] = "--------";
1425 	int alloc = 0, alloc_end = 0;
1426 	int group, v;
1427 	int upa, apl;	/* units per alloc, allocs per line */
1428 
1429 	v = ai->nr_groups;
1430 	while (v /= 10)
1431 		group_width++;
1432 
1433 	v = num_possible_cpus();
1434 	while (v /= 10)
1435 		cpu_width++;
1436 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1437 
1438 	upa = ai->alloc_size / ai->unit_size;
1439 	width = upa * (cpu_width + 1) + group_width + 3;
1440 	apl = rounddown_pow_of_two(max(60 / width, 1));
1441 
1442 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1443 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1444 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1445 
1446 	for (group = 0; group < ai->nr_groups; group++) {
1447 		const struct pcpu_group_info *gi = &ai->groups[group];
1448 		int unit = 0, unit_end = 0;
1449 
1450 		BUG_ON(gi->nr_units % upa);
1451 		for (alloc_end += gi->nr_units / upa;
1452 		     alloc < alloc_end; alloc++) {
1453 			if (!(alloc % apl)) {
1454 				pr_cont("\n");
1455 				printk("%spcpu-alloc: ", lvl);
1456 			}
1457 			pr_cont("[%0*d] ", group_width, group);
1458 
1459 			for (unit_end += upa; unit < unit_end; unit++)
1460 				if (gi->cpu_map[unit] != NR_CPUS)
1461 					pr_cont("%0*d ",
1462 						cpu_width, gi->cpu_map[unit]);
1463 				else
1464 					pr_cont("%s ", empty_str);
1465 		}
1466 	}
1467 	pr_cont("\n");
1468 }
1469 
1470 /**
1471  * pcpu_setup_first_chunk - initialize the first percpu chunk
1472  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1473  * @base_addr: mapped address
1474  *
1475  * Initialize the first percpu chunk which contains the kernel static
1476  * perpcu area.  This function is to be called from arch percpu area
1477  * setup path.
1478  *
1479  * @ai contains all information necessary to initialize the first
1480  * chunk and prime the dynamic percpu allocator.
1481  *
1482  * @ai->static_size is the size of static percpu area.
1483  *
1484  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1485  * reserve after the static area in the first chunk.  This reserves
1486  * the first chunk such that it's available only through reserved
1487  * percpu allocation.  This is primarily used to serve module percpu
1488  * static areas on architectures where the addressing model has
1489  * limited offset range for symbol relocations to guarantee module
1490  * percpu symbols fall inside the relocatable range.
1491  *
1492  * @ai->dyn_size determines the number of bytes available for dynamic
1493  * allocation in the first chunk.  The area between @ai->static_size +
1494  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1495  *
1496  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1497  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1498  * @ai->dyn_size.
1499  *
1500  * @ai->atom_size is the allocation atom size and used as alignment
1501  * for vm areas.
1502  *
1503  * @ai->alloc_size is the allocation size and always multiple of
1504  * @ai->atom_size.  This is larger than @ai->atom_size if
1505  * @ai->unit_size is larger than @ai->atom_size.
1506  *
1507  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1508  * percpu areas.  Units which should be colocated are put into the
1509  * same group.  Dynamic VM areas will be allocated according to these
1510  * groupings.  If @ai->nr_groups is zero, a single group containing
1511  * all units is assumed.
1512  *
1513  * The caller should have mapped the first chunk at @base_addr and
1514  * copied static data to each unit.
1515  *
1516  * If the first chunk ends up with both reserved and dynamic areas, it
1517  * is served by two chunks - one to serve the core static and reserved
1518  * areas and the other for the dynamic area.  They share the same vm
1519  * and page map but uses different area allocation map to stay away
1520  * from each other.  The latter chunk is circulated in the chunk slots
1521  * and available for dynamic allocation like any other chunks.
1522  *
1523  * RETURNS:
1524  * 0 on success, -errno on failure.
