1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/highmem.h> 4 #include <linux/sched.h> 5 #include <linux/hugetlb.h> 6 7 /* 8 * We want to know the real level where a entry is located ignoring any 9 * folding of levels which may be happening. For example if p4d is folded then 10 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). 11 */ 12 static int real_depth(int depth) 13 { 14 if (depth == 3 && PTRS_PER_PMD == 1) 15 depth = 2; 16 if (depth == 2 && PTRS_PER_PUD == 1) 17 depth = 1; 18 if (depth == 1 && PTRS_PER_P4D == 1) 19 depth = 0; 20 return depth; 21 } 22 23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr, 24 unsigned long end, struct mm_walk *walk) 25 { 26 const struct mm_walk_ops *ops = walk->ops; 27 int err = 0; 28 29 for (;;) { 30 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); 31 if (err) 32 break; 33 if (addr >= end - PAGE_SIZE) 34 break; 35 addr += PAGE_SIZE; 36 pte++; 37 } 38 return err; 39 } 40 41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 42 struct mm_walk *walk) 43 { 44 pte_t *pte; 45 int err = 0; 46 spinlock_t *ptl; 47 48 if (walk->no_vma) { 49 /* 50 * pte_offset_map() might apply user-specific validation. 51 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() 52 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), 53 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. 54 */ 55 if (walk->mm == &init_mm || addr >= TASK_SIZE) 56 pte = pte_offset_kernel(pmd, addr); 57 else 58 pte = pte_offset_map(pmd, addr); 59 if (pte) { 60 err = walk_pte_range_inner(pte, addr, end, walk); 61 if (walk->mm != &init_mm && addr < TASK_SIZE) 62 pte_unmap(pte); 63 } 64 } else { 65 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 66 if (pte) { 67 err = walk_pte_range_inner(pte, addr, end, walk); 68 pte_unmap_unlock(pte, ptl); 69 } 70 } 71 if (!pte) 72 walk->action = ACTION_AGAIN; 73 return err; 74 } 75 76 #ifdef CONFIG_ARCH_HAS_HUGEPD 77 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr, 78 unsigned long end, struct mm_walk *walk, int pdshift) 79 { 80 int err = 0; 81 const struct mm_walk_ops *ops = walk->ops; 82 int shift = hugepd_shift(*phpd); 83 int page_size = 1 << shift; 84 85 if (!ops->pte_entry) 86 return 0; 87 88 if (addr & (page_size - 1)) 89 return 0; 90 91 for (;;) { 92 pte_t *pte; 93 94 spin_lock(&walk->mm->page_table_lock); 95 pte = hugepte_offset(*phpd, addr, pdshift); 96 err = ops->pte_entry(pte, addr, addr + page_size, walk); 97 spin_unlock(&walk->mm->page_table_lock); 98 99 if (err) 100 break; 101 if (addr >= end - page_size) 102 break; 103 addr += page_size; 104 } 105 return err; 106 } 107 #else 108 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr, 109 unsigned long end, struct mm_walk *walk, int pdshift) 110 { 111 return 0; 112 } 113 #endif 114 115 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 116 struct mm_walk *walk) 117 { 118 pmd_t *pmd; 119 unsigned long next; 120 const struct mm_walk_ops *ops = walk->ops; 121 int err = 0; 122 int depth = real_depth(3); 123 124 pmd = pmd_offset(pud, addr); 125 do { 126 again: 127 next = pmd_addr_end(addr, end); 128 if (pmd_none(*pmd)) { 129 if (ops->pte_hole) 130 err = ops->pte_hole(addr, next, depth, walk); 131 if (err) 132 break; 133 continue; 134 } 135 136 walk->action = ACTION_SUBTREE; 137 138 /* 139 * This implies that each ->pmd_entry() handler 140 * needs to know about pmd_trans_huge() pmds 141 */ 142 if (ops->pmd_entry) 143 err = ops->pmd_entry(pmd, addr, next, walk); 144 if (err) 145 break; 146 147 if (walk->action == ACTION_AGAIN) 148 goto again; 149 150 /* 151 * Check this here so we only break down trans_huge 152 * pages when we _need_ to 153 */ 154 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) || 155 walk->action == ACTION_CONTINUE || 156 !