xref: /openbmc/linux/mm/percpu.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * mm/percpu.c - percpu memory allocator
3  *
4  * Copyright (C) 2009		SUSE Linux Products GmbH
5  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6  *
7  * Copyright (C) 2017		Facebook Inc.
8  * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
9  *
10  * This file is released under the GPLv2 license.
11  *
12  * The percpu allocator handles both static and dynamic areas.  Percpu
13  * areas are allocated in chunks which are divided into units.  There is
14  * a 1-to-1 mapping for units to possible cpus.  These units are grouped
15  * based on NUMA properties of the machine.
16  *
17  *  c0                           c1                         c2
18  *  -------------------          -------------------        ------------
19  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
20  *  -------------------  ......  -------------------  ....  ------------
21  *
22  * Allocation is done by offsets into a unit's address space.  Ie., an
23  * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24  * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
25  * and even sparse.  Access is handled by configuring percpu base
26  * registers according to the cpu to unit mappings and offsetting the
27  * base address using pcpu_unit_size.
28  *
29  * There is special consideration for the first chunk which must handle
30  * the static percpu variables in the kernel image as allocation services
31  * are not online yet.  In short, the first chunk is structured like so:
32  *
33  *                  <Static | [Reserved] | Dynamic>
34  *
35  * The static data is copied from the original section managed by the
36  * linker.  The reserved section, if non-zero, primarily manages static
37  * percpu variables from kernel modules.  Finally, the dynamic section
38  * takes care of normal allocations.
39  *
40  * The allocator organizes chunks into lists according to free size and
41  * tries to allocate from the fullest chunk first.  Each chunk is managed
42  * by a bitmap with metadata blocks.  The allocation map is updated on
43  * every allocation and free to reflect the current state while the boundary
44  * map is only updated on allocation.  Each metadata block contains
45  * information to help mitigate the need to iterate over large portions
46  * of the bitmap.  The reverse mapping from page to chunk is stored in
47  * the page's index.  Lastly, units are lazily backed and grow in unison.
48  *
49  * There is a unique conversion that goes on here between bytes and bits.
50  * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
51  * tracks the number of pages it is responsible for in nr_pages.  Helper
52  * functions are used to convert from between the bytes, bits, and blocks.
53  * All hints are managed in bits unless explicitly stated.
54  *
55  * To use this allocator, arch code should do the following:
56  *
57  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58  *   regular address to percpu pointer and back if they need to be
59  *   different from the default
60  *
61  * - use pcpu_setup_first_chunk() during percpu area initialization to
62  *   setup the first chunk containing the kernel static percpu area
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 
67 #include <linux/bitmap.h>
68 #include <linux/memblock.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84 
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89 
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92 
93 #include "percpu-internal.h"
94 
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT		5
97 
98 #define PCPU_EMPTY_POP_PAGES_LOW	2
99 #define PCPU_EMPTY_POP_PAGES_HIGH	4
100 
101 #ifdef CONFIG_SMP
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr)					\
105 	(void __percpu *)((unsigned long)(addr) -			\
106 			  (unsigned long)pcpu_base_addr	+		\
107 			  (unsigned long)__per_cpu_start)
108 #endif
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr)						\
111 	(void __force *)((unsigned long)(ptr) +				\
112 			 (unsigned long)pcpu_base_addr -		\
113 			 (unsigned long)__per_cpu_start)
114 #endif
115 #else	/* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
119 #endif	/* CONFIG_SMP */
120 
121 static int pcpu_unit_pages __ro_after_init;
122 static int pcpu_unit_size __ro_after_init;
123 static int pcpu_nr_units __ro_after_init;
124 static int pcpu_atom_size __ro_after_init;
125 int pcpu_nr_slots __ro_after_init;
126 static size_t pcpu_chunk_struct_size __ro_after_init;
127 
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131 
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135 
136 static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
138 
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init;
141 static const unsigned long *pcpu_group_offsets __ro_after_init;
142 static const size_t *pcpu_group_sizes __ro_after_init;
143 
144 /*
145  * The first chunk which always exists.  Note that unlike other
146  * chunks, this one can be allocated and mapped in several different
147  * ways and thus often doesn't live in the vmalloc area.
148  */
149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150 
151 /*
152  * Optional reserved chunk.  This chunk reserves part of the first
153  * chunk and serves it for reserved allocations.  When the reserved
154  * region doesn't exist, the following variable is NULL.
155  */
156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157 
158 DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
160 
161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162 
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks);
165 
166 /*
167  * The number of empty populated pages, protected by pcpu_lock.  The
168  * reserved chunk doesn't contribute to the count.
169  */
170 int pcpu_nr_empty_pop_pages;
171 
172 /*
173  * The number of populated pages in use by the allocator, protected by
174  * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
175  * allocated/deallocated, it is allocated/deallocated in all units of a chunk
176  * and increments/decrements this count by 1).
177  */
178 static unsigned long pcpu_nr_populated;
179 
180 /*
181  * Balance work is used to populate or destroy chunks asynchronously.  We
182  * try to keep the number of populated free pages between
183  * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
184  * empty chunk.
185  */
186 static void pcpu_balance_workfn(struct work_struct *work);
187 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
188 static bool pcpu_async_enabled __read_mostly;
189 static bool pcpu_atomic_alloc_failed;
190 
191 static void pcpu_schedule_balance_work(void)
192 {
193 	if (pcpu_async_enabled)
194 		schedule_work(&pcpu_balance_work);
195 }
196 
197 /**
198  * pcpu_addr_in_chunk - check if the address is served from this chunk
199  * @chunk: chunk of interest
200  * @addr: percpu address
201  *
202  * RETURNS:
203  * True if the address is served from this chunk.
204  */
205 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
206 {
207 	void *start_addr, *end_addr;
208 
209 	if (!chunk)
210 		return false;
211 
212 	start_addr = chunk->base_addr + chunk->start_offset;
213 	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
214 		   chunk->end_offset;
215 
216 	return addr >= start_addr && addr < end_addr;
217 }
218 
219 static int __pcpu_size_to_slot(int size)
220 {
221 	int highbit = fls(size);	/* size is in bytes */
222 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
223 }
224 
225 static int pcpu_size_to_slot(int size)
226 {
227 	if (size == pcpu_unit_size)
228 		return pcpu_nr_slots - 1;
229 	return __pcpu_size_to_slot(size);
230 }
231 
232 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
233 {
234 	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
235 		return 0;
236 
237 	return pcpu_size_to_slot(chunk->free_bytes);
238 }
239 
240 /* set the pointer to a chunk in a page struct */
241 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
242 {
243 	page->index = (unsigned long)pcpu;
244 }
245 
246 /* obtain pointer to a chunk from a page struct */
247 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
248 {
249 	return (struct pcpu_chunk *)page->index;
250 }
251 
252 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
253 {
254 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
255 }
256 
257 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
258 {
259 	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
260 }
261 
262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
263 				     unsigned int cpu, int page_idx)
264 {
265 	return (unsigned long)chunk->base_addr +
266 	       pcpu_unit_page_offset(cpu, page_idx);
267 }
268 
269 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
270 {
271 	*rs = find_next_zero_bit(bitmap, end, *rs);
272 	*re = find_next_bit(bitmap, end, *rs + 1);
273 }
274 
275 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
276 {
277 	*rs = find_next_bit(bitmap, end, *rs);
278 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
279 }
280 
281 /*
282  * Bitmap region iterators.  Iterates over the bitmap between
283  * [@start, @end) in @chunk.  @rs and @re should be integer variables
284  * and will be set to start and end index of the current free region.
285  */
286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
287 	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
288 	     (rs) < (re);						     \
289 	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
290 
291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
292 	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
293 	     (rs) < (re);						     \
294 	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
295 
296 /*
297  * The following are helper functions to help access bitmaps and convert
298  * between bitmap offsets to address offsets.
299  */
300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
301 {
302 	return chunk->alloc_map +
303 	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
304 }
305 
306 static unsigned long pcpu_off_to_block_index(int off)
307 {
308 	return off / PCPU_BITMAP_BLOCK_BITS;
309 }
310 
311 static unsigned long pcpu_off_to_block_off(int off)
312 {
313 	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
314 }
315 
316 static unsigned long pcpu_block_off_to_off(int index, int off)
317 {
318 	return index * PCPU_BITMAP_BLOCK_BITS + off;
319 }
320 
321 /**
322  * pcpu_next_md_free_region - finds the next hint free area
323  * @chunk: chunk of interest
324  * @bit_off: chunk offset
325  * @bits: size of free area
326  *
327  * Helper function for pcpu_for_each_md_free_region.  It checks
328  * block->contig_hint and performs aggregation across blocks to find the
329  * next hint.  It modifies bit_off and bits in-place to be consumed in the
330  * loop.
331  */
332 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
333 				     int *bits)
334 {
335 	int i = pcpu_off_to_block_index(*bit_off);
336 	int block_off = pcpu_off_to_block_off(*bit_off);
337 	struct pcpu_block_md *block;
338 
339 	*bits = 0;
340 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
341 	     block++, i++) {
342 		/* handles contig area across blocks */
343 		if (*bits) {
344 			*bits += block->left_free;
345 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
346 				continue;
347 			return;
348 		}
349 
350 		/*
351 		 * This checks three things.  First is there a contig_hint to
352 		 * check.  Second, have we checked this hint before by
353 		 * comparing the block_off.  Third, is this the same as the
354 		 * right contig hint.  In the last case, it spills over into
355 		 * the next block and should be handled by the contig area
356 		 * across blocks code.
357 		 */
358 		*bits = block->contig_hint;
359 		if (*bits && block->contig_hint_start >= block_off &&
360 		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
361 			*bit_off = pcpu_block_off_to_off(i,
362 					block->contig_hint_start);
363 			return;
364 		}
365 		/* reset to satisfy the second predicate above */
366 		block_off = 0;
367 
368 		*bits = block->right_free;
369 		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
370 	}
371 }
372 
373 /**
374  * pcpu_next_fit_region - finds fit areas for a given allocation request
375  * @chunk: chunk of interest
376  * @alloc_bits: size of allocation
377  * @align: alignment of area (max PAGE_SIZE)
378  * @bit_off: chunk offset
379  * @bits: size of free area
380  *
381  * Finds the next free region that is viable for use with a given size and
382  * alignment.  This only returns if there is a valid area to be used for this
383  * allocation.  block->first_free is returned if the allocation request fits
384  * within the block to see if the request can be fulfilled prior to the contig
385  * hint.
386  */
387 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
388 				 int align, int *bit_off, int *bits)
389 {
390 	int i = pcpu_off_to_block_index(*bit_off);
391 	int block_off = pcpu_off_to_block_off(*bit_off);
392 	struct pcpu_block_md *block;
393 
394 	*bits = 0;
395 	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
396 	     block++, i++) {
397 		/* handles contig area across blocks */
398 		if (*bits) {
399 			*bits += block->left_free;
400 			if (*bits >= alloc_bits)
401 				return;
402 			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
403 				continue;
404 		}
405 
406 		/* check block->contig_hint */
407 		*bits = ALIGN(block->contig_hint_start, align) -
408 			block->contig_hint_start;
409 		/*
410 		 * This uses the block offset to determine if this has been
411 		 * checked in the prior iteration.