1525  */
1526 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1527 				  void *base_addr)
1528 {
1529 	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1530 	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1531 	size_t dyn_size = ai->dyn_size;
1532 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1533 	struct pcpu_chunk *schunk, *dchunk = NULL;
1534 	unsigned long *group_offsets;
1535 	size_t *group_sizes;
1536 	unsigned long *unit_off;
1537 	unsigned int cpu;
1538 	int *unit_map;
1539 	int group, unit, i;
1540 
1541 #define PCPU_SETUP_BUG_ON(cond)	do {					\
1542 	if (unlikely(cond)) {						\
1543 		pr_emerg("failed to initialize, %s\n", #cond);		\
1544 		pr_emerg("cpu_possible_mask=%*pb\n",			\
1545 			 cpumask_pr_args(cpu_possible_mask));		\
1546 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1547 		BUG();							\
1548 	}								\
1549 } while (0)
1550 
1551 	/* sanity checks */
1552 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1553 #ifdef CONFIG_SMP
1554 	PCPU_SETUP_BUG_ON(!ai->static_size);
1555 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1556 #endif
1557 	PCPU_SETUP_BUG_ON(!base_addr);
1558 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1559 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1560 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1561 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1562 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1563 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1564 
1565 	/* process group information and build config tables accordingly */
1566 	group_offsets = memblock_virt_alloc(ai->nr_groups *
1567 					     sizeof(group_offsets[0]), 0);
1568 	group_sizes = memblock_virt_alloc(ai->nr_groups *
1569 					   sizeof(group_sizes[0]), 0);
1570 	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1571 	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1572 
1573 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1574 		unit_map[cpu] = UINT_MAX;
1575 
1576 	pcpu_low_unit_cpu = NR_CPUS;
1577 	pcpu_high_unit_cpu = NR_CPUS;
1578 
1579 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1580 		const struct pcpu_group_info *gi = &ai->groups[group];
1581 
1582 		group_offsets[group] = gi->base_offset;
1583 		group_sizes[group] = gi->nr_units * ai->unit_size;
1584 
1585 		for (i = 0; i < gi->nr_units; i++) {
1586 			cpu = gi->cpu_map[i];
1587 			if (cpu == NR_CPUS)
1588 				continue;
1589 
1590 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1591 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1592 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1593 
1594 			unit_map[cpu] = unit + i;
1595 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1596 
1597 			/* determine low/high unit_cpu */
1598 			if (pcpu_low_unit_cpu == NR_CPUS ||
1599 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1600 				pcpu_low_unit_cpu = cpu;
1601 			if (pcpu_high_unit_cpu == NR_CPUS ||
1602 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1603 				pcpu_high_unit_cpu = cpu;
1604 		}
1605 	}
1606 	pcpu_nr_units = unit;
1607 
1608 	for_each_possible_cpu(cpu)
1609 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1610 
1611 	/* we're done parsing the input, undefine BUG macro and dump config */
1612 #undef PCPU_SETUP_BUG_ON
1613 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1614 
1615 	pcpu_nr_groups = ai->nr_groups;
1616 	pcpu_group_offsets = group_offsets;
1617 	pcpu_group_sizes = group_sizes;
1618 	pcpu_unit_map = unit_map;
1619 	pcpu_unit_offsets = unit_off;
1620 
1621 	/* determine basic parameters */
1622 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1623 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1624 	pcpu_atom_size = ai->atom_size;
1625 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1626 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1627 
1628 	/*
1629 	 * Allocate chunk slots.  The additional last slot is for
1630 	 * empty chunks.
1631 	 */
1632 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1633 	pcpu_slot = memblock_virt_alloc(
1634 			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1635 	for (i = 0; i < pcpu_nr_slots; i++)
1636 		INIT_LIST_HEAD(&pcpu_slot[i]);
1637 
1638 	/*
1639 	 * Initialize static chunk.  If reserved_size is zero, the
1640 	 * static chunk covers static area + dynamic allocation area
1641 	 * in the first chunk.  If reserved_size is not zero, it
1642 	 * covers static area + reserved area (mostly used for module
1643 	 * static percpu allocation).