(ops->pte_entry)) 157 continue; 158 159 if (walk->vma) 160 split_huge_pmd(walk->vma, pmd, addr); 161 162 if (is_hugepd(__hugepd(pmd_val(*pmd)))) 163 err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT); 164 else 165 err = walk_pte_range(pmd, addr, next, walk); 166 if (err) 167 break; 168 169 if (walk->action == ACTION_AGAIN) 170 goto again; 171 172 } while (pmd++, addr = next, addr != end); 173 174 return err; 175 } 176 177 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 178 struct mm_walk *walk) 179 { 180 pud_t *pud; 181 unsigned long next; 182 const struct mm_walk_ops *ops = walk->ops; 183 int err = 0; 184 int depth = real_depth(2); 185 186 pud = pud_offset(p4d, addr); 187 do { 188 again: 189 next = pud_addr_end(addr, end); 190 if (pud_none(*pud)) { 191 if (ops->pte_hole) 192 err = ops->pte_hole(addr, next, depth, walk); 193 if (err) 194 break; 195 continue; 196 } 197 198 walk->action = ACTION_SUBTREE; 199 200 if (ops->pud_entry) 201 err = ops->pud_entry(pud, addr, next, walk); 202 if (err) 203 break; 204 205 if (walk->action == ACTION_AGAIN) 206 goto again; 207 208 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) || 209 walk->action == ACTION_CONTINUE || 210 !(ops->pmd_entry || ops->pte_entry)) 211 continue; 212 213 if (walk->vma) 214 split_huge_pud(walk->vma, pud, addr); 215 if (pud_none(*pud)) 216 goto again; 217 218 if (is_hugepd(__hugepd(pud_val(*pud)))) 219 err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT); 220 else 221 err = walk_pmd_range(pud, addr, next, walk); 222 if (err) 223 break; 224 } while (pud++, addr = next, addr != end); 225 226 return err; 227 } 228 229 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 230 struct mm_walk *walk) 231 { 232 p4d_t *p4d; 233 unsigned long next; 234 const struct mm_walk_ops *ops = walk->ops; 235 int err = 0; 236 int depth = real_depth(1); 237 238 p4d = p4d_offset(pgd, addr); 239 do { 240 next = p4d_addr_end(addr, end); 241 if (p4d_none_or_clear_bad(p4d)) { 242 if (ops->pte_hole) 243 err = ops->pte_hole(addr, next, depth, walk); 244 if (err) 245 break; 246 continue; 247 } 248 if (ops->p4d_entry) { 249 err = ops->p4d_entry(p4d, addr, next, walk); 250 if (err) 251 break; 252 } 253 if (is_hugepd(__hugepd(p4d_val(*p4d)))) 254 err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT); 255 else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry) 256 err = walk_pud_range(p4d, addr, next, walk); 257 if (err) 258 break; 259 } while (p4d++, addr = next, addr != end); 260 261 return err; 262 } 263 264 static int walk_pgd_range(unsigned long addr, unsigned long end, 265 struct mm_walk *walk) 266 { 267 pgd_t *pgd; 268 unsigned long next; 269 const struct mm_walk_ops *ops = walk->ops; 270 int err = 0; 271 272 if (walk->pgd) 273 pgd = walk->pgd + pgd_index(addr); 274 else 275 pgd = pgd_offset(walk->mm, addr); 276 do { 277 next = pgd_addr_end(addr, end); 278 if (pgd_none_or_clear_bad(pgd)) { 279 if (ops->pte_hole) 280 err = ops->pte_hole(addr, next, 0, walk); 281 if (err) 282 break; 283 continue; 284 } 285 if (ops->pgd_entry) { 286 err = ops->pgd_entry(pgd, addr, next, walk); 287 if (err) 288 break; 289 } 290 if (is_hugepd(__hugepd(pgd_val(*pgd)))) 291 err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT); 292 else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry) 293 err = walk_p4d_range(pgd, addr, next, walk); 294 if (err) 295 break; 296 } while (pgd++, addr = next, addr != end); 297 298 return err; 299 } 300 301 #ifdef CONFIG_HUGETLB_PAGE 302 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, 303 unsigned long end) 304 { 305 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); 306 return boundary < end ? boundary : end; 307 } 308 309 static int walk_hugetlb_range(unsigned long addr, unsigned long end, 310 struct mm_walk *walk) 311 { 312 struct