412 		 */
413 		if (block->contig_hint &&
414 		    block->contig_hint_start >= block_off &&
415 		    block->contig_hint >= *bits + alloc_bits) {
416 			*bits += alloc_bits + block->contig_hint_start -
417 				 block->first_free;
418 			*bit_off = pcpu_block_off_to_off(i, block->first_free);
419 			return;
420 		}
421 		/* reset to satisfy the second predicate above */
422 		block_off = 0;
423 
424 		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
425 				 align);
426 		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
427 		*bit_off = pcpu_block_off_to_off(i, *bit_off);
428 		if (*bits >= alloc_bits)
429 			return;
430 	}
431 
432 	/* no valid offsets were found - fail condition */
433 	*bit_off = pcpu_chunk_map_bits(chunk);
434 }
435 
436 /*
437  * Metadata free area iterators.  These perform aggregation of free areas
438  * based on the metadata blocks and return the offset @bit_off and size in
439  * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
440  * a fit is found for the allocation request.
441  */
442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
443 	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
444 	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
445 	     (bit_off) += (bits) + 1,					\
446 	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
447 
448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
449 	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
450 				  &(bits));				      \
451 	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
452 	     (bit_off) += (bits),					      \
453 	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
454 				  &(bits)))
455 
456 /**
457  * pcpu_mem_zalloc - allocate memory
458  * @size: bytes to allocate
459  * @gfp: allocation flags
460  *
461  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
462  * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
463  * This is to facilitate passing through whitelisted flags.  The
464  * returned memory is always zeroed.
465  *
466  * RETURNS:
467  * Pointer to the allocated area on success, NULL on failure.
468  */
469 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
470 {
471 	if (WARN_ON_ONCE(!slab_is_available()))
472 		return NULL;
473 
474 	if (size <= PAGE_SIZE)
475 		return kzalloc(size, gfp);
476 	else
477 		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
478 }
479 
480 /**
481  * pcpu_mem_free - free memory
482  * @ptr: memory to free
483  *
484  * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
485  */
486 static void pcpu_mem_free(void *ptr)
487 {
488 	kvfree(ptr);
489 }
490 
491 /**
492  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
493  * @chunk: chunk of interest
494  * @oslot: the previous slot it was on
495  *
496  * This function is called after an allocation or free changed @chunk.
497  * New slot according to the changed state is determined and @chunk is
498  * moved to the slot.  Note that the reserved chunk is never put on
499  * chunk slots.
500  *
501  * CONTEXT:
502  * pcpu_lock.
503  */
504 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
505 {
506 	int nslot = pcpu_chunk_slot(chunk);
507 
508 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
509 		if (oslot < nslot)
510 			list_move(&chunk->list, &pcpu_slot[nslot]);
511 		else
512 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
513 	}
514 }
515 
516 /**
517  * pcpu_cnt_pop_pages- counts populated backing pages in range
518  * @chunk: chunk of interest
519  * @bit_off: start offset
520  * @bits: size of area to check
521  *
522  * Calculates the number of populated pages in the region
523  * [page_start, page_end).  This keeps track of how many empty populated
524  * pages are available and decide if async work should be scheduled.
525  *
526  * RETURNS:
527  * The nr of populated pages.
528  */
529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
530 				     int bits)
531 {
532 	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
533 	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
534 
535 	if (page_start >= page_end)
536 		return 0;
537 
538 	/*
539 	 * bitmap_weight counts the number of bits set in a bitmap up to
540 	 * the specified number of bits.  This is counting the populated
541 	 * pages up to page_end and then subtracting the populated pages
542 	 * up to page_start to count the populated pages in
543 	 * [page_start, page_end).
544 	 */
545 	return bitmap_weight(chunk->populated, page_end) -
546 	       bitmap_weight(chunk->populated, page_start);
547 }
548 
549 /**
550  * pcpu_chunk_update - updates the chunk metadata given a free area
551  * @chunk: chunk of interest
552  * @bit_off: chunk offset
553  * @bits: size of free area
554  *
555  * This updates the chunk's contig hint and starting offset given a free area.
556  * Choose the best starting offset if the contig hint is equal.
557  */
558 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
559 {
560 	if (bits > chunk->contig_bits) {
561 		chunk->contig_bits_start = bit_off;
562 		chunk->contig_bits = bits;
563 	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
564 		   (!bit_off ||
565 		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
566 		/* use the start with the best alignment */
567 		chunk->contig_bits_start = bit_off;
568 	}
569 }
570 
571 /**
572  * pcpu_chunk_refresh_hint - updates metadata about a chunk
573  * @chunk: chunk of interest
574  *
575  * Iterates over the metadata blocks to find the largest contig area.
576  * It also counts the populated pages and uses the delta to update the
577  * global count.
578  *
579  * Updates:
580  *      chunk->contig_bits
581  *      chunk->contig_bits_start
582  *      nr_empty_pop_pages (chunk and global)
583  */
584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
585 {
586 	int bit_off, bits, nr_empty_pop_pages;
587 
588 	/* clear metadata */
589 	chunk->contig_bits = 0;
590 
591 	bit_off = chunk->first_bit;
592 	bits = nr_empty_pop_pages = 0;
593 	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
594 		pcpu_chunk_update(chunk, bit_off, bits);
595 
596 		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
597 	}
598 
599 	/*
600 	 * Keep track of nr_empty_pop_pages.
601 	 *
602 	 * The chunk maintains the previous number of free pages it held,
603 	 * so the delta is used to update the global counter.  The reserved
604 	 * chunk is not part of the free page count as they are populated
605 	 * at init and are special to serving reserved allocations.
606 	 */
607 	if (chunk != pcpu_reserved_chunk)
608 		pcpu_nr_empty_pop_pages +=
609 			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
610 
611 	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
612 }
613 
614 /**
615  * pcpu_block_update - updates a block given a free area
616  * @block: block of interest
617  * @start: start offset in block
618  * @end: end offset in block
619  *
620  * Updates a block given a known free area.  The region [start, end) is
621  * expected to be the entirety of the free area within a block.  Chooses
622  * the best starting offset if the contig hints are equal.
623  */
624 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
625 {
626 	int contig = end - start;
627 
628 	block->first_free = min(block->first_free, start);
629 	if (start == 0)
630 		block->left_free = contig;
631 
632 	if (end == PCPU_BITMAP_BLOCK_BITS)
633 		block->right_free = contig;
634 
635 	if (contig > block->contig_hint) {
636 		block->contig_hint_start = start;
637 		block->contig_hint = contig;
638 	} else if (block->contig_hint_start && contig == block->contig_hint &&
639 		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
640 		/* use the start with the best alignment */
641 		block->contig_hint_start = start;
642 	}
643 }
644 
645 /**
646  * pcpu_block_refresh_hint
647  * @chunk: chunk of interest
648  * @index: index of the metadata block
649  *
650  * Scans over the block beginning at first_free and updates the block
651  * metadata accordingly.
652  */
653 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
654 {
655 	struct pcpu_block_md *block = chunk->md_blocks + index;
656 	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
657 	int rs, re;	/* region start, region end */
658 
659 	/* clear hints */
660 	block->contig_hint = 0;
661 	block->left_free = block->right_free = 0;
662 
663 	/* iterate over free areas and update the contig hints */
664 	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
665 				   PCPU_BITMAP_BLOCK_BITS) {
666 		pcpu_block_update(block, rs, re);
667 	}
668 }
669 
670 /**
671  * pcpu_block_update_hint_alloc - update hint on allocation path
672  * @chunk: chunk of interest
673  * @bit_off: chunk offset
674  * @bits: size of request
675  *
676  * Updates metadata for the allocation path.  The metadata only has to be
677  * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
678  * scans are required if the block's contig hint is broken.
679  */
680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
681 					 int bits)
682 {
683 	struct pcpu_block_md *s_block, *e_block, *block;
684 	int s_index, e_index;	/* block indexes of the freed allocation */
685 	int s_off, e_off;	/* block offsets of the freed allocation */
686 
687 	/*
688 	 * Calculate per block offsets.
689 	 * The calculation uses an inclusive range, but the resulting offsets
690 	 * are [start, end).  e_index always points to the last block in the
691 	 * range.
692 	 */
693 	s_index = pcpu_off_to_block_index(bit_off);
694 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
695 	s_off = pcpu_off_to_block_off(bit_off);
696 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
697 
698 	s_block = chunk->md_blocks + s_index;
699 	e_block = chunk->md_blocks + e_index;
700 
701 	/*
702 	 * Update s_block.
703 	 * block->first_free must be updated if the allocation takes its place.
704 	 * If the allocation breaks the contig_hint, a scan is required to
705 	 * restore this hint.
706 	 */
707 	if (s_off == s_block->first_free)
708 		s_block->first_free = find_next_zero_bit(
709 					pcpu_index_alloc_map(chunk, s_index),
710 					PCPU_BITMAP_BLOCK_BITS,
711 					s_off + bits);
712 
713 	if (s_off >= s_block->contig_hint_start &&
714 	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
715 		/* block contig hint is broken - scan to fix it */
716 		pcpu_block_refresh_hint(chunk, s_index);
717 	} else {
718 		/* update left and right contig manually */
719 		s_block->left_free = min(s_block->left_free, s_off);
720 		if (s_index == e_index)
721 			s_block->right_free = min_t(int, s_block->right_free,
722 					PCPU_BITMAP_BLOCK_BITS - e_off);
723 		else
724 			s_block->right_free = 0;
725 	}
726 
727 	/*
728 	 * Update e_block.
729 	 */
730 	if (s_index != e_index) {
731 		/*
732 		 * When the allocation is across blocks, the end is along
733 		 * the left part of the e_block.
734 		 */
735 		e_block->first_free = find_next_zero_bit(
736 				pcpu_index_alloc_map(chunk, e_index),
737 				PCPU_BITMAP_BLOCK_BITS, e_off);
738 
739 		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
740 			/* reset the block */
741 			e_block++;
742 		} else {
743 			if (e_off > e_block->contig_hint_start) {
744 				/* contig hint is broken - scan to fix it */
745 				pcpu_block_refresh_hint(chunk, e_index);
746 			} else {
747 				e_block->left_free = 0;
748 				e_block->right_free =
749 					min_t(int, e_block->right_free,
750 					      PCPU_BITMAP_BLOCK_BITS - e_off);
751 			}
752 		}
753 
754 		/* update in-between md_blocks */
755 		for (block = s_block + 1; block < e_block; block++) {
756 			block->contig_hint = 0;
757 			block->left_free = 0;
758 			block->right_free = 0;
759 		}
760 	}
761 
762 	/*
763 	 * The only time a full chunk scan is required is if the chunk
764 	 * contig hint is broken.  Otherwise, it means a smaller space
765 	 * was used and therefore the chunk contig hint is still correct.
766 	 */
767 	if (bit_off >= chunk->contig_bits_start  &&
768 	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
769 		pcpu_chunk_refresh_hint(chunk);
770 }
771 
772 /**
773  * pcpu_block_update_hint_free - updates the block hints on the free path
774  * @chunk: chunk of interest
775  * @bit_off: chunk offset
776  * @bits: size of request
777  *
778  * Updates metadata for the allocation path.  This avoids a blind block
779  * refresh by making use of the block contig hints.  If this fails, it scans
780  * forward and backward to determine the extent of the free area.  This is
781  * capped at the boundary of blocks.