1644 	 */
1645 	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1646 	INIT_LIST_HEAD(&schunk->list);
1647 	INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
1648 	schunk->base_addr = base_addr;
1649 	schunk->map = smap;
1650 	schunk->map_alloc = ARRAY_SIZE(smap);
1651 	schunk->immutable = true;
1652 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1653 	schunk->nr_populated = pcpu_unit_pages;
1654 
1655 	if (ai->reserved_size) {
1656 		schunk->free_size = ai->reserved_size;
1657 		pcpu_reserved_chunk = schunk;
1658 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1659 	} else {
1660 		schunk->free_size = dyn_size;
1661 		dyn_size = 0;			/* dynamic area covered */
1662 	}
1663 	schunk->contig_hint = schunk->free_size;
1664 
1665 	schunk->map[0] = 1;
1666 	schunk->map[1] = ai->static_size;
1667 	schunk->map_used = 1;
1668 	if (schunk->free_size)
1669 		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1670 	schunk->map[schunk->map_used] |= 1;
1671 
1672 	/* init dynamic chunk if necessary */
1673 	if (dyn_size) {
1674 		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1675 		INIT_LIST_HEAD(&dchunk->list);
1676 		INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
1677 		dchunk->base_addr = base_addr;
1678 		dchunk->map = dmap;
1679 		dchunk->map_alloc = ARRAY_SIZE(dmap);
1680 		dchunk->immutable = true;
1681 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1682 		dchunk->nr_populated = pcpu_unit_pages;
1683 
1684 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1685 		dchunk->map[0] = 1;
1686 		dchunk->map[1] = pcpu_reserved_chunk_limit;
1687 		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1688 		dchunk->map_used = 2;
1689 	}
1690 
1691 	/* link the first chunk in */
1692 	pcpu_first_chunk = dchunk ?: schunk;
1693 	pcpu_nr_empty_pop_pages +=
1694 		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1695 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1696 
1697 	/* we're done */
1698 	pcpu_base_addr = base_addr;
1699 	return 0;
1700 }
1701 
1702 #ifdef CONFIG_SMP
1703 
1704 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1705 	[PCPU_FC_AUTO]	= "auto",
1706 	[PCPU_FC_EMBED]	= "embed",
1707 	[PCPU_FC_PAGE]	= "page",
1708 };
1709 
1710 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1711 
1712 static int __init percpu_alloc_setup(char *str)
1713 {
1714 	if (!str)
1715 		return -EINVAL;
1716 
1717 	if (0)
1718 		/* nada */;
1719 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1720 	else if (!strcmp(str, "embed"))
1721 		pcpu_chosen_fc = PCPU_FC_EMBED;
1722 #endif
1723 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1724 	else if (!strcmp(str, "page"))
1725 		pcpu_chosen_fc = PCPU_FC_PAGE;
1726 #endif
1727 	else
1728 		pr_warn("unknown allocator %s specified\n", str);
1729 
1730 	return 0;
1731 }
1732 early_param("percpu_alloc", percpu_alloc_setup);
1733 
1734 /*
1735  * pcpu_embed_first_chunk() is used by the generic percpu setup.
1736  * Build it if needed by the arch config or the generic setup is going
1737  * to be used.
1738  */
1739 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1741 #define BUILD_EMBED_FIRST_CHUNK
1742 #endif
1743 
1744 /* build pcpu_page_first_chunk() iff needed by the arch config */
1745 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1746 #define BUILD_PAGE_FIRST_CHUNK
1747 #endif
1748 
1749 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1750 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1751 /**
1752  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1753  * @reserved_size: the size of reserved percpu area in bytes
1754  * @dyn_size: minimum free size for dynamic allocation in bytes
1755  * @atom_size: allocation atom size
1756  * @cpu_distance_fn: callback to determine distance between cpus, optional
1757  *
1758  * This function determines grouping of units, their mappings to cpus
1759  * and other parameters considering needed percpu size, allocation
1760  * atom size and distances between CPUs.
1761  *
1762  * Groups are always multiples of atom size and CPUs which are of
1763  * LOCAL_DISTANCE both ways are grouped together and share space for
1764  * units in the same group.  The returned configuration is guaranteed
1765  * to have CPUs on different nodes on different groups and >=75% usage
1766  * of allocated virtual address space.
1767  *
1768  * RETURNS:
1769  * On success, pointer to the new allocation_info is returned.  On
1770  * failure, ERR_PTR value is returned.
1771  */
1772 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1773 				size_t reserved_size, size_t dyn_size,
1774 				size_t atom_size,
1775 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1776 {
1777 	static int group_map[NR_CPUS] __initdata;
1778 	static int group_cnt[NR_CPUS] __initdata;
1779 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1780 	int nr_groups = 1, nr_units = 0;
1781 	size_t size_sum, min_unit_size, alloc_size;
1782 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1783 	int last_allocs, group, unit;
1784 	unsigned int cpu, tcpu;
1785 	struct pcpu_alloc_info *ai;
1786 	unsigned int *cpu_map;
1787 
1788 	/* this function may be called multiple times */
1789 	memset(group_map, 0, sizeof(group_map));
1790 	memset(group_cnt, 0, sizeof(group_cnt));
1791 
1792 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1793 	size_sum = PFN_ALIGN(static_size + reserved_size +
1794 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1795 	dyn_size = size_sum - static_size - reserved_size;
1796 
1797 	/*
1798 	 * Determine min_unit_size, alloc_size and max_upa such that
1799 	 * alloc_size is multiple of atom_size and is the smallest
1800 	 * which can accommodate 4k aligned segments which are equal to
1801 	 * or larger than min_unit_size.
