xref: /openbmc/linux/mm/percpu-vm.c (revision 4800cd83)
1 /*
2  * mm/percpu-vm.c - vmalloc area based chunk allocation
3  *
4  * Copyright (C) 2010		SUSE Linux Products GmbH
5  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * Chunks are mapped into vmalloc areas and populated page by page.
10  * This is the default chunk allocator.
11  */
12 
13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14 				    unsigned int cpu, int page_idx)
15 {
16 	/* must not be used on pre-mapped chunk */
17 	WARN_ON(chunk->immutable);
18 
19 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21 
22 /**
23  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24  * @chunk: chunk of interest
25  * @bitmapp: output parameter for bitmap
26  * @may_alloc: may allocate the array
27  *
28  * Returns pointer to array of pointers to struct page and bitmap,
29  * both of which can be indexed with pcpu_page_idx().  The returned
30  * array is cleared to zero and *@bitmapp is copied from
31  * @chunk->populated.  Note that there is only one array and bitmap
32  * and access exclusion is the caller's responsibility.
33  *
34  * CONTEXT:
35  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36  * Otherwise, don't care.
37  *
38  * RETURNS:
39  * Pointer to temp pages array on success, NULL on failure.
40  */
41 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42 					       unsigned long **bitmapp,
43 					       bool may_alloc)
44 {
45 	static struct page **pages;
46 	static unsigned long *bitmap;
47 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49 			     sizeof(unsigned long);
50 
51 	if (!pages || !bitmap) {
52 		if (may_alloc && !pages)
53 			pages = pcpu_mem_alloc(pages_size);
54 		if (may_alloc && !bitmap)
55 			bitmap = pcpu_mem_alloc(bitmap_size);
56 		if (!pages || !bitmap)
57 			return NULL;
58 	}
59 
60 	memset(pages, 0, pages_size);
61 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
62 
63 	*bitmapp = bitmap;
64 	return pages;
65 }
66 
67 /**
68  * pcpu_free_pages - free pages which were allocated for @chunk
69  * @chunk: chunk pages were allocated for
70  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
71  * @populated: populated bitmap
72  * @page_start: page index of the first page to be freed
73  * @page_end: page index of the last page to be freed + 1
74  *
75  * Free pages [@page_start and @page_end) in @pages for all units.
76  * The pages were allocated for @chunk.
77  */
78 static void pcpu_free_pages(struct pcpu_chunk *chunk,
79 			    struct page **pages, unsigned long *populated,
80 			    int page_start, int page_end)
81 {
82 	unsigned int cpu;
83 	int i;
84 
85 	for_each_possible_cpu(cpu) {
86 		for (i = page_start; i < page_end; i++) {
87 			struct page *page = pages[pcpu_page_idx(cpu, i)];
88 
89 			if (page)
90 				__free_page(page);
91 		}
92 	}
93 }
94 
95 /**
96  * pcpu_alloc_pages - allocates pages for @chunk
97  * @chunk: target chunk
98  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
99  * @populated: populated bitmap
100  * @page_start: page index of the first page to be allocated
101  * @page_end: page index of the last page to be allocated + 1
102  *
103  * Allocate pages [@page_start,@page_end) into @pages for all units.
104  * The allocation is for @chunk.  Percpu core doesn't care about the
105  * content of @pages and will pass it verbatim to pcpu_map_pages().
106  */
107 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
108 			    struct page **pages, unsigned long *populated,
109 			    int page_start, int page_end)
110 {
111 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
112 	unsigned int cpu;
113 	int i;
114 
115 	for_each_possible_cpu(cpu) {
116 		for (i = page_start; i < page_end; i++) {
117 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
118 
119 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
120 			if (!*pagep) {
121 				pcpu_free_pages(chunk, pages, populated,
122 						page_start, page_end);
123 				return -ENOMEM;
124 			}
125 		}
126 	}
127 	return 0;
128 }
129 
130 /**
131  * pcpu_pre_unmap_flush - flush cache prior to unmapping
132  * @chunk: chunk the regions to be flushed belongs to
133  * @page_start: page index of the first page to be flushed
134  * @page_end: page index of the last page to be flushed + 1
135  *
136  * Pages in [@page_start,@page_end) of @chunk are about to be
137  * unmapped.  Flush cache.  As each flushing trial can be very
138  * expensive, issue flush on the whole region at once rather than
139  * doing it for each cpu.  This could be an overkill but is more
140  * scalable.
