xref: /openbmc/linux/mm/pagewalk.c (revision c1e0230e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6 
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14 	if (depth == 3 && PTRS_PER_PMD == 1)
15 		depth = 2;
16 	if (depth == 2 && PTRS_PER_PUD == 1)
17 		depth = 1;
18 	if (depth == 1 && PTRS_PER_P4D == 1)
19 		depth = 0;
20 	return depth;
21 }
22 
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24 				unsigned long end, struct mm_walk *walk)
25 {
26 	const struct mm_walk_ops *ops = walk->ops;
27 	int err = 0;
28 
29 	for (;;) {
30 		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31 		if (err)
32 		       break;
33 		if (addr >= end - PAGE_SIZE)
34 			break;
35 		addr += PAGE_SIZE;
36 		pte++;
37 	}
38 	return err;
39 }
40 
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42 			  struct mm_walk *walk)
43 {
44 	pte_t *pte;
45 	int err = 0;
46 	spinlock_t *ptl;
47 
48 	if (walk->no_vma) {
49 		/*
50 		 * pte_offset_map() might apply user-specific validation.
51 		 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
52 		 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
53 		 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
54 		 */
55 		if (walk->mm == &init_mm || addr >= TASK_SIZE)
56 			pte = pte_offset_kernel(pmd, addr);
57 		else
58 			pte = pte_offset_map(pmd, addr);
59 		if (pte) {
60 			err = walk_pte_range_inner(pte, addr, end, walk);
61 			if (walk->mm != &init_mm)
62 				pte_unmap(pte);
63 		}
64 	} else {
65 		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
66 		if (pte) {
67 			err = walk_pte_range_inner(pte, addr, end, walk);
68 			pte_unmap_unlock(pte, ptl);
69 		}
70 	}
71 	if (!pte)
72 		walk->action = ACTION_AGAIN;
73 	return err;
74 }
75 
76 #ifdef CONFIG_ARCH_HAS_HUGEPD
77 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
78 			     unsigned long end, struct mm_walk *walk, int pdshift)
79 {
80 	int err = 0;
81 	const struct mm_walk_ops *ops = walk->ops;
82 	int shift = hugepd_shift(*phpd);
83 	int page_size = 1 << shift;
84 
85 	if (!ops->pte_entry)
86 		return 0;
87 
88 	if (addr & (page_size - 1))
89 		return 0;
90 
91 	for (;;) {
92 		pte_t *pte;
93 
94 		spin_lock(&walk->mm->page_table_lock);
95 		pte = hugepte_offset(*phpd, addr, pdshift);
96 		err = ops->pte_entry(pte, addr, addr + page_size, walk);
97 		spin_unlock(&walk->mm->page_table_lock);
98 
99 		if (err)
100 			break;
101 		if (addr >= end - page_size)
102 			break;
103 		addr += page_size;
104 	}
105 	return err;
106 }
107 #else
108 static int walk_hugepd_range(hugepd_t *phpd, unsigned long addr,
109 			     unsigned long end, struct mm_walk *walk, int pdshift)
110 {
111 	return 0;
112 }
113 #endif
114 
115 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
116 			  struct mm_walk *walk)
117 {
118 	pmd_t *pmd;
119 	unsigned long next;
120 	const struct mm_walk_ops *ops = walk->ops;
121 	int err = 0;
122 	int depth = real_depth(3);
123 
124 	pmd = pmd_offset(pud, addr);
125 	do {
126 again:
127 		next = pmd_addr_end(addr, end);
128 		if (pmd_none(*pmd)) {
129 			if (ops->pte_hole)
130 				err = ops->pte_hole(addr, next, depth, walk);
131 			if (err)
132 				break;
133 			continue;
134 		}
135 
136 		walk->action = ACTION_SUBTREE;
137 
138 		/*
139 		 * This implies that each ->pmd_entry() handler
140 		 * needs to know about pmd_trans_huge() pmds
141 		 */
142 		if (ops->pmd_entry)
143 			err = ops->pmd_entry(pmd, addr, next, walk);
144 		if (err)
145 			break;
146 
147 		if (walk->action == ACTION_AGAIN)
148 			goto again;