1802 	 */
1803 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1804 
1805 	alloc_size = roundup(min_unit_size, atom_size);
1806 	upa = alloc_size / min_unit_size;
1807 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1808 		upa--;
1809 	max_upa = upa;
1810 
1811 	/* group cpus according to their proximity */
1812 	for_each_possible_cpu(cpu) {
1813 		group = 0;
1814 	next_group:
1815 		for_each_possible_cpu(tcpu) {
1816 			if (cpu == tcpu)
1817 				break;
1818 			if (group_map[tcpu] == group && cpu_distance_fn &&
1819 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1820 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1821 				group++;
1822 				nr_groups = max(nr_groups, group + 1);
1823 				goto next_group;
1824 			}
1825 		}
1826 		group_map[cpu] = group;
1827 		group_cnt[group]++;
1828 	}
1829 
1830 	/*
1831 	 * Expand unit size until address space usage goes over 75%
1832 	 * and then as much as possible without using more address
1833 	 * space.
1834 	 */
1835 	last_allocs = INT_MAX;
1836 	for (upa = max_upa; upa; upa--) {
1837 		int allocs = 0, wasted = 0;
1838 
1839 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1840 			continue;
1841 
1842 		for (group = 0; group < nr_groups; group++) {
1843 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1844 			allocs += this_allocs;
1845 			wasted += this_allocs * upa - group_cnt[group];
1846 		}
1847 
1848 		/*
1849 		 * Don't accept if wastage is over 1/3.  The
1850 		 * greater-than comparison ensures upa==1 always
1851 		 * passes the following check.
1852 		 */
1853 		if (wasted > num_possible_cpus() / 3)
1854 			continue;
1855 
1856 		/* and then don't consume more memory */
1857 		if (allocs > last_allocs)
1858 			break;
1859 		last_allocs = allocs;
1860 		best_upa = upa;
1861 	}
1862 	upa = best_upa;
1863 
1864 	/* allocate and fill alloc_info */
1865 	for (group = 0; group < nr_groups; group++)
1866 		nr_units += roundup(group_cnt[group], upa);
1867 
1868 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1869 	if (!ai)
1870 		return ERR_PTR(-ENOMEM);
1871 	cpu_map = ai->groups[0].cpu_map;
1872 
1873 	for (group = 0; group < nr_groups; group++) {
1874 		ai->groups[group].cpu_map = cpu_map;
1875 		cpu_map += roundup(group_cnt[group], upa);
1876 	}
1877 
1878 	ai->static_size = static_size;
1879 	ai->reserved_size = reserved_size;
1880 	ai->dyn_size = dyn_size;
1881 	ai->unit_size = alloc_size / upa;
1882 	ai->atom_size = atom_size;
1883 	ai->alloc_size = alloc_size;
1884 
1885 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1886 		struct pcpu_group_info *gi = &ai->groups[group];
1887 
1888 		/*
1889 		 * Initialize base_offset as if all groups are located
1890 		 * back-to-back.  The caller should update this to
1891 		 * reflect actual allocation.
1892 		 */
1893 		gi->base_offset = unit * ai->unit_size;
1894 
1895 		for_each_possible_cpu(cpu)
1896 			if (group_map[cpu] == group)
1897 				gi->cpu_map[gi->nr_units++] = cpu;
1898 		gi->nr_units = roundup(gi->nr_units, upa);
1899 		unit += gi->nr_units;
1900 	}
1901 	BUG_ON(unit != nr_units);
1902 
1903 	return ai;
1904 }
1905 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1906 
1907 #if defined(BUILD_EMBED_FIRST_CHUNK)
1908 /**
1909  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1910  * @reserved_size: the size of reserved percpu area in bytes
1911  * @dyn_size: minimum free size for dynamic allocation in bytes
1912  * @atom_size: allocation atom size
1913  * @cpu_distance_fn: callback to determine distance between cpus, optional
1914  * @alloc_fn: function to allocate percpu page
1915  * @free_fn: function to free percpu page
1916  *
1917  * This is a helper to ease setting up embedded first percpu chunk and
1918  * can be called where pcpu_setup_first_chunk() is expected.