782  *
783  * A chunk update is triggered if a page becomes free, a block becomes free,
784  * or the free spans across blocks.  This tradeoff is to minimize iterating
785  * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
786  * may be off by up to a page, but it will never be more than the available
787  * space.  If the contig hint is contained in one block, it will be accurate.
788  */
789 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
790 					int bits)
791 {
792 	struct pcpu_block_md *s_block, *e_block, *block;
793 	int s_index, e_index;	/* block indexes of the freed allocation */
794 	int s_off, e_off;	/* block offsets of the freed allocation */
795 	int start, end;		/* start and end of the whole free area */
796 
797 	/*
798 	 * Calculate per block offsets.
799 	 * The calculation uses an inclusive range, but the resulting offsets
800 	 * are [start, end).  e_index always points to the last block in the
801 	 * range.
802 	 */
803 	s_index = pcpu_off_to_block_index(bit_off);
804 	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
805 	s_off = pcpu_off_to_block_off(bit_off);
806 	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
807 
808 	s_block = chunk->md_blocks + s_index;
809 	e_block = chunk->md_blocks + e_index;
810 
811 	/*
812 	 * Check if the freed area aligns with the block->contig_hint.
813 	 * If it does, then the scan to find the beginning/end of the
814 	 * larger free area can be avoided.
815 	 *
816 	 * start and end refer to beginning and end of the free area
817 	 * within each their respective blocks.  This is not necessarily
818 	 * the entire free area as it may span blocks past the beginning
819 	 * or end of the block.
820 	 */
821 	start = s_off;
822 	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
823 		start = s_block->contig_hint_start;
824 	} else {
825 		/*
826 		 * Scan backwards to find the extent of the free area.
827 		 * find_last_bit returns the starting bit, so if the start bit
828 		 * is returned, that means there was no last bit and the
829 		 * remainder of the chunk is free.
830 		 */
831 		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
832 					  start);
833 		start = (start == l_bit) ? 0 : l_bit + 1;
834 	}
835 
836 	end = e_off;
837 	if (e_off == e_block->contig_hint_start)
838 		end = e_block->contig_hint_start + e_block->contig_hint;
839 	else
840 		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
841 				    PCPU_BITMAP_BLOCK_BITS, end);
842 
843 	/* update s_block */
844 	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
845 	pcpu_block_update(s_block, start, e_off);
846 
847 	/* freeing in the same block */
848 	if (s_index != e_index) {
849 		/* update e_block */
850 		pcpu_block_update(e_block, 0, end);
851 
852 		/* reset md_blocks in the middle */
853 		for (block = s_block + 1; block < e_block; block++) {
854 			block->first_free = 0;
855 			block->contig_hint_start = 0;
856 			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
857 			block->left_free = PCPU_BITMAP_BLOCK_BITS;
858 			block->right_free = PCPU_BITMAP_BLOCK_BITS;
859 		}
860 	}
861 
862 	/*
863 	 * Refresh chunk metadata when the free makes a page free, a block
864 	 * free, or spans across blocks.  The contig hint may be off by up to
865 	 * a page, but if the hint is contained in a block, it will be accurate
866 	 * with the else condition below.
867 	 */
868 	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
869 	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
870 	    s_index != e_index)
871 		pcpu_chunk_refresh_hint(chunk);
872 	else
873 		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
874 				  s_block->contig_hint);
875 }
876 
877 /**
878  * pcpu_is_populated - determines if the region is populated
879  * @chunk: chunk of interest
880  * @bit_off: chunk offset
881  * @bits: size of area
882  * @next_off: return value for the next offset to start searching
883  *
884  * For atomic allocations, check if the backing pages are populated.
885  *
886  * RETURNS:
887  * Bool if the backing pages are populated.
888  * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
889  */
890 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
891 			      int *next_off)
892 {
893 	int page_start, page_end, rs, re;
894 
895 	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
896 	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
897 
898 	rs = page_start;
899 	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
900 	if (rs >= page_end)
901 		return true;
902 
903 	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
904 	return false;
905 }
906 
907 /**
908  * pcpu_find_block_fit - finds the block index to start searching
909  * @chunk: chunk of interest
910  * @alloc_bits: size of request in allocation units
911  * @align: alignment of area (max PAGE_SIZE bytes)
912  * @pop_only: use populated regions only
913  *
914  * Given a chunk and an allocation spec, find the offset to begin searching
915  * for a free region.  This iterates over the bitmap metadata blocks to
916  * find an offset that will be guaranteed to fit the requirements.  It is
917  * not quite first fit as if the allocation does not fit in the contig hint
918  * of a block or chunk, it is skipped.  This errs on the side of caution
919  * to prevent excess iteration.  Poor alignment can cause the allocator to
920  * skip over blocks and chunks that have valid free areas.
921  *
922  * RETURNS:
923  * The offset in the bitmap to begin searching.
924  * -1 if no offset is found.
925  */
926 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
927 			       size_t align, bool pop_only)
928 {
929 	int bit_off, bits, next_off;
930 
931 	/*
932 	 * Check to see if the allocation can fit in the chunk's contig hint.
933 	 * This is an optimization to prevent scanning by assuming if it
934 	 * cannot fit in the global hint, there is memory pressure and creating
935 	 * a new chunk would happen soon.
936 	 */
937 	bit_off = ALIGN(chunk->contig_bits_start, align) -
938 		  chunk->contig_bits_start;
939 	if (bit_off + alloc_bits > chunk->contig_bits)
940 		return -1;
941 
942 	bit_off = chunk->first_bit;
943 	bits = 0;
944 	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
945 		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
946 						   &next_off))
947 			break;
948 
949 		bit_off = next_off;
950 		bits = 0;
951 	}
952 
953 	if (bit_off == pcpu_chunk_map_bits(chunk))
954 		return -1;
955 
956 	return bit_off;
957 }
958 
959 /**
960  * pcpu_alloc_area - allocates an area from a pcpu_chunk
961  * @chunk: chunk of interest
962  * @alloc_bits: size of request in allocation units
963  * @align: alignment of area (max PAGE_SIZE)
964  * @start: bit_off to start searching
965  *
966  * This function takes in a @start offset to begin searching to fit an
967  * allocation of @alloc_bits with alignment @align.  It needs to scan
968  * the allocation map because if it fits within the block's contig hint,
969  * @start will be block->first_free. This is an attempt to fill the
970  * allocation prior to breaking the contig hint.  The allocation and
971  * boundary maps are updated accordingly if it confirms a valid
972  * free area.
973  *
974  * RETURNS:
975  * Allocated addr offset in @chunk on success.
976  * -1 if no matching area is found.
977  */
978 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
979 			   size_t align, int start)
980 {
981 	size_t align_mask = (align) ? (align - 1) : 0;
982 	int bit_off, end, oslot;
983 
984 	lockdep_assert_held(&pcpu_lock);
985 
986 	oslot = pcpu_chunk_slot(chunk);
987 
988 	/*
989 	 * Search to find a fit.
990 	 */
991 	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
992 	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
993 					     alloc_bits, align_mask);
994 	if (bit_off >= end)
995 		return -1;
996 
997 	/* update alloc map */
998 	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
999 
1000 	/* update boundary map */
1001 	set_bit(bit_off, chunk->bound_map);
1002 	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1003 	set_bit(bit_off + alloc_bits, chunk->bound_map);
1004 
1005 	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1006 
1007 	/* update first free bit */
1008 	if (bit_off == chunk->first_bit)
1009 		chunk->first_bit = find_next_zero_bit(
1010 					chunk->alloc_map,
1011 					pcpu_chunk_map_bits(chunk),
1012 					bit_off + alloc_bits);
1013 
1014 	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1015 
1016 	pcpu_chunk_relocate(chunk, oslot);
1017 
1018 	return bit_off * PCPU_MIN_ALLOC_SIZE;
1019 }
1020 
1021 /**
1022  * pcpu_free_area - frees the corresponding offset
1023  * @chunk: chunk of interest
1024  * @off: addr offset into chunk
1025  *
1026  * This function determines the size of an allocation to free using
1027  * the boundary bitmap and clears the allocation map.
1028  */
1029 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1030 {
1031 	int bit_off, bits, end, oslot;
1032 
1033 	lockdep_assert_held(&pcpu_lock);
1034 	pcpu_stats_area_dealloc(chunk);
1035 
1036 	oslot = pcpu_chunk_slot(chunk);
1037 
1038 	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1039 
1040 	/* find end index */
1041 	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1042 			    bit_off + 1);
1043 	bits = end - bit_off;
1044 	bitmap_clear(chunk->alloc_map, bit_off, bits);
1045 
1046 	/* update metadata */
1047 	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1048 
1049 	/* update first free bit */
1050 	chunk->first_bit = min(chunk->first_bit, bit_off);
1051 
1052 	pcpu_block_update_hint_free(chunk, bit_off, bits);
1053 
1054 	pcpu_chunk_relocate(chunk, oslot);
1055 }
1056 
1057 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1058 {
1059 	struct pcpu_block_md *md_block;
1060 
1061 	for (md_block = chunk->md_blocks;
1062 	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1063 	     md_block++) {
1064 		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1065 		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1066 		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1067 	}
1068 }
1069 
1070 /**
1071  * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1072  * @tmp_addr: the start of the region served
1073  * @map_size: size of the region served
1074  *
1075  * This is responsible for creating the chunks that serve the first chunk.  The
1076  * base_addr is page aligned down of @tmp_addr while the region end is page
1077  * aligned up.  Offsets are kept track of to determine the region served. All
1078  * this is done to appease the bitmap allocator in avoiding partial blocks.
1079  *
1080  * RETURNS:
1081  * Chunk serving the region at @tmp_addr of @map_size.
1082  */
1083 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1084 							 int map_size)
1085 {
1086 	struct pcpu_chunk *chunk;
1087 	unsigned long aligned_addr, lcm_align;
1088 	int start_offset, offset_bits, region_size, region_bits;
1089 	size_t alloc_size;
1090 
1091 	/* region calculations */
1092 	aligned_addr = tmp_addr & PAGE_MASK;
1093 
1094 	start_offset = tmp_addr - aligned_addr;
1095 
1096 	/*
1097 	 * Align the end of the region with the LCM of PAGE_SIZE and
1098 	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1099 	 * the other.