141  */
142 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
143 				 int page_start, int page_end)
144 {
145 	flush_cache_vunmap(
146 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
147 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
148 }
149 
150 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
151 {
152 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
153 }
154 
155 /**
156  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
157  * @chunk: chunk of interest
158  * @pages: pages array which can be used to pass information to free
159  * @populated: populated bitmap
160  * @page_start: page index of the first page to unmap
161  * @page_end: page index of the last page to unmap + 1
162  *
163  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
164  * Corresponding elements in @pages were cleared by the caller and can
165  * be used to carry information to pcpu_free_pages() which will be
166  * called after all unmaps are finished.  The caller should call
167  * proper pre/post flush functions.
168  */
169 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
170 			     struct page **pages, unsigned long *populated,
171 			     int page_start, int page_end)
172 {
173 	unsigned int cpu;
174 	int i;
175 
176 	for_each_possible_cpu(cpu) {
177 		for (i = page_start; i < page_end; i++) {
178 			struct page *page;
179 
180 			page = pcpu_chunk_page(chunk, cpu, i);
181 			WARN_ON(!page);
182 			pages[pcpu_page_idx(cpu, i)] = page;
183 		}
184 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
185 				   page_end - page_start);
186 	}
187 
188 	for (i = page_start; i < page_end; i++)
189 		__clear_bit(i, populated);
190 }
191 
192 /**
193  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
194  * @chunk: pcpu_chunk the regions to be flushed belong to
195  * @page_start: page index of the first page to be flushed
196  * @page_end: page index of the last page to be flushed + 1
197  *
198  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
199  * TLB for the regions.  This can be skipped if the area is to be
200  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
201  *
202  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
203  * for the whole region.
204  */
205 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
206 				      int page_start, int page_end)
207 {
208 	flush_tlb_kernel_range(
209 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
210 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
211 }
212 
213 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
214 			    int nr_pages)
215 {
216 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
217 					PAGE_KERNEL, pages);
218 }
219 
220 /**
221  * pcpu_map_pages - map pages into a pcpu_chunk
222  * @chunk: chunk of interest
223  * @pages: pages array containing pages to be mapped
224  * @populated: populated bitmap
225  * @page_start: page index of the first page to map
226  * @page_end: page index of the last page to map + 1
227  *
228  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
229  * caller is responsible for calling pcpu_post_map_flush() after all
230  * mappings are complete.
231  *
232  * This function is responsible for setting corresponding bits in
233  * @chunk->populated bitmap and whatever is necessary for reverse
234  * lookup (addr -> chunk).
235  */
236 static int pcpu_map_pages(struct pcpu_chunk *chunk,
237 			  struct page **pages, unsigned long *populated,
238 			  int page_start, int page_end)
239 {
240 	unsigned int cpu, tcpu;
241 	int i, err;
242 
243 	for_each_possible_cpu(cpu) {
244 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
245 				       &pages[pcpu_page_idx(cpu, page_start)],
246 				       page_end - page_start);
247 		if (err < 0)
248 			goto err;
249 	}
250 
251 	/* mapping successful, link chunk and mark populated */
252 	for (i = page_start; i < page_end; i++) {
253 		for_each_possible_cpu(cpu)
254 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
255 					    chunk);
256 		__set_bit(i, populated);
257 	}
258 
259 	return 0;
260 
261 err:
262 	for_each_possible_cpu(tcpu) {
263 		if (tcpu == cpu)
264 			break;
265 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
266 				   page_end - page_start);
267 	}
268 	return err;
269 }
270 
271 /**
272  * pcpu_post_map_flush - flush cache after mapping
273  * @chunk: pcpu_chunk the regions to be flushed belong to
274  * @page_start: page index of the first page to be flushed
275  * @page_end: page index of the last page to be flushed + 1
276  *
277  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
278  * cache.
279  *
280  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
281  * for the whole region.