vm_area_struct *vma = walk->vma; 313 struct hstate *h = hstate_vma(vma); 314 unsigned long next; 315 unsigned long hmask = huge_page_mask(h); 316 unsigned long sz = huge_page_size(h); 317 pte_t *pte; 318 const struct mm_walk_ops *ops = walk->ops; 319 int err = 0; 320 321 hugetlb_vma_lock_read(vma); 322 do { 323 next = hugetlb_entry_end(h, addr, end); 324 pte = hugetlb_walk(vma, addr & hmask, sz); 325 if (pte) 326 err = ops->hugetlb_entry(pte, hmask, addr, next, walk); 327 else if (ops->pte_hole) 328 err = ops->pte_hole(addr, next, -1, walk); 329 if (err) 330 break; 331 } while (addr = next, addr != end); 332 hugetlb_vma_unlock_read(vma); 333 334 return err; 335 } 336 337 #else /* CONFIG_HUGETLB_PAGE */ 338 static int walk_hugetlb_range(unsigned long addr, unsigned long end, 339 struct mm_walk *walk) 340 { 341 return 0; 342 } 343 344 #endif /* CONFIG_HUGETLB_PAGE */ 345 346 /* 347 * Decide whether we really walk over the current vma on [@start, @end) 348 * or skip it via the returned value. Return 0 if we do walk over the 349 * current vma, and return 1 if we skip the vma. Negative values means 350 * error, where we abort the current walk. 351 */ 352 static int walk_page_test(unsigned long start, unsigned long end, 353 struct mm_walk *walk) 354 { 355 struct vm_area_struct *vma = walk->vma; 356 const struct mm_walk_ops *ops = walk->ops; 357 358 if (ops->test_walk) 359 return ops->test_walk(start, end, walk); 360 361 /* 362 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP 363 * range, so we don't walk over it as we do for normal vmas. However, 364 * Some callers are interested in handling hole range and they don't 365 * want to just ignore any single address range. Such users certainly 366 * define their ->pte_hole() callbacks, so let's delegate them to handle 367 * vma(VM_PFNMAP). 368 */ 369 if (vma->vm_flags & VM_PFNMAP) { 370 int err = 1; 371 if (ops->pte_hole) 372 err = ops->pte_hole(start, end, -1, walk); 373 return err ? err : 1; 374 } 375 return 0; 376 } 377 378 static int __walk_page_range(unsigned long start, unsigned long end, 379 struct mm_walk *walk) 380 { 381 int err = 0; 382 struct vm_area_struct *vma = walk->vma; 383 const struct mm_walk_ops *ops = walk->ops; 384 385 if (ops->pre_vma) { 386 err = ops->pre_vma(start, end, walk); 387 if (err) 388 return err; 389 } 390 391 if (is_vm_hugetlb_page(vma)) { 392 if (ops->hugetlb_entry) 393 err = walk_hugetlb_range(start, end, walk); 394 } else 395 err = walk_pgd_range(start, end, walk); 396 397 if (ops->post_vma) 398 ops->post_vma(walk); 399 400 return err; 401 } 402 403 static inline void process_mm_walk_lock(struct mm_struct *mm, 404 enum page_walk_lock walk_lock) 405 { 406 if (walk_lock == PGWALK_RDLOCK) 407 mmap_assert_locked(mm); 408 else 409 mmap_assert_write_locked(mm); 410 } 411 412 static inline void process_vma_walk_lock(struct vm_area_struct *vma, 413 enum page_walk_lock walk_lock) 414 { 415 #ifdef CONFIG_PER_VMA_LOCK 416 switch (walk_lock) { 417 case PGWALK_WRLOCK: 418 vma_start_write(vma); 419 break; 420 case PGWALK_WRLOCK_VERIFY: 421 vma_assert_write_locked(vma); 422 break; 423 case PGWALK_RDLOCK: 424 /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ 425 break; 426 } 427 #endif 428 } 429 430 /** 431 * walk_page_range - walk page table with caller specific callbacks 432 * @mm: mm_struct representing the target process of page table walk 433 * @start: start address of the virtual address range 434 * @end: end address of the virtual address range 435 * @ops: operation to call during the walk 436 * @private: private data for callbacks' usage 437 * 438 * Recursively walk the page table tree of the process represented by @mm 439 * within the virtual address range [@start, @end). During walking, we can do 440 * some caller-specific works for each entry, by setting up pmd_entry(), 441 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these 442 * callbacks, the associated entries/pages are just ignored. 