1100 	 */
1101 	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1102 	region_size = ALIGN(start_offset + map_size, lcm_align);
1103 
1104 	/* allocate chunk */
1105 	alloc_size = sizeof(struct pcpu_chunk) +
1106 		BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1107 	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1108 	if (!chunk)
1109 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1110 		      alloc_size);
1111 
1112 	INIT_LIST_HEAD(&chunk->list);
1113 
1114 	chunk->base_addr = (void *)aligned_addr;
1115 	chunk->start_offset = start_offset;
1116 	chunk->end_offset = region_size - chunk->start_offset - map_size;
1117 
1118 	chunk->nr_pages = region_size >> PAGE_SHIFT;
1119 	region_bits = pcpu_chunk_map_bits(chunk);
1120 
1121 	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1122 	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1123 	if (!chunk->alloc_map)
1124 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1125 		      alloc_size);
1126 
1127 	alloc_size =
1128 		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1129 	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1130 	if (!chunk->bound_map)
1131 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1132 		      alloc_size);
1133 
1134 	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1135 	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1136 	if (!chunk->md_blocks)
1137 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1138 		      alloc_size);
1139 
1140 	pcpu_init_md_blocks(chunk);
1141 
1142 	/* manage populated page bitmap */
1143 	chunk->immutable = true;
1144 	bitmap_fill(chunk->populated, chunk->nr_pages);
1145 	chunk->nr_populated = chunk->nr_pages;
1146 	chunk->nr_empty_pop_pages =
1147 		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1148 				   map_size / PCPU_MIN_ALLOC_SIZE);
1149 
1150 	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1151 	chunk->free_bytes = map_size;
1152 
1153 	if (chunk->start_offset) {
1154 		/* hide the beginning of the bitmap */
1155 		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1156 		bitmap_set(chunk->alloc_map, 0, offset_bits);
1157 		set_bit(0, chunk->bound_map);
1158 		set_bit(offset_bits, chunk->bound_map);
1159 
1160 		chunk->first_bit = offset_bits;
1161 
1162 		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1163 	}
1164 
1165 	if (chunk->end_offset) {
1166 		/* hide the end of the bitmap */
1167 		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1168 		bitmap_set(chunk->alloc_map,
1169 			   pcpu_chunk_map_bits(chunk) - offset_bits,
1170 			   offset_bits);
1171 		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1172 			chunk->bound_map);
1173 		set_bit(region_bits, chunk->bound_map);
1174 
1175 		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1176 					     - offset_bits, offset_bits);
1177 	}
1178 
1179 	return chunk;
1180 }
1181 
1182 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1183 {
1184 	struct pcpu_chunk *chunk;
1185 	int region_bits;
1186 
1187 	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1188 	if (!chunk)
1189 		return NULL;
1190 
1191 	INIT_LIST_HEAD(&chunk->list);
1192 	chunk->nr_pages = pcpu_unit_pages;
1193 	region_bits = pcpu_chunk_map_bits(chunk);
1194 
1195 	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1196 					   sizeof(chunk->alloc_map[0]), gfp);
1197 	if (!chunk->alloc_map)
1198 		goto alloc_map_fail;
1199 
1200 	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1201 					   sizeof(chunk->bound_map[0]), gfp);
1202 	if (!chunk->bound_map)
1203 		goto bound_map_fail;
1204 
1205 	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1206 					   sizeof(chunk->md_blocks[0]), gfp);
1207 	if (!chunk->md_blocks)
1208 		goto md_blocks_fail;
1209 
1210 	pcpu_init_md_blocks(chunk);
1211 
1212 	/* init metadata */
1213 	chunk->contig_bits = region_bits;
1214 	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1215 
1216 	return chunk;
1217 
1218 md_blocks_fail:
1219 	pcpu_mem_free(chunk->bound_map);
1220 bound_map_fail:
1221 	pcpu_mem_free(chunk->alloc_map);
1222 alloc_map_fail:
1223 	pcpu_mem_free(chunk);
1224 
1225 	return NULL;
1226 }
1227 
1228 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1229 {
1230 	if (!chunk)
1231 		return;
1232 	pcpu_mem_free(chunk->md_blocks);
1233 	pcpu_mem_free(chunk->bound_map);
1234 	pcpu_mem_free(chunk->alloc_map);
1235 	pcpu_mem_free(chunk);
1236 }
1237 
1238 /**
1239  * pcpu_chunk_populated - post-population bookkeeping
1240  * @chunk: pcpu_chunk which got populated
1241  * @page_start: the start page
1242  * @page_end: the end page
1243  * @for_alloc: if this is to populate for allocation
1244  *
1245  * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1246  * the bookkeeping information accordingly.  Must be called after each
1247  * successful population.
1248  *
1249  * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1250  * is to serve an allocation in that area.
1251  */
1252 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1253 				 int page_end, bool for_alloc)
1254 {
1255 	int nr = page_end - page_start;
1256 
1257 	lockdep_assert_held(&pcpu_lock);
1258 
1259 	bitmap_set(chunk->populated, page_start, nr);
1260 	chunk->nr_populated += nr;
1261 	pcpu_nr_populated += nr;
1262 
1263 	if (!for_alloc) {
1264 		chunk->nr_empty_pop_pages += nr;
1265 		pcpu_nr_empty_pop_pages += nr;
1266 	}
1267 }
1268 
1269 /**
1270  * pcpu_chunk_depopulated - post-depopulation bookkeeping
1271  * @chunk: pcpu_chunk which got depopulated
1272  * @page_start: the start page
1273  * @page_end: the end page
1274  *
1275  * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1276  * Update the bookkeeping information accordingly.  Must be called after
1277  * each successful depopulation.
1278  */
1279 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1280 				   int page_start, int page_end)
1281 {
1282 	int nr = page_end - page_start;
1283 
1284 	lockdep_assert_held(&pcpu_lock);
1285 
1286 	bitmap_clear(chunk->populated, page_start, nr);
1287 	chunk->nr_populated -= nr;
1288 	chunk->nr_empty_pop_pages -= nr;
1289 	pcpu_nr_empty_pop_pages -= nr;
1290 	pcpu_nr_populated -= nr;
1291 }
1292 
1293 /*
1294  * Chunk management implementation.
1295  *
1296  * To allow different implementations, chunk alloc/free and
1297  * [de]population are implemented in a separate file which is pulled
1298  * into this file and compiled together.  The following functions
1299  * should be implemented.
1300  *
1301  * pcpu_populate_chunk		- populate the specified range of a chunk
1302  * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1303  * pcpu_create_chunk		- create a new chunk
1304  * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1305  * pcpu_addr_to_page		- translate address to physical address
1306  * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1307  */
1308 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1309 			       int page_start, int page_end, gfp_t gfp);
1310 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1311 				  int page_start, int page_end);
1312 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1313 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1314 static struct page *pcpu_addr_to_page(void *addr);
1315 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1316 
1317 #ifdef CONFIG_NEED_PER_CPU_KM
1318 #include "percpu-km.c"
1319 #else
1320 #include "percpu-vm.c"
1321 #endif
1322 
1323 /**
1324  * pcpu_chunk_addr_search - determine chunk containing specified address
1325  * @addr: address for which the chunk needs to be determined.
1326  *
1327  * This is an internal function that handles all but static allocations.
1328  * Static percpu address values should never be passed into the allocator.
1329  *
1330  * RETURNS:
1331  * The address of the found chunk.
1332  */
1333 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1334 {
1335 	/* is it in the dynamic region (first chunk)? */
1336 	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1337 		return pcpu_first_chunk;
1338 
1339 	/* is it in the reserved region? */
1340 	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1341 		return pcpu_reserved_chunk;
1342 
1343 	/*
1344 	 * The address is relative to unit0 which might be unused and
1345 	 * thus unmapped.  Offset the address to the unit space of the
1346 	 * current processor before looking it up in the vmalloc
1347 	 * space.  Note that any possible cpu id can be used here, so
1348 	 * there's no need to worry about preemption or cpu hotplug.
1349 	 */
1350 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1351 	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1352 }
1353 
1354 /**
1355  * pcpu_alloc - the percpu allocator
1356  * @size: size of area to allocate in bytes
1357  * @align: alignment of area (max PAGE_SIZE)
1358  * @reserved: allocate from the reserved chunk if available
1359  * @gfp: allocation flags
1360  *
1361  * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1362  * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1363  * then no warning will be triggered on invalid or failed allocation
1364  * requests.
1365  *
1366  * RETURNS:
1367  * Percpu pointer to the allocated area on success, NULL on failure.
1368  */
1369 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1370 				 gfp_t gfp)
1371 {
1372 	/* whitelisted flags that can be passed to the backing allocators */
1373 	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1374 	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1375 	bool do_warn = !(gfp & __GFP_NOWARN);
1376 	static int warn_limit = 10;
1377 	struct pcpu_chunk *chunk;
1378 	const char *err;
1379 	int slot, off, cpu, ret;
1380 	unsigned long flags;
1381 	void __percpu *ptr;
1382 	size_t bits, bit_align;
1383 
1384 	/*
1385 	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1386 	 * therefore alignment must be a minimum of that many bytes.
1387 	 * An allocation may have internal fragmentation from rounding up
1388 	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1389 	 */
1390 	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1391 		align = PCPU_MIN_ALLOC_SIZE;
1392 
1393 	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1394 	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1395 	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1396 
1397 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1398 		     !is_power_of_2(align))) {
1399 		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1400 		     size, align);
1401 		return NULL;
1402 	}
1403 
1404 	if (!is_atomic) {
1405 		/*
1406 		 * pcpu_balance_workfn() allocates memory under this mutex,
1407 		 * and it may wait for memory reclaim. Allow current task
1408 		 * to become OOM victim, in case of memory pressure.
1409 		 */
1410 		if (gfp & __GFP_NOFAIL)
1411 			mutex_lock(&pcpu_alloc_mutex);
1412 		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1413 			return NULL;
1414 	}
1415 
1416 	spin_lock_irqsave(&pcpu_lock, flags);
1417 
1418 	/* serve reserved allocations from the reserved chunk if available */
1419 	if (reserved && pcpu_reserved_chunk) {
1420 		chunk = pcpu_reserved_chunk;
1421 
1422 		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1423 		if (off < 0) {
1424 			err = "alloc from reserved chunk failed";
1425 			goto fail_unlock;
1426 		}
1427 
1428 		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1429 		if (off >= 0)
1430 			goto area_found;
1431 
1432 		err = "alloc from reserved chunk failed";
1433 		goto fail_unlock;
1434 	}
1435 
1436 restart:
1437 	/* search through normal chunks */
1438 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1439 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1440 			off = pcpu_find_block_fit(chunk, bits, bit_align,
1441 						  is_atomic);
1442 			if (off < 0)
1443 				continue;
1444 
1445 			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1446 			if (off >= 0)
1447 				goto area_found;
1448 
1449 		}
1450 	}
1451 
1452 	spin_unlock_irqrestore(&pcpu_lock, flags);
1453 
1454 	/*
1455 	 * No space left.  Create a new chunk.  We don't want multiple
1456 	 * tasks to create chunks simultaneously.  Serialize and create iff
1457 	 * there's still no empty chunk after grabbing the mutex.