282  */
283 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
284 				int page_start, int page_end)
285 {
286 	flush_cache_vmap(
287 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
288 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
289 }
290 
291 /**
292  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
293  * @chunk: chunk of interest
294  * @off: offset to the area to populate
295  * @size: size of the area to populate in bytes
296  *
297  * For each cpu, populate and map pages [@page_start,@page_end) into
298  * @chunk.  The area is cleared on return.
299  *
300  * CONTEXT:
301  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
302  */
303 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
304 {
305 	int page_start = PFN_DOWN(off);
306 	int page_end = PFN_UP(off + size);
307 	int free_end = page_start, unmap_end = page_start;
308 	struct page **pages;
309 	unsigned long *populated;
310 	unsigned int cpu;
311 	int rs, re, rc;
312 
313 	/* quick path, check whether all pages are already there */
314 	rs = page_start;
315 	pcpu_next_pop(chunk, &rs, &re, page_end);
316 	if (rs == page_start && re == page_end)
317 		goto clear;
318 
319 	/* need to allocate and map pages, this chunk can't be immutable */
320 	WARN_ON(chunk->immutable);
321 
322 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
323 	if (!pages)
324 		return -ENOMEM;
325 
326 	/* alloc and map */
327 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
328 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
329 		if (rc)
330 			goto err_free;
331 		free_end = re;
332 	}
333 
334 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
335 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
336 		if (rc)
337 			goto err_unmap;
338 		unmap_end = re;
339 	}
340 	pcpu_post_map_flush(chunk, page_start, page_end);
341 
342 	/* commit new bitmap */
343 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
344 clear:
345 	for_each_possible_cpu(cpu)
346 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
347 	return 0;
348 
349 err_unmap:
350 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
351 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
352 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
353 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
354 err_free:
355 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
356 		pcpu_free_pages(chunk, pages, populated, rs, re);
357 	return rc;
358 }
359 
360 /**
361  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
362  * @chunk: chunk to depopulate
363  * @off: offset to the area to depopulate
364  * @size: size of the area to depopulate in bytes
365  * @flush: whether to flush cache and tlb or not
366  *
367  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
368  * from @chunk.  If @flush is true, vcache is flushed before unmapping
369  * and tlb after.
370  *
371  * CONTEXT:
372  * pcpu_alloc_mutex.
373  */
374 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
375 {
376 	int page_start = PFN_DOWN(off);
377 	int page_end = PFN_UP(off + size);
378 	struct page **pages;
379 	unsigned long *populated;
380 	int rs, re;
381 
382 	/* quick path, check whether it's empty already */
383 	rs = page_start;
384 	pcpu_next_unpop(chunk, &rs, &re, page_end);
385 	if (rs == page_start && re == page_end)
386 		return;
387 
388 	/* immutable chunks can't be depopulated */
389 	WARN_ON(chunk->immutable);
390 
391 	/*
392 	 * If control reaches here, there must have been at least one
393 	 * successful population attempt so the temp pages array must
394 	 * be available now.
395 	 */
396 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
397 	BUG_ON(!pages);
398 
399 	/* unmap and free */
400 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
401 
402 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
403 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
404 
405 	/* no need to flush tlb, vmalloc will handle it lazily */
406 
407 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
408 		pcpu_free_pages(chunk, pages, populated, rs, re);
409 
410 	/* commit new bitmap */
411 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
412 }
413 
414 static struct pcpu_chunk *pcpu_create_chunk(void)
415 {
416 	struct pcpu_chunk *chunk;
417 	struct vm_struct **vms;
418 
419 	chunk = pcpu_alloc_chunk();
420 	if (!chunk)
421 		return NULL;
422 
423 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
424 				pcpu_nr_groups, pcpu_atom_size);
425 	if (!vms) {
426 		pcpu_free_chunk(chunk);
427 		return NULL;
428 	}
429 
430 	chunk->data = vms;
431 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
432 	return chunk;
433 }
434 
435 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
436 {
437 	if (chunk && chunk->data)
438 		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
439 	pcpu_free_chunk(chunk);
440 }
441 
442 static struct page *pcpu_addr_to_page(void *addr)
443 {
444 	return vmalloc_to_page(addr);
445 }
446 
447 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
448 {
449 	/* no extra restriction */
450 	return 0;
451 }
452