443 * The return values of these callbacks are commonly defined like below: 444 * 445 * - 0 : succeeded to handle the current entry, and if you don't reach the 446 * end address yet, continue to walk. 447 * - >0 : succeeded to handle the current entry, and return to the caller 448 * with caller specific value. 449 * - <0 : failed to handle the current entry, and return to the caller 450 * with error code. 451 * 452 * Before starting to walk page table, some callers want to check whether 453 * they really want to walk over the current vma, typically by checking 454 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this 455 * purpose. 456 * 457 * If operations need to be staged before and committed after a vma is walked, 458 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), 459 * since it is intended to handle commit-type operations, can't return any 460 * errors. 461 * 462 * struct mm_walk keeps current values of some common data like vma and pmd, 463 * which are useful for the access from callbacks. If you want to pass some 464 * caller-specific data to callbacks, @private should be helpful. 465 * 466 * Locking: 467 * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, 468 * because these function traverse vma list and/or access to vma's data. 469 */ 470 int walk_page_range(struct mm_struct *mm, unsigned long start, 471 unsigned long end, const struct mm_walk_ops *ops, 472 void *private) 473 { 474 int err = 0; 475 unsigned long next; 476 struct vm_area_struct *vma; 477 struct mm_walk walk = { 478 .ops = ops, 479 .mm = mm, 480 .private = private, 481 }; 482 483 if (start >= end) 484 return -EINVAL; 485 486 if (!walk.mm) 487 return -EINVAL; 488 489 process_mm_walk_lock(walk.mm, ops->walk_lock); 490 491 vma = find_vma(walk.mm, start); 492 do { 493 if (!vma) { /* after the last vma */ 494 walk.vma = NULL; 495 next = end; 496 if (ops->pte_hole) 497 err = ops->pte_hole(start, next, -1, &walk); 498 } else if (start < vma->vm_start) { /* outside vma */ 499 walk.vma = NULL; 500 next = min(end, vma->vm_start); 501 if (ops->pte_hole) 502 err = ops->pte_hole(start, next, -1, &walk); 503 } else { /* inside vma */ 504 process_vma_walk_lock(vma, ops->walk_lock); 505 walk.vma = vma; 506 next = min(end, vma->vm_end); 507 vma = find_vma(mm, vma->vm_end); 508 509 err = walk_page_test(start, next, &walk); 510 if (err > 0) { 511 /* 512 * positive return values are purely for 513 * controlling the pagewalk, so should never 514 * be passed to the callers. 515 */ 516 err = 0; 517 continue; 518 } 519 if (err < 0) 520 break; 521 err = __walk_page_range(start, next, &walk); 522 } 523 if (err) 524 break; 525 } while (start = next, start < end); 526 return err; 527 } 528 529 /** 530 * walk_page_range_novma - walk a range of pagetables not backed by a vma 531 * @mm: mm_struct representing the target process of page table walk 532 * @start: start address of the virtual address range 533 * @end: end address of the virtual address range 534 * @ops: operation to call during the walk 535 * @pgd: pgd to walk if different from mm->pgd 536 * @private: private data for callbacks' usage 537 * 538 * Similar to walk_page_range() but can walk any page tables even if they are 539 * not backed by VMAs. Because 'unusual' entries may be walked this function 540 * will also not lock the PTEs for the pte_entry() callback. This is useful for 541 * walking the kernel pages tables or page tables for firmware. 