1458 	 */
1459 	if (is_atomic) {
1460 		err = "atomic alloc failed, no space left";
1461 		goto fail;
1462 	}
1463 
1464 	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1465 		chunk = pcpu_create_chunk(pcpu_gfp);
1466 		if (!chunk) {
1467 			err = "failed to allocate new chunk";
1468 			goto fail;
1469 		}
1470 
1471 		spin_lock_irqsave(&pcpu_lock, flags);
1472 		pcpu_chunk_relocate(chunk, -1);
1473 	} else {
1474 		spin_lock_irqsave(&pcpu_lock, flags);
1475 	}
1476 
1477 	goto restart;
1478 
1479 area_found:
1480 	pcpu_stats_area_alloc(chunk, size);
1481 	spin_unlock_irqrestore(&pcpu_lock, flags);
1482 
1483 	/* populate if not all pages are already there */
1484 	if (!is_atomic) {
1485 		int page_start, page_end, rs, re;
1486 
1487 		page_start = PFN_DOWN(off);
1488 		page_end = PFN_UP(off + size);
1489 
1490 		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1491 					   page_start, page_end) {
1492 			WARN_ON(chunk->immutable);
1493 
1494 			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1495 
1496 			spin_lock_irqsave(&pcpu_lock, flags);
1497 			if (ret) {
1498 				pcpu_free_area(chunk, off);
1499 				err = "failed to populate";
1500 				goto fail_unlock;
1501 			}
1502 			pcpu_chunk_populated(chunk, rs, re, true);
1503 			spin_unlock_irqrestore(&pcpu_lock, flags);
1504 		}
1505 
1506 		mutex_unlock(&pcpu_alloc_mutex);
1507 	}
1508 
1509 	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1510 		pcpu_schedule_balance_work();
1511 
1512 	/* clear the areas and return address relative to base address */
1513 	for_each_possible_cpu(cpu)
1514 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1515 
1516 	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1517 	kmemleak_alloc_percpu(ptr, size, gfp);
1518 
1519 	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1520 			chunk->base_addr, off, ptr);
1521 
1522 	return ptr;
1523 
1524 fail_unlock:
1525 	spin_unlock_irqrestore(&pcpu_lock, flags);
1526 fail:
1527 	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1528 
1529 	if (!is_atomic && do_warn && warn_limit) {
1530 		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1531 			size, align, is_atomic, err);
1532 		dump_stack();
1533 		if (!--warn_limit)
1534 			pr_info("limit reached, disable warning\n");
1535 	}
1536 	if (is_atomic) {
1537 		/* see the flag handling in pcpu_blance_workfn() */
1538 		pcpu_atomic_alloc_failed = true;
1539 		pcpu_schedule_balance_work();
1540 	} else {
1541 		mutex_unlock(&pcpu_alloc_mutex);
1542 	}
1543 	return NULL;
1544 }
1545 
1546 /**
1547  * __alloc_percpu_gfp - allocate dynamic percpu area
1548  * @size: size of area to allocate in bytes
1549  * @align: alignment of area (max PAGE_SIZE)
1550  * @gfp: allocation flags
1551  *
1552  * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1553  * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1554  * be called from any context but is a lot more likely to fail. If @gfp
1555  * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1556  * allocation requests.
1557  *
1558  * RETURNS:
1559  * Percpu pointer to the allocated area on success, NULL on failure.
1560  */
1561 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1562 {
1563 	return pcpu_alloc(size, align, false, gfp);
1564 }
1565 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1566 
1567 /**
1568  * __alloc_percpu - allocate dynamic percpu area
1569  * @size: size of area to allocate in bytes
1570  * @align: alignment of area (max PAGE_SIZE)
1571  *
1572  * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1573  */
1574 void __percpu *__alloc_percpu(size_t size, size_t align)
1575 {
1576 	return pcpu_alloc(size, align, false, GFP_KERNEL);
1577 }
1578 EXPORT_SYMBOL_GPL(__alloc_percpu);
1579 
1580 /**
1581  * __alloc_reserved_percpu - allocate reserved percpu area
1582  * @size: size of area to allocate in bytes
1583  * @align: alignment of area (max PAGE_SIZE)
1584  *
1585  * Allocate zero-filled percpu area of @size bytes aligned at @align
1586  * from reserved percpu area if arch has set it up; otherwise,
1587  * allocation is served from the same dynamic area.  Might sleep.
1588  * Might trigger writeouts.
1589  *
1590  * CONTEXT:
1591  * Does GFP_KERNEL allocation.
1592  *
1593  * RETURNS:
1594  * Percpu pointer to the allocated area on success, NULL on failure.
1595  */
1596 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1597 {
1598 	return pcpu_alloc(size, align, true, GFP_KERNEL);
1599 }
1600 
1601 /**
1602  * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1603  * @work: unused
1604  *
1605  * Reclaim all fully free chunks except for the first one.  This is also
1606  * responsible for maintaining the pool of empty populated pages.  However,
1607  * it is possible that this is called when physical memory is scarce causing
1608  * OOM killer to be triggered.  We should avoid doing so until an actual
1609  * allocation causes the failure as it is possible that requests can be
1610  * serviced from already backed regions.
1611  */
1612 static void pcpu_balance_workfn(struct work_struct *work)
1613 {
1614 	/* gfp flags passed to underlying allocators */
1615 	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1616 	LIST_HEAD(to_free);
1617 	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1618 	struct pcpu_chunk *chunk, *next;
1619 	int slot, nr_to_pop, ret;
1620 
1621 	/*
1622 	 * There's no reason to keep around multiple unused chunks and VM
1623 	 * areas can be scarce.  Destroy all free chunks except for one.
1624 	 */
1625 	mutex_lock(&pcpu_alloc_mutex);
1626 	spin_lock_irq(&pcpu_lock);
1627 
1628 	list_for_each_entry_safe(chunk, next, free_head, list) {
1629 		WARN_ON(chunk->immutable);
1630 
1631 		/* spare the first one */
1632 		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1633 			continue;
1634 
1635 		list_move(&chunk->list, &to_free);
1636 	}
1637 
1638 	spin_unlock_irq(&pcpu_lock);
1639 
1640 	list_for_each_entry_safe(chunk, next, &to_free, list) {
1641 		int rs, re;
1642 
1643 		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1644 					 chunk->nr_pages) {
1645 			pcpu_depopulate_chunk(chunk, rs, re);
1646 			spin_lock_irq(&pcpu_lock);
1647 			pcpu_chunk_depopulated(chunk, rs, re);
1648 			spin_unlock_irq(&pcpu_lock);
1649 		}
1650 		pcpu_destroy_chunk(chunk);
1651 		cond_resched();
1652 	}
1653 
1654 	/*
1655 	 * Ensure there are certain number of free populated pages for
1656 	 * atomic allocs.  Fill up from the most packed so that atomic
1657 	 * allocs don't increase fragmentation.  If atomic allocation
1658 	 * failed previously, always populate the maximum amount.  This
1659 	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1660 	 * failing indefinitely; however, large atomic allocs are not
1661 	 * something we support properly and can be highly unreliable and
1662 	 * inefficient.
1663 	 */
1664 retry_pop:
1665 	if (pcpu_atomic_alloc_failed) {
1666 		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1667 		/* best effort anyway, don't worry about synchronization */
1668 		pcpu_atomic_alloc_failed = false;
1669 	} else {
1670 		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1671 				  pcpu_nr_empty_pop_pages,
1672 				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1673 	}
1674 
1675 	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1676 		int nr_unpop = 0, rs, re;
1677 
1678 		if (!nr_to_pop)
1679 			break;
1680 
1681 		spin_lock_irq(&pcpu_lock);
1682 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1683 			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1684 			if (nr_unpop)
1685 				break;
1686 		}
1687 		spin_unlock_irq(&pcpu_lock);
1688 
1689 		if (!nr_unpop)
1690 			continue;
1691 
1692 		/* @chunk can't go away while pcpu_alloc_mutex is held */
1693 		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1694 					   chunk->nr_pages) {
1695 			int nr = min(re - rs, nr_to_pop);
1696 
1697 			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1698 			if (!ret) {
1699 				nr_to_pop -= nr;
1700 				spin_lock_irq(&pcpu_lock);
1701 				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1702 				spin_unlock_irq(&pcpu_lock);
1703 			} else {
1704 				nr_to_pop = 0;
1705 			}
1706 
1707 			if (!nr_to_pop)
1708 				break;
1709 		}
1710 	}
1711 
1712 	if (nr_to_pop) {
1713 		/* ran out of chunks to populate, create a new one and retry */
1714 		chunk = pcpu_create_chunk(gfp);
1715 		if (chunk) {
1716 			spin_lock_irq(&pcpu_lock);
1717 			pcpu_chunk_relocate(chunk, -1);
1718 			spin_unlock_irq(&pcpu_lock);
1719 			goto retry_pop;
1720 		}
1721 	}
1722 
1723 	mutex_unlock(&pcpu_alloc_mutex);
1724 }
1725 
1726 /**
1727  * free_percpu - free percpu area
1728  * @ptr: pointer to area to free
1729  *
1730  * Free percpu area @ptr.
1731  *
1732  * CONTEXT:
1733  * Can be called from atomic context.
1734  */
1735 void free_percpu(void __percpu *ptr)
1736 {
1737 	void *addr;
1738 	struct pcpu_chunk *chunk;
1739 	unsigned long flags;
1740 	int off;
1741 
1742 	if (!ptr)
1743 		return;
1744 
1745 	kmemleak_free_percpu(ptr);
1746 
1747 	addr = __pcpu_ptr_to_addr(ptr);
1748 
1749 	spin_lock_irqsave(&pcpu_lock, flags);
1750 
1751 	chunk = pcpu_chunk_addr_search(addr);
1752 	off = addr - chunk->base_addr;
1753 
1754 	pcpu_free_area(chunk, off);
1755 
1756 	/* if there are more than one fully free chunks, wake up grim reaper */
1757 	if (chunk->free_bytes == pcpu_unit_size) {
1758 		struct pcpu_chunk *pos;
1759 
1760 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1761 			if (pos != chunk) {
1762 				pcpu_schedule_balance_work();
1763 				break;
1764 			}
1765 	}
1766 
1767 	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1768 
1769 	spin_unlock_irqrestore(&pcpu_lock, flags);
1770 }
1771 EXPORT_SYMBOL_GPL(free_percpu);
1772 
1773 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1774 {
1775 #ifdef CONFIG_SMP
1776 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1777 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1778 	unsigned int cpu;
1779 
1780 	for_each_possible_cpu(cpu) {
1781 		void *start = per_cpu_ptr(base, cpu);
1782 		void *va = (void *)addr;
1783 
1784 		if (va >= start && va < start + static_size) {
1785 			if (can_addr) {
1786 				*can_addr = (unsigned long) (va - start);
1787 				*can_addr += (unsigned long)
1788 					per_cpu_ptr(base, get_boot_cpu_id());
1789 			}
1790 			return true;
1791 		}
1792 	}
1793 #endif
1794 	/* on UP, can't distinguish from other static vars, always false */
1795 	return false;
1796 }
1797 
1798 /**
1799  * is_kernel_percpu_address - test whether address is from static percpu area
1800  * @addr: address to test
1801  *
1802  * Test whether @addr belongs to in-kernel static percpu area.  Module
1803  * static percpu areas are not considered.  For those, use
1804  * is_module_percpu_address().
1805  *
1806  * RETURNS:
1807  * %true if @addr is from in-kernel static percpu area, %false otherwise.
1808  */
1809 bool is_kernel_percpu_address(unsigned long addr)
1810 {
1811 	return __is_kernel_percpu_address(addr, NULL);
1812 }
1813 
1814 /**
1815  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1816  * @addr: the address to be converted to physical address
1817  *
1818  * Given @addr which is dereferenceable address obtained via one of
1819  * percpu access macros, this function translates it into its physical
1820  * address.  The caller is responsible for ensuring @addr stays valid
1821  * until this function finishes.
1822  *
1823  * percpu allocator has special setup for the first chunk, which currently
1824  * supports either embedding in linear address space or vmalloc mapping,
1825  * and, from the second one, the backing allocator (currently either vm or
1826  * km) provides translation.
1827  *
1828  * The addr can be translated simply without checking if it falls into the
1829  * first chunk. But the current code reflects better how percpu allocator
1830  * actually works, and the verification can discover both bugs in percpu
1831  * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1832  * code.
1833  *
1834  * RETURNS:
1835  * The physical address for @addr.