1919  *
1920  * If this function is used to setup the first chunk, it is allocated
1921  * by calling @alloc_fn and used as-is without being mapped into
1922  * vmalloc area.  Allocations are always whole multiples of @atom_size
1923  * aligned to @atom_size.
1924  *
1925  * This enables the first chunk to piggy back on the linear physical
1926  * mapping which often uses larger page size.  Please note that this
1927  * can result in very sparse cpu->unit mapping on NUMA machines thus
1928  * requiring large vmalloc address space.  Don't use this allocator if
1929  * vmalloc space is not orders of magnitude larger than distances
1930  * between node memory addresses (ie. 32bit NUMA machines).
1931  *
1932  * @dyn_size specifies the minimum dynamic area size.
1933  *
1934  * If the needed size is smaller than the minimum or specified unit
1935  * size, the leftover is returned using @free_fn.
1936  *
1937  * RETURNS:
1938  * 0 on success, -errno on failure.
1939  */
1940 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1941 				  size_t atom_size,
1942 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1943 				  pcpu_fc_alloc_fn_t alloc_fn,
1944 				  pcpu_fc_free_fn_t free_fn)
1945 {
1946 	void *base = (void *)ULONG_MAX;
1947 	void **areas = NULL;
1948 	struct pcpu_alloc_info *ai;
1949 	size_t size_sum, areas_size, max_distance;
1950 	int group, i, rc;
1951 
1952 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1953 				   cpu_distance_fn);
1954 	if (IS_ERR(ai))
1955 		return PTR_ERR(ai);
1956 
1957 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1958 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1959 
1960 	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1961 	if (!areas) {
1962 		rc = -ENOMEM;
1963 		goto out_free;
1964 	}
1965 
1966 	/* allocate, copy and determine base address */
1967 	for (group = 0; group < ai->nr_groups; group++) {
1968 		struct pcpu_group_info *gi = &ai->groups[group];
1969 		unsigned int cpu = NR_CPUS;
1970 		void *ptr;
1971 
1972 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1973 			cpu = gi->cpu_map[i];
1974 		BUG_ON(cpu == NR_CPUS);
1975 
1976 		/* allocate space for the whole group */
1977 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1978 		if (!ptr) {
1979 			rc = -ENOMEM;
1980 			goto out_free_areas;
1981 		}
1982 		/* kmemleak tracks the percpu allocations separately */
1983 		kmemleak_free(ptr);
1984 		areas[group] = ptr;
1985 
1986 		base = min(ptr, base);
1987 	}
1988 
1989 	/*
1990 	 * Copy data and free unused parts.  This should happen after all
1991 	 * allocations are complete; otherwise, we may end up with
1992 	 * overlapping groups.
1993 	 */
1994 	for (group = 0; group < ai->nr_groups; group++) {
1995 		struct pcpu_group_info *gi = &ai->groups[group];
1996 		void *ptr = areas[group];
1997 
1998 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1999 			if (gi->cpu_map[i] == NR_CPUS) {
2000 				/* unused unit, free whole */
2001 				free_fn(ptr, ai->unit_size);
2002 				continue;
2003 			}
2004 			/* copy and return the unused part */
2005 			memcpy(ptr, __per_cpu_load, ai->static_size);
2006 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2007 		}
2008 	}
2009 
2010 	/* base address is now known, determine group base offsets */
2011 	max_distance = 0;
2012 	for (group = 0; group < ai->nr_groups; group++) {
2013 		ai->groups[group].base_offset = areas[group] - base;
2014 		max_distance = max_t(size_t, max_distance,
2015 				     ai->groups[group].base_offset);
2016 	}
2017 	max_distance += ai->unit_size;
2018 
2019 	/* warn if maximum distance is further than 75% of vmalloc space */
2020 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2021 		pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2022 			max_distance, VMALLOC_TOTAL);
2023 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2024 		/* and fail if we have fallback */
2025 		rc = -EINVAL;
2026 		goto out_free;
2027 #endif
2028 	}
2029 
2030 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2031 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2032 		ai->dyn_size, ai->unit_size);
2033 
2034 	rc = pcpu_setup_first_chunk(ai, base);
2035 	goto out_free;
2036 
2037 out_free_areas:
2038 	for (group = 0; group < ai->nr_groups; group++)
2039 		if (areas[group])
2040 			free_fn(areas[group],
2041 				ai->groups[group].nr_units * ai->unit_size);
2042 out_free:
2043 	pcpu_free_alloc_info(ai);
2044 	if (areas)
2045 		memblock_free_early(__pa(areas), areas_size);
2046 	return rc;
2047 }
2048 #endif /* BUILD_EMBED_FIRST_CHUNK */
2049 
2050 #ifdef BUILD_PAGE_FIRST_CHUNK
2051 /**
2052  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2053  * @reserved_size: the size of reserved percpu area in bytes
2054  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2055  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2056  * @populate_pte_fn: function to populate pte
2057  *
2058  * This is a helper to ease setting up page-remapped first percpu
2059  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2060  *
2061  * This is the basic allocator.  Static percpu area is allocated
2062  * page-by-page into vmalloc area.