542 */ 543 int walk_page_range_novma(struct mm_struct *mm, unsigned long start, 544 unsigned long end, const struct mm_walk_ops *ops, 545 pgd_t *pgd, 546 void *private) 547 { 548 struct mm_walk walk = { 549 .ops = ops, 550 .mm = mm, 551 .pgd = pgd, 552 .private = private, 553 .no_vma = true 554 }; 555 556 if (start >= end || !walk.mm) 557 return -EINVAL; 558 559 mmap_assert_write_locked(walk.mm); 560 561 return walk_pgd_range(start, end, &walk); 562 } 563 564 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, 565 unsigned long end, const struct mm_walk_ops *ops, 566 void *private) 567 { 568 struct mm_walk walk = { 569 .ops = ops, 570 .mm = vma->vm_mm, 571 .vma = vma, 572 .private = private, 573 }; 574 575 if (start >= end || !walk.mm) 576 return -EINVAL; 577 if (start < vma->vm_start || end > vma->vm_end) 578 return -EINVAL; 579 580 process_mm_walk_lock(walk.mm, ops->walk_lock); 581 process_vma_walk_lock(vma, ops->walk_lock); 582 return __walk_page_range(start, end, &walk); 583 } 584 585 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, 586 void *private) 587 { 588 struct mm_walk walk = { 589 .ops = ops, 590 .mm = vma->vm_mm, 591 .vma = vma, 592 .private = private, 593 }; 594 595 if (!walk.mm) 596 return -EINVAL; 597 598 process_mm_walk_lock(walk.mm, ops->walk_lock); 599 process_vma_walk_lock(vma, ops->walk_lock); 600 return __walk_page_range(vma->vm_start, vma->vm_end, &walk); 601 } 602 603 /** 604 * walk_page_mapping - walk all memory areas mapped into a struct address_space. 605 * @mapping: Pointer to the struct address_space 606 * @first_index: First page offset in the address_space 607 * @nr: Number of incremental page offsets to cover 608 * @ops: operation to call during the walk 609 * @private: private data for callbacks' usage 610 * 611 * This function walks all memory areas mapped into a struct address_space. 612 * The walk is limited to only the given page-size index range, but if 613 * the index boundaries cross a huge page-table entry, that entry will be 614 * included. 615 * 616 * Also see walk_page_range() for additional information. 617 * 618 * Locking: 619 * This function can't require that the struct mm_struct::mmap_lock is held, 620 * since @mapping may be mapped by multiple processes. Instead 621 * @mapping->i_mmap_rwsem must be held. This might have implications in the 622 * callbacks, and it's up tho the caller to ensure that the 623 * struct mm_struct::mmap_lock is not needed. 624 * 625 * Also this means that a caller can't rely on the struct 626 * vm_area_struct::vm_flags to be constant across a call, 627 * except for immutable flags. Callers requiring this shouldn't use 628 * this function. 629 * 630 * Return: 0 on success, negative error code on failure, positive number on 631 * caller defined premature termination. 632 */ 633 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, 634 pgoff_t nr, const struct mm_walk_ops *ops, 635 void *private) 636 { 637 struct mm_walk walk = { 638 .ops = ops, 639 .private = private, 640 }; 641 struct vm_area_struct *vma; 642 pgoff_t vba, vea, cba, cea; 643 unsigned long start_addr, end_addr; 644 int err = 0; 645 646 lockdep_assert_held(&mapping->i_mmap_rwsem); 647 vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, 648 first_index + nr - 1) { 649 /* Clip to the vma */ 650 vba = vma->vm_pgoff; 651 vea = vba + vma_pages(vma); 652 cba = first_index; 653 cba = max(cba, vba); 654 cea = first_index + nr; 655 cea = min(cea, vea); 656 657 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; 658 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; 659 if (start_addr >= end_addr) 660 continue; 661 662 walk.vma = vma; 663 walk.mm = vma->vm_mm; 664 665 err = walk_page_test(vma->vm_start, vma->vm_end, &walk); 666 if (err > 0) { 667 err = 0; 668 break; 669 } else if (err < 0) 670 break; 671 672 err = __walk_page_range(start_addr, end_addr, &walk); 673 if (err) 674 break; 675 } 676 677 return err; 678 } 679