1836  */
1837 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1838 {
1839 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1840 	bool in_first_chunk = false;
1841 	unsigned long first_low, first_high;
1842 	unsigned int cpu;
1843 
1844 	/*
1845 	 * The following test on unit_low/high isn't strictly
1846 	 * necessary but will speed up lookups of addresses which
1847 	 * aren't in the first chunk.
1848 	 *
1849 	 * The address check is against full chunk sizes.  pcpu_base_addr
1850 	 * points to the beginning of the first chunk including the
1851 	 * static region.  Assumes good intent as the first chunk may
1852 	 * not be full (ie. < pcpu_unit_pages in size).
1853 	 */
1854 	first_low = (unsigned long)pcpu_base_addr +
1855 		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1856 	first_high = (unsigned long)pcpu_base_addr +
1857 		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1858 	if ((unsigned long)addr >= first_low &&
1859 	    (unsigned long)addr < first_high) {
1860 		for_each_possible_cpu(cpu) {
1861 			void *start = per_cpu_ptr(base, cpu);
1862 
1863 			if (addr >= start && addr < start + pcpu_unit_size) {
1864 				in_first_chunk = true;
1865 				break;
1866 			}
1867 		}
1868 	}
1869 
1870 	if (in_first_chunk) {
1871 		if (!is_vmalloc_addr(addr))
1872 			return __pa(addr);
1873 		else
1874 			return page_to_phys(vmalloc_to_page(addr)) +
1875 			       offset_in_page(addr);
1876 	} else
1877 		return page_to_phys(pcpu_addr_to_page(addr)) +
1878 		       offset_in_page(addr);
1879 }
1880 
1881 /**
1882  * pcpu_alloc_alloc_info - allocate percpu allocation info
1883  * @nr_groups: the number of groups
1884  * @nr_units: the number of units
1885  *
1886  * Allocate ai which is large enough for @nr_groups groups containing
1887  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1888  * cpu_map array which is long enough for @nr_units and filled with
1889  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1890  * pointer of other groups.
1891  *
1892  * RETURNS:
1893  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1894  * failure.
1895  */
1896 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1897 						      int nr_units)
1898 {
1899 	struct pcpu_alloc_info *ai;
1900 	size_t base_size, ai_size;
1901 	void *ptr;
1902 	int unit;
1903 
1904 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1905 			  __alignof__(ai->groups[0].cpu_map[0]));
1906 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1907 
1908 	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
1909 	if (!ptr)
1910 		return NULL;
1911 	ai = ptr;
1912 	ptr += base_size;
1913 
1914 	ai->groups[0].cpu_map = ptr;
1915 
1916 	for (unit = 0; unit < nr_units; unit++)
1917 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1918 
1919 	ai->nr_groups = nr_groups;
1920 	ai->__ai_size = PFN_ALIGN(ai_size);
1921 
1922 	return ai;
1923 }
1924 
1925 /**
1926  * pcpu_free_alloc_info - free percpu allocation info
1927  * @ai: pcpu_alloc_info to free
1928  *
1929  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1930  */
1931 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1932 {
1933 	memblock_free_early(__pa(ai), ai->__ai_size);
1934 }
1935 
1936 /**
1937  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1938  * @lvl: loglevel
1939  * @ai: allocation info to dump
1940  *
1941  * Print out information about @ai using loglevel @lvl.
1942  */
1943 static void pcpu_dump_alloc_info(const char *lvl,
1944 				 const struct pcpu_alloc_info *ai)
1945 {
1946 	int group_width = 1, cpu_width = 1, width;
1947 	char empty_str[] = "--------";
1948 	int alloc = 0, alloc_end = 0;
1949 	int group, v;
1950 	int upa, apl;	/* units per alloc, allocs per line */
1951 
1952 	v = ai->nr_groups;
1953 	while (v /= 10)
1954 		group_width++;
1955 
1956 	v = num_possible_cpus();
1957 	while (v /= 10)
1958 		cpu_width++;
1959 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1960 
1961 	upa = ai->alloc_size / ai->unit_size;
1962 	width = upa * (cpu_width + 1) + group_width + 3;
1963 	apl = rounddown_pow_of_two(max(60 / width, 1));
1964 
1965 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1966 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1967 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1968 
1969 	for (group = 0; group < ai->nr_groups; group++) {
1970 		const struct pcpu_group_info *gi = &ai->groups[group];
1971 		int unit = 0, unit_end = 0;
1972 
1973 		BUG_ON(gi->nr_units % upa);
1974 		for (alloc_end += gi->nr_units / upa;
1975 		     alloc < alloc_end; alloc++) {
1976 			if (!(alloc % apl)) {
1977 				pr_cont("\n");
1978 				printk("%spcpu-alloc: ", lvl);
1979 			}
1980 			pr_cont("[%0*d] ", group_width, group);
1981 
1982 			for (unit_end += upa; unit < unit_end; unit++)
1983 				if (gi->cpu_map[unit] != NR_CPUS)
1984 					pr_cont("%0*d ",
1985 						cpu_width, gi->cpu_map[unit]);
1986 				else
1987 					pr_cont("%s ", empty_str);
1988 		}
1989 	}
1990 	pr_cont("\n");
1991 }
1992 
1993 /**
1994  * pcpu_setup_first_chunk - initialize the first percpu chunk
1995  * @ai: pcpu_alloc_info describing how to percpu area is shaped
1996  * @base_addr: mapped address
1997  *
1998  * Initialize the first percpu chunk which contains the kernel static
1999  * perpcu area.  This function is to be called from arch percpu area
2000  * setup path.
2001  *
2002  * @ai contains all information necessary to initialize the first
2003  * chunk and prime the dynamic percpu allocator.
2004  *
2005  * @ai->static_size is the size of static percpu area.
2006  *
2007  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2008  * reserve after the static area in the first chunk.  This reserves
2009  * the first chunk such that it's available only through reserved
2010  * percpu allocation.  This is primarily used to serve module percpu
2011  * static areas on architectures where the addressing model has
2012  * limited offset range for symbol relocations to guarantee module
2013  * percpu symbols fall inside the relocatable range.
2014  *
2015  * @ai->dyn_size determines the number of bytes available for dynamic
2016  * allocation in the first chunk.  The area between @ai->static_size +
2017  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2018  *
2019  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2020  * and equal to or larger than @ai->static_size + @ai->reserved_size +
2021  * @ai->dyn_size.
2022  *
2023  * @ai->atom_size is the allocation atom size and used as alignment
2024  * for vm areas.
2025  *
2026  * @ai->alloc_size is the allocation size and always multiple of
2027  * @ai->atom_size.  This is larger than @ai->atom_size if
2028  * @ai->unit_size is larger than @ai->atom_size.
2029  *
2030  * @ai->nr_groups and @ai->groups describe virtual memory layout of
2031  * percpu areas.  Units which should be colocated are put into the
2032  * same group.  Dynamic VM areas will be allocated according to these
2033  * groupings.  If @ai->nr_groups is zero, a single group containing
2034  * all units is assumed.
2035  *
2036  * The caller should have mapped the first chunk at @base_addr and
2037  * copied static data to each unit.
2038  *
2039  * The first chunk will always contain a static and a dynamic region.
2040  * However, the static region is not managed by any chunk.  If the first
2041  * chunk also contains a reserved region, it is served by two chunks -
2042  * one for the reserved region and one for the dynamic region.  They
2043  * share the same vm, but use offset regions in the area allocation map.
2044  * The chunk serving the dynamic region is circulated in the chunk slots
2045  * and available for dynamic allocation like any other chunk.
2046  *
2047  * RETURNS:
2048  * 0 on success, -errno on failure.
2049  */
2050 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2051 				  void *base_addr)
2052 {
2053 	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2054 	size_t static_size, dyn_size;
2055 	struct pcpu_chunk *chunk;
2056 	unsigned long *group_offsets;
2057 	size_t *group_sizes;
2058 	unsigned long *unit_off;
2059 	unsigned int cpu;
2060 	int *unit_map;
2061 	int group, unit, i;
2062 	int map_size;
2063 	unsigned long tmp_addr;
2064 	size_t alloc_size;
2065 
2066 #define PCPU_SETUP_BUG_ON(cond)	do {					\
2067 	if (unlikely(cond)) {						\
2068 		pr_emerg("failed to initialize, %s\n", #cond);		\
2069 		pr_emerg("cpu_possible_mask=%*pb\n",			\
2070 			 cpumask_pr_args(cpu_possible_mask));		\
2071 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2072 		BUG();							\
2073 	}								\
2074 } while (0)
2075 
2076 	/* sanity checks */
2077 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2078 #ifdef CONFIG_SMP
2079 	PCPU_SETUP_BUG_ON(!ai->static_size);
2080 	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2081 #endif
2082 	PCPU_SETUP_BUG_ON(!base_addr);
2083 	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2084 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2085 	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2086 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2087 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2088 	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2089 	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2090 	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2091 	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2092 			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2093 	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2094 
2095 	/* process group information and build config tables accordingly */
2096 	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2097 	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2098 	if (!group_offsets)
2099 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2100 		      alloc_size);
2101 
2102 	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2103 	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2104 	if (!group_sizes)
2105 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2106 		      alloc_size);
2107 
2108 	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2109 	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2110 	if (!unit_map)
2111 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2112 		      alloc_size);
2113 
2114 	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2115 	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2116 	if (!unit_off)
2117 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2118 		      alloc_size);
2119 
2120 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2121 		unit_map[cpu] = UINT_MAX;
2122 
2123 	pcpu_low_unit_cpu = NR_CPUS;
2124 	pcpu_high_unit_cpu = NR_CPUS;
2125 
2126 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2127 		const struct pcpu_group_info *gi = &ai->groups[group];
2128 
2129 		group_offsets[group] = gi->base_offset;
2130 		group_sizes[group] = gi->nr_units * ai->unit_size;
2131 
2132 		for (i = 0; i < gi->nr_units; i++) {
2133 			cpu = gi->cpu_map[i];
2134 			if (cpu == NR_CPUS)
2135 				continue;
2136 
2137 			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2138 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2139 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2140 
2141 			unit_map[cpu] = unit + i;
2142 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2143 
2144 			/* determine low/high unit_cpu */
2145 			if (pcpu_low_unit_cpu == NR_CPUS ||
2146 			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2147 				pcpu_low_unit_cpu = cpu;
2148 			if (pcpu_high_unit_cpu == NR_CPUS ||
2149 			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2150 				pcpu_high_unit_cpu = cpu;
2151 		}
2152 	}
2153 	pcpu_nr_units = unit;
2154 
2155 	for_each_possible_cpu(cpu)
2156 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2157 
2158 	/* we're done parsing the input, undefine BUG macro and dump config */
2159 #undef PCPU_SETUP_BUG_ON
2160 	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2161 
2162 	pcpu_nr_groups = ai->nr_groups;
2163 	pcpu_group_offsets = group_offsets;
2164 	pcpu_group_sizes = group_sizes;
2165 	pcpu_unit_map = unit_map;
2166 	pcpu_unit_offsets = unit_off;
2167 
2168 	/* determine basic parameters */
2169 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2170 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2171 	pcpu_atom_size = ai->atom_size;
2172 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2173 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2174 
2175 	pcpu_stats_save_ai(ai);
2176 
2177 	/*
2178 	 * Allocate chunk slots.  The additional last slot is for
2179 	 * empty chunks.