2063  *
2064  * RETURNS:
2065  * 0 on success, -errno on failure.
2066  */
2067 int __init pcpu_page_first_chunk(size_t reserved_size,
2068 				 pcpu_fc_alloc_fn_t alloc_fn,
2069 				 pcpu_fc_free_fn_t free_fn,
2070 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2071 {
2072 	static struct vm_struct vm;
2073 	struct pcpu_alloc_info *ai;
2074 	char psize_str[16];
2075 	int unit_pages;
2076 	size_t pages_size;
2077 	struct page **pages;
2078 	int unit, i, j, rc;
2079 
2080 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2081 
2082 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2083 	if (IS_ERR(ai))
2084 		return PTR_ERR(ai);
2085 	BUG_ON(ai->nr_groups != 1);
2086 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2087 
2088 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2089 
2090 	/* unaligned allocations can't be freed, round up to page size */
2091 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2092 			       sizeof(pages[0]));
2093 	pages = memblock_virt_alloc(pages_size, 0);
2094 
2095 	/* allocate pages */
2096 	j = 0;
2097 	for (unit = 0; unit < num_possible_cpus(); unit++)
2098 		for (i = 0; i < unit_pages; i++) {
2099 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2100 			void *ptr;
2101 
2102 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2103 			if (!ptr) {
2104 				pr_warn("failed to allocate %s page for cpu%u\n",
2105 					psize_str, cpu);
2106 				goto enomem;
2107 			}
2108 			/* kmemleak tracks the percpu allocations separately */
2109 			kmemleak_free(ptr);
2110 			pages[j++] = virt_to_page(ptr);
2111 		}
2112 
2113 	/* allocate vm area, map the pages and copy static data */
2114 	vm.flags = VM_ALLOC;
2115 	vm.size = num_possible_cpus() * ai->unit_size;
2116 	vm_area_register_early(&vm, PAGE_SIZE);
2117 
2118 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2119 		unsigned long unit_addr =
2120 			(unsigned long)vm.addr + unit * ai->unit_size;
2121 
2122 		for (i = 0; i < unit_pages; i++)
2123 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2124 
2125 		/* pte already populated, the following shouldn't fail */
2126 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2127 				      unit_pages);
2128 		if (rc < 0)
2129 			panic("failed to map percpu area, err=%d\n", rc);
2130 
2131 		/*
2132 		 * FIXME: Archs with virtual cache should flush local
2133 		 * cache for the linear mapping here - something
2134 		 * equivalent to flush_cache_vmap() on the local cpu.
2135 		 * flush_cache_vmap() can't be used as most supporting
2136 		 * data structures are not set up yet.
2137 		 */
2138 
2139 		/* copy static data */
2140 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2141 	}
2142 
2143 	/* we're ready, commit */
2144 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2145 		unit_pages, psize_str, vm.addr, ai->static_size,
2146 		ai->reserved_size, ai->dyn_size);
2147 
2148 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2149 	goto out_free_ar;
2150 
2151 enomem:
2152 	while (--j >= 0)
2153 		free_fn(page_address(pages[j]), PAGE_SIZE);
2154 	rc = -ENOMEM;
2155 out_free_ar:
2156 	memblock_free_early(__pa(pages), pages_size);
2157 	pcpu_free_alloc_info(ai);
2158 	return rc;
2159 }
2160 #endif /* BUILD_PAGE_FIRST_CHUNK */
2161 
2162 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2163 /*
2164  * Generic SMP percpu area setup.