2180 	 */
2181 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2182 	pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2183 				   SMP_CACHE_BYTES);
2184 	if (!pcpu_slot)
2185 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2186 		      pcpu_nr_slots * sizeof(pcpu_slot[0]));
2187 	for (i = 0; i < pcpu_nr_slots; i++)
2188 		INIT_LIST_HEAD(&pcpu_slot[i]);
2189 
2190 	/*
2191 	 * The end of the static region needs to be aligned with the
2192 	 * minimum allocation size as this offsets the reserved and
2193 	 * dynamic region.  The first chunk ends page aligned by
2194 	 * expanding the dynamic region, therefore the dynamic region
2195 	 * can be shrunk to compensate while still staying above the
2196 	 * configured sizes.
2197 	 */
2198 	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2199 	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2200 
2201 	/*
2202 	 * Initialize first chunk.
2203 	 * If the reserved_size is non-zero, this initializes the reserved
2204 	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2205 	 * and the dynamic region is initialized here.  The first chunk,
2206 	 * pcpu_first_chunk, will always point to the chunk that serves
2207 	 * the dynamic region.
2208 	 */
2209 	tmp_addr = (unsigned long)base_addr + static_size;
2210 	map_size = ai->reserved_size ?: dyn_size;
2211 	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2212 
2213 	/* init dynamic chunk if necessary */
2214 	if (ai->reserved_size) {
2215 		pcpu_reserved_chunk = chunk;
2216 
2217 		tmp_addr = (unsigned long)base_addr + static_size +
2218 			   ai->reserved_size;
2219 		map_size = dyn_size;
2220 		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2221 	}
2222 
2223 	/* link the first chunk in */
2224 	pcpu_first_chunk = chunk;
2225 	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2226 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2227 
2228 	/* include all regions of the first chunk */
2229 	pcpu_nr_populated += PFN_DOWN(size_sum);
2230 
2231 	pcpu_stats_chunk_alloc();
2232 	trace_percpu_create_chunk(base_addr);
2233 
2234 	/* we're done */
2235 	pcpu_base_addr = base_addr;
2236 	return 0;
2237 }
2238 
2239 #ifdef CONFIG_SMP
2240 
2241 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2242 	[PCPU_FC_AUTO]	= "auto",
2243 	[PCPU_FC_EMBED]	= "embed",
2244 	[PCPU_FC_PAGE]	= "page",
2245 };
2246 
2247 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2248 
2249 static int __init percpu_alloc_setup(char *str)
2250 {
2251 	if (!str)
2252 		return -EINVAL;
2253 
2254 	if (0)
2255 		/* nada */;
2256 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2257 	else if (!strcmp(str, "embed"))
2258 		pcpu_chosen_fc = PCPU_FC_EMBED;
2259 #endif
2260 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2261 	else if (!strcmp(str, "page"))
2262 		pcpu_chosen_fc = PCPU_FC_PAGE;
2263 #endif
2264 	else
2265 		pr_warn("unknown allocator %s specified\n", str);
2266 
2267 	return 0;
2268 }
2269 early_param("percpu_alloc", percpu_alloc_setup);
2270 
2271 /*
2272  * pcpu_embed_first_chunk() is used by the generic percpu setup.
2273  * Build it if needed by the arch config or the generic setup is going
2274  * to be used.
2275  */
2276 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2277 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2278 #define BUILD_EMBED_FIRST_CHUNK
2279 #endif
2280 
2281 /* build pcpu_page_first_chunk() iff needed by the arch config */
2282 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2283 #define BUILD_PAGE_FIRST_CHUNK
2284 #endif
2285 
2286 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2287 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2288 /**
2289  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2290  * @reserved_size: the size of reserved percpu area in bytes
2291  * @dyn_size: minimum free size for dynamic allocation in bytes
2292  * @atom_size: allocation atom size
2293  * @cpu_distance_fn: callback to determine distance between cpus, optional
2294  *
2295  * This function determines grouping of units, their mappings to cpus
2296  * and other parameters considering needed percpu size, allocation
2297  * atom size and distances between CPUs.
2298  *
2299  * Groups are always multiples of atom size and CPUs which are of
2300  * LOCAL_DISTANCE both ways are grouped together and share space for
2301  * units in the same group.  The returned configuration is guaranteed
2302  * to have CPUs on different nodes on different groups and >=75% usage
2303  * of allocated virtual address space.
2304  *
2305  * RETURNS:
2306  * On success, pointer to the new allocation_info is returned.  On
2307  * failure, ERR_PTR value is returned.
2308  */
2309 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2310 				size_t reserved_size, size_t dyn_size,
2311 				size_t atom_size,
2312 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2313 {
2314 	static int group_map[NR_CPUS] __initdata;
2315 	static int group_cnt[NR_CPUS] __initdata;
2316 	const size_t static_size = __per_cpu_end - __per_cpu_start;
2317 	int nr_groups = 1, nr_units = 0;
2318 	size_t size_sum, min_unit_size, alloc_size;
2319 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2320 	int last_allocs, group, unit;
2321 	unsigned int cpu, tcpu;
2322 	struct pcpu_alloc_info *ai;
2323 	unsigned int *cpu_map;
2324 
2325 	/* this function may be called multiple times */
2326 	memset(group_map, 0, sizeof(group_map));
2327 	memset(group_cnt, 0, sizeof(group_cnt));
2328 
2329 	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2330 	size_sum = PFN_ALIGN(static_size + reserved_size +
2331 			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2332 	dyn_size = size_sum - static_size - reserved_size;
2333 
2334 	/*
2335 	 * Determine min_unit_size, alloc_size and max_upa such that
2336 	 * alloc_size is multiple of atom_size and is the smallest
2337 	 * which can accommodate 4k aligned segments which are equal to
2338 	 * or larger than min_unit_size.
2339 	 */
2340 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2341 
2342 	/* determine the maximum # of units that can fit in an allocation */
2343 	alloc_size = roundup(min_unit_size, atom_size);
2344 	upa = alloc_size / min_unit_size;
2345 	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2346 		upa--;
2347 	max_upa = upa;
2348 
2349 	/* group cpus according to their proximity */
2350 	for_each_possible_cpu(cpu) {
2351 		group = 0;
2352 	next_group:
2353 		for_each_possible_cpu(tcpu) {
2354 			if (cpu == tcpu)
2355 				break;
2356 			if (group_map[tcpu] == group && cpu_distance_fn &&
2357 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2358 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2359 				group++;
2360 				nr_groups = max(nr_groups, group + 1);
2361 				goto next_group;
2362 			}
2363 		}
2364 		group_map[cpu] = group;
2365 		group_cnt[group]++;
2366 	}
2367 
2368 	/*
2369 	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2370 	 * Expand the unit_size until we use >= 75% of the units allocated.
2371 	 * Related to atom_size, which could be much larger than the unit_size.
2372 	 */
2373 	last_allocs = INT_MAX;
2374 	for (upa = max_upa; upa; upa--) {
2375 		int allocs = 0, wasted = 0;
2376 
2377 		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2378 			continue;
2379 
2380 		for (group = 0; group < nr_groups; group++) {
2381 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2382 			allocs += this_allocs;
2383 			wasted += this_allocs * upa - group_cnt[group];
2384 		}
2385 
2386 		/*
2387 		 * Don't accept if wastage is over 1/3.  The
2388 		 * greater-than comparison ensures upa==1 always
2389 		 * passes the following check.
2390 		 */
2391 		if (wasted > num_possible_cpus() / 3)
2392 			continue;
2393 
2394 		/* and then don't consume more memory */
2395 		if (allocs > last_allocs)
2396 			break;
2397 		last_allocs = allocs;
2398 		best_upa = upa;
2399 	}
2400 	upa = best_upa;
2401 
2402 	/* allocate and fill alloc_info */
2403 	for (group = 0; group < nr_groups; group++)
2404 		nr_units += roundup(group_cnt[group], upa);
2405 
2406 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2407 	if (!ai)
2408 		return ERR_PTR(-ENOMEM);
2409 	cpu_map = ai->groups[0].cpu_map;
2410 
2411 	for (group = 0; group < nr_groups; group++) {
2412 		ai->groups[group].cpu_map = cpu_map;
2413 		cpu_map += roundup(group_cnt[group], upa);
2414 	}
2415 
2416 	ai->static_size = static_size;
2417 	ai->reserved_size = reserved_size;
2418 	ai->dyn_size = dyn_size;
2419 	ai->unit_size = alloc_size / upa;
2420 	ai->atom_size = atom_size;
2421 	ai->alloc_size = alloc_size;
2422 
2423 	for (group = 0, unit = 0; group < nr_groups; group++) {
2424 		struct pcpu_group_info *gi = &ai->groups[group];
2425 
2426 		/*
2427 		 * Initialize base_offset as if all groups are located
2428 		 * back-to-back.  The caller should update this to
2429 		 * reflect actual allocation.
2430 		 */
2431 		gi->base_offset = unit * ai->unit_size;
2432 
2433 		for_each_possible_cpu(cpu)
2434 			if (group_map[cpu] == group)
2435 				gi->cpu_map[gi->nr_units++] = cpu;
2436 		gi->nr_units = roundup(gi->nr_units, upa);
2437 		unit += gi->nr_units;
2438 	}
2439 	BUG_ON(unit != nr_units);
2440 
2441 	return ai;
2442 }
2443 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2444 
2445 #if defined(BUILD_EMBED_FIRST_CHUNK)
2446 /**
2447  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2448  * @reserved_size: the size of reserved percpu area in bytes
2449  * @dyn_size: minimum free size for dynamic allocation in bytes
2450  * @atom_size: allocation atom size
2451  * @cpu_distance_fn: callback to determine distance between cpus, optional
2452  * @alloc_fn: function to allocate percpu page
2453  * @free_fn: function to free percpu page
2454  *
2455  * This is a helper to ease setting up embedded first percpu chunk and
2456  * can be called where pcpu_setup_first_chunk() is expected.
2457  *
2458  * If this function is used to setup the first chunk, it is allocated
2459  * by calling @alloc_fn and used as-is without being mapped into
2460  * vmalloc area.  Allocations are always whole multiples of @atom_size
2461  * aligned to @atom_size.
2462  *
2463  * This enables the first chunk to piggy back on the linear physical
2464  * mapping which often uses larger page size.  Please note that this
2465  * can result in very sparse cpu->unit mapping on NUMA machines thus
2466  * requiring large vmalloc address space.  Don't use this allocator if
2467  * vmalloc space is not orders of magnitude larger than distances
2468  * between node memory addresses (ie. 32bit NUMA machines).
2469  *
2470  * @dyn_size specifies the minimum dynamic area size.
2471  *
2472  * If the needed size is smaller than the minimum or specified unit
2473  * size, the leftover is returned using @free_fn.
2474  *
2475  * RETURNS:
2476  * 0 on success, -errno on failure.
2477  */
2478 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2479 				  size_t atom_size,
2480 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2481 				  pcpu_fc_alloc_fn_t alloc_fn,
2482 				  pcpu_fc_free_fn_t free_fn)
2483 {
2484 	void *base = (void *)ULONG_MAX;
2485 	void **areas = NULL;
2486 	struct pcpu_alloc_info *ai;
2487 	size_t size_sum, areas_size;
2488 	unsigned long max_distance;
2489 	int group, i, highest_group, rc;
2490 
2491 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2492 				   cpu_distance_fn);
2493 	if (IS_ERR(ai))
2494 		return PTR_ERR(ai);
2495 
2496 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2497 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2498 
2499 	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2500 	if (!areas) {
2501 		rc = -ENOMEM;
2502 		goto out_free;
2503 	}
2504 
2505 	/* allocate, copy and determine base address & max_distance */
2506 	highest_group = 0;
2507 	for (group = 0; group < ai->nr_groups; group++) {
2508 		struct pcpu_group_info *gi = &ai->groups[group];
2509 		unsigned int cpu = NR_CPUS;
2510 		void *ptr;
2511 
2512 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2513 			cpu = gi->cpu_map[i];
2514 		BUG_ON(cpu == NR_CPUS);
2515 
2516 		/* allocate space for the whole group */
2517 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2518 		if (!ptr) {
2519 			rc = -ENOMEM;
2520 			goto out_free_areas;
2521 		}
2522 		/* kmemleak tracks the percpu allocations separately */
2523 		kmemleak_free(ptr);
2524 		areas[group] = ptr;
2525 
2526 		base = min(ptr, base);
2527 		if (ptr > areas[highest_group])
2528 			highest_group = group;
2529 	}
2530 	max_distance = areas[highest_group] - base;
2531 	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2532 
2533 	/* warn if maximum distance is further than 75% of vmalloc space */
2534 	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2535 		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2536 				max_distance, VMALLOC_TOTAL);
2537 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2538 		/* and fail if we have fallback */
2539 		rc = -EINVAL;
2540 		goto out_free_areas;
2541 #endif
2542 	}
2543 
2544 	/*
2545 	 * Copy data and free unused parts.  This should happen after all
2546 	 * allocations are complete; otherwise, we may end up with
2547 	 * overlapping groups.
2548 	 */
2549 	for (group = 0; group < ai->nr_groups; group++) {
2550 		struct pcpu_group_info *gi = &ai->groups[group];
2551 		void *ptr = areas[group];
2552 
2553 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2554 			if (gi->cpu_map[i] == NR_CPUS) {
2555 				/* unused unit, free whole */
2556 				free_fn(ptr, ai->unit_size);
2557 				continue;
2558 			}
2559 			/* copy and return the unused part */
2560 			memcpy(ptr, __per_cpu_load, ai->static_size);
2561 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2562 		}
2563 	}
2564 
2565 	/* base address is now known, determine group base offsets */
2566 	for (group = 0; group < ai->nr_groups; group++) {
2567 		ai->groups[group].base_offset = areas[group] - base;
2568 	}
2569 
2570 	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2571 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2572 		ai->dyn_size, ai->unit_size);
2573 
2574 	rc = pcpu_setup_first_chunk(ai, base);
2575 	goto out_free;
2576 
2577 out_free_areas:
2578 	for (group = 0; group < ai->nr_groups; group++)
2579 		if (areas[group])
2580 			free_fn(areas[group],
2581 				ai->groups[group].nr_units * ai->unit_size);
2582 out_free:
2583 	pcpu_free_alloc_info(ai);
2584 	if (areas)
2585 		memblock_free_early(__pa(areas), areas_size);
2586 	return rc;
2587 }
2588 #endif /* BUILD_EMBED_FIRST_CHUNK */
2589 
2590 #ifdef BUILD_PAGE_FIRST_CHUNK
2591 /**
2592  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2593  * @reserved_size: the size of reserved percpu area in bytes
2594  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2595  * @free_fn: function to free percpu page, always called with PAGE_SIZE
2596  * @populate_pte_fn: function to populate pte
2597  *
2598  * This is a helper to ease setting up page-remapped first percpu
2599  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2600  *
2601  * This is the basic allocator.  Static percpu area is allocated
2602  * page-by-page into vmalloc area.
2603  *
2604  * RETURNS:
2605  * 0 on success, -errno on failure.
2606  */
2607 int __init pcpu_page_first_chunk(size_t reserved_size,
2608 				 pcpu_fc_alloc_fn_t alloc_fn,
2609 				 pcpu_fc_free_fn_t free_fn,
2610 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2611 {
2612 	static struct vm_struct vm;
2613 	struct pcpu_alloc_info *ai;
2614 	char psize_str[16];
2615 	int unit_pages;
2616 	size_t pages_size;
2617 	struct page **pages;
2618 	int unit, i, j, rc;
2619 	int upa;
2620 	int nr_g0_units;
2621 
2622 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2623 
2624 	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2625 	if (IS_ERR(ai))
2626 		return PTR_ERR(ai);
2627 	BUG_ON(ai->nr_groups != 1);
2628 	upa = ai->alloc_size/ai->unit_size;
2629 	nr_g0_units = roundup(num_possible_cpus(), upa);
2630 	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2631 		pcpu_free_alloc_info(ai);
2632 		return -EINVAL;
2633 	}
2634 
2635 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2636 
2637 	/* unaligned allocations can't be freed, round up to page size */
2638 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2639 			       sizeof(pages[0]));
2640 	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2641 	if (!pages)
2642 		panic("%s: Failed to allocate %zu bytes\n", __func__,
2643 		      pages_size);
2644 
2645 	/* allocate pages */
2646 	j = 0;
2647 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2648 		unsigned int cpu = ai->groups[0].cpu_map[unit];
2649 		for (i = 0; i < unit_pages; i++) {
2650 			void *ptr;
2651 
2652 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2653 			if (!ptr) {
2654 				pr_warn("failed to allocate %s page for cpu%u\n",
2655 						psize_str, cpu);
2656 				goto enomem;
2657 			}
2658 			/* kmemleak tracks the percpu allocations separately */
2659 			kmemleak_free(ptr);
2660 			pages[j++] = virt_to_page(ptr);
2661 		}
2662 	}
2663 
2664 	/* allocate vm area, map the pages and copy static data */
2665 	vm.flags = VM_ALLOC;
2666 	vm.size = num_possible_cpus() * ai->unit_size;
2667 	vm_area_register_early(&vm, PAGE_SIZE);
2668 
2669 	for (unit = 0; unit < num_possible_cpus(); unit++) {
2670 		unsigned long unit_addr =
2671 			(unsigned long)vm.addr + unit * ai->unit_size;
2672 
2673 		for (i = 0; i < unit_pages; i++)
2674 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2675 
2676 		/* pte already populated, the following shouldn't fail */
2677 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2678 				      unit_pages);
2679 		if (rc < 0)
2680 			panic("failed to map percpu area, err=%d\n", rc);
2681 
2682 		/*
2683 		 * FIXME: Archs with virtual cache should flush local
2684 		 * cache for the linear mapping here - something
2685 		 * equivalent to flush_cache_vmap() on the local cpu.
2686 		 * flush_cache_vmap() can't be used as most supporting
2687 		 * data structures are not set up yet.
2688 		 */
2689 
2690 		/* copy static data */
2691 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2692 	}
2693 
2694 	/* we're ready, commit */
2695 	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2696 		unit_pages, psize_str, vm.addr, ai->static_size,
2697 		ai->reserved_size, ai->dyn_size);
2698 
2699 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2700 	goto out_free_ar;
2701 
2702 enomem:
2703 	while (--j >= 0)
2704 		free_fn(page_address(pages[j]), PAGE_SIZE);
2705 	rc = -ENOMEM;
2706 out_free_ar:
2707 	memblock_free_early(__pa(pages), pages_size);
2708 	pcpu_free_alloc_info(ai);
2709 	return rc;
2710 }
2711 #endif /* BUILD_PAGE_FIRST_CHUNK */
2712 
2713 #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2714 /*
2715  * Generic SMP percpu area setup.
2716  *
2717  * The embedding helper is used because its behavior closely resembles
2718  * the original non-dynamic generic percpu area setup.  This is
2719  * important because many archs have addressing restrictions and might
2720  * fail if the percpu area is located far away from the previous
2721  * location.  As an added bonus, in non-NUMA cases, embedding is
2722  * generally a good idea TLB-wise because percpu area can piggy back
2723  * on the physical linear memory mapping which uses large page
2724  * mappings on applicable archs.
2725  */
2726 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2727 EXPORT_SYMBOL(__per_cpu_offset);
2728 
2729 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2730 				       size_t align)
2731 {
2732 	return  memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2733 }
2734 
2735 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2736 {
2737 	memblock_free_early(__pa(ptr), size);
2738 }
2739 
2740 void __init setup_per_cpu_areas(void)
2741 {
2742 	unsigned long delta;
2743 	unsigned int cpu;
2744 	int rc;
2745 
2746 	/*
2747 	 * Always reserve area for module percpu variables.  That's
2748 	 * what the legacy allocator did.
2749 	 */
2750 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2751 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2752 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2753 	if (rc < 0)
2754 		panic("Failed to initialize percpu areas.");
2755 
2756 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2757 	for_each_possible_cpu(cpu)
2758 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2759 }
2760 #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2761 
2762 #else	/* CONFIG_SMP */
2763 
2764 /*
2765  * UP percpu area setup.
2766  *
2767  * UP always uses km-based percpu allocator with identity mapping.
2768  * Static percpu variables are indistinguishable from the usual static
2769  * variables and don't require any special preparation.
2770  */
2771 void __init setup_per_cpu_areas(void)
2772 {
2773 	const size_t unit_size =
2774 		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2775 					 PERCPU_DYNAMIC_RESERVE));
2776 	struct pcpu_alloc_info *ai;
2777 	void *fc;
2778 
2779 	ai = pcpu_alloc_alloc_info(1, 1);
2780 	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2781 	if (!ai || !fc)
2782 		panic("Failed to allocate memory for percpu areas.");
2783 	/* kmemleak tracks the percpu allocations separately */
2784 	kmemleak_free(fc);
2785 
2786 	ai->dyn_size = unit_size;
2787 	ai->unit_size = unit_size;
2788 	ai->atom_size = unit_size;
2789 	ai->alloc_size = unit_size;
2790 	ai->groups[0].nr_units = 1;
2791 	ai->groups[0].cpu_map[0] = 0;
2792 
2793 	if (pcpu_setup_first_chunk(ai, fc) < 0)
2794 		panic("Failed to initialize percpu areas.");
2795 	pcpu_free_alloc_info(ai);
2796 }
2797 
2798 #endif	/* CONFIG_SMP */
2799 
2800 /*
2801  * pcpu_nr_pages - calculate total number of populated backing pages
2802  *
2803  * This reflects the number of pages populated to back chunks.  Metadata is
2804  * excluded in the number exposed in meminfo as the number of backing pages
2805  * scales with the number of cpus and can quickly outweigh the memory used for
2806  * metadata.  It also keeps this calculation nice and simple.
2807  *
2808  * RETURNS:
2809  * Total number of populated backing pages in use by the allocator.
2810  */
2811 unsigned long pcpu_nr_pages(void)
2812 {
2813 	return pcpu_nr_populated * pcpu_nr_units;
2814 }
2815 
2816 /*
2817  * Percpu allocator is initialized early during boot when neither slab or
2818  * workqueue is available.  Plug async management until everything is up
2819  * and running.
2820  */
2821 static int __init percpu_enable_async(void)
2822 {
2823 	pcpu_async_enabled = true;
2824 	return 0;
2825 }
2826 subsys_initcall(percpu_enable_async);
2827