2165  *
2166  * The embedding helper is used because its behavior closely resembles
2167  * the original non-dynamic generic percpu area setup.  This is
2168  * important because many archs have addressing restrictions and might
2169  * fail if the percpu area is located far away from the previous
2170  * location.  As an added bonus, in non-NUMA cases, embedding is
2171  * generally a good idea TLB-wise because percpu area can piggy back
2172  * on the physical linear memory mapping which uses large page
2173  * mappings on applicable archs.
2174  */
2175 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2176 EXPORT_SYMBOL(__per_cpu_offset);
2177 
2178 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2179 				       size_t align)
2180 {
2181 	return  memblock_virt_alloc_from_nopanic(
2182 			size, align, __pa(MAX_DMA_ADDRESS));
2183 }
2184 
2185 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2186 {
2187 	memblock_free_early(__pa(ptr), size);
2188 }
2189 
2190 void __init setup_per_cpu_areas(void)
2191 {
2192 	unsigned long delta;
2193 	unsigned int cpu;
2194 	int rc;
2195 
2196 	/*
2197 	 * Always reserve area for module percpu variables.  That's
2198 	 * what the legacy allocator did.
2199 	 */
2200 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2201 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2202 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2203 	if (rc < 0)
2204 		panic("Failed to initialize percpu areas.");
2205 
2206 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2207 	for_each_possible_cpu(cpu)
2208 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2209 }
2210 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2211 
2212 #else	/* CONFIG_SMP */
2213 
2214 /*
2215  * UP percpu area setup.
2216  *
2217  * UP always uses km-based percpu allocator with identity mapping.
2218  * Static percpu variables are indistinguishable from the usual static
2219  * variables and don't require any special preparation.
2220  */
2221 void __init setup_per_cpu_areas(void)
2222 {
2223 	const size_t unit_size =
2224 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2225 					 PERCPU_DYNAMIC_RESERVE));
2226 	struct pcpu_alloc_info *ai;
2227 	void *fc;
2228 
2229 	ai = pcpu_alloc_alloc_info(1, 1);
2230 	fc = memblock_virt_alloc_from_nopanic(unit_size,
2231 					      PAGE_SIZE,
2232 					      __pa(MAX_DMA_ADDRESS));
2233 	if (!ai || !fc)
2234 		panic("Failed to allocate memory for percpu areas.");
2235 	/* kmemleak tracks the percpu allocations separately */
2236 	kmemleak_free(fc);
2237 
2238 	ai->dyn_size = unit_size;
2239 	ai->unit_size = unit_size;
2240 	ai->atom_size = unit_size;
2241 	ai->alloc_size = unit_size;
2242 	ai->groups[0].nr_units = 1;
2243 	ai->groups[0].cpu_map[0] = 0;
2244 
2245 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2246 		panic("Failed to initialize percpu areas.");
2247 }
2248 
2249 #endif	/* CONFIG_SMP */
2250 
2251 /*
2252  * First and reserved chunks are initialized with temporary allocation
2253  * map in initdata so that they can be used before slab is online.
2254  * This function is called after slab is brought up and replaces those
2255  * with properly allocated maps.
2256  */
2257 void __init percpu_init_late(void)
2258 {
2259 	struct pcpu_chunk *target_chunks[] =
2260 		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2261 	struct pcpu_chunk *chunk;
2262 	unsigned long flags;
2263 	int i;
2264 
2265 	for (i = 0; (chunk = target_chunks[i]); i++) {
2266 		int *map;
2267 		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2268 
2269 		BUILD_BUG_ON(size > PAGE_SIZE);
2270 
2271 		map = pcpu_mem_zalloc(size);
2272 		BUG_ON(!map);
2273 
2274 		spin_lock_irqsave(&pcpu_lock, flags);
2275 		memcpy(map, chunk->map, size);
2276 		chunk->map = map;
2277 		spin_unlock_irqrestore(&pcpu_lock, flags);
2278 	}
2279 }
2280 
2281 /*
2282  * Percpu allocator is initialized early during boot when neither slab or
2283  * workqueue is available.  Plug async management until everything is up
2284  * and running.
2285  */
2286 static int __init percpu_enable_async(void)
2287 {
2288 	pcpu_async_enabled = true;
2289 	return 0;
2290 }
2291 subsys_initcall(percpu_enable_async);
2292