149 
150 		/*
151 		 * Check this here so we only break down trans_huge
152 		 * pages when we _need_ to
153 		 */
154 		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
155 		    walk->action == ACTION_CONTINUE ||
156 		    !(ops->pte_entry))
157 			continue;
158 
159 		if (walk->vma)
160 			split_huge_pmd(walk->vma, pmd, addr);
161 
162 		if (is_hugepd(__hugepd(pmd_val(*pmd))))
163 			err = walk_hugepd_range((hugepd_t *)pmd, addr, next, walk, PMD_SHIFT);
164 		else
165 			err = walk_pte_range(pmd, addr, next, walk);
166 		if (err)
167 			break;
168 
169 		if (walk->action == ACTION_AGAIN)
170 			goto again;
171 
172 	} while (pmd++, addr = next, addr != end);
173 
174 	return err;
175 }
176 
177 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
178 			  struct mm_walk *walk)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 	const struct mm_walk_ops *ops = walk->ops;
183 	int err = 0;
184 	int depth = real_depth(2);
185 
186 	pud = pud_offset(p4d, addr);
187 	do {
188  again:
189 		next = pud_addr_end(addr, end);
190 		if (pud_none(*pud)) {
191 			if (ops->pte_hole)
192 				err = ops->pte_hole(addr, next, depth, walk);
193 			if (err)
194 				break;
195 			continue;
196 		}
197 
198 		walk->action = ACTION_SUBTREE;
199 
200 		if (ops->pud_entry)
201 			err = ops->pud_entry(pud, addr, next, walk);
202 		if (err)
203 			break;
204 
205 		if (walk->action == ACTION_AGAIN)
206 			goto again;
207 
208 		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
209 		    walk->action == ACTION_CONTINUE ||
210 		    !(ops->pmd_entry || ops->pte_entry))
211 			continue;
212 
213 		if (walk->vma)
214 			split_huge_pud(walk->vma, pud, addr);
215 		if (pud_none(*pud))
216 			goto again;
217 
218 		if (is_hugepd(__hugepd(pud_val(*pud))))
219 			err = walk_hugepd_range((hugepd_t *)pud, addr, next, walk, PUD_SHIFT);
220 		else
221 			err = walk_pmd_range(pud, addr, next, walk);
222 		if (err)
223 			break;
224 	} while (pud++, addr = next, addr != end);
225 
226 	return err;
227 }
228 
229 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
230 			  struct mm_walk *walk)
231 {
232 	p4d_t *p4d;
233 	unsigned long next;
234 	const struct mm_walk_ops *ops = walk->ops;
235 	int err = 0;
236 	int depth = real_depth(1);
237 
238 	p4d = p4d_offset(pgd, addr);
239 	do {
240 		next = p4d_addr_end(addr, end);
241 		if (p4d_none_or_clear_bad(p4d)) {
242 			if (ops->pte_hole)
243 				err = ops->pte_hole(addr, next, depth, walk);
244 			if (err)
245 				break;
246 			continue;
247 		}
248 		if (ops->p4d_entry) {
249 			err = ops->p4d_entry(p4d, addr, next, walk);
250 			if (err)
251 				break;
252 		}
253 		if (is_hugepd(__hugepd(p4d_val(*p4d))))
254 			err = walk_hugepd_range((hugepd_t *)p4d, addr, next, walk, P4D_SHIFT);
255 		else if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
256 			err = walk_pud_range(p4d, addr, next, walk);
257 		if (err)
258 			break;
259 	} while (p4d++, addr = next, addr != end);
260 
261 	return err;
262 }
263 
264 static int walk_pgd_range(unsigned long addr, unsigned long end,
265 			  struct mm_walk *walk)
266 {
267 	pgd_t *pgd;
268 	unsigned long next;
269 	const struct mm_walk_ops *ops = walk->ops;
270 	int err = 0;
271 
272 	if (walk->pgd)
273 		pgd = walk->pgd + pgd_index(addr);
274 	else
275 		pgd = pgd_offset(walk->mm, addr);
276 	do {
277 		next = pgd_addr_end(addr, end);
278 		if (pgd_none_or_clear_bad(pgd)) {
279 			if (ops->pte_hole)
280 				err = ops->pte_hole(addr, next, 0, walk);
281 			if (err)
282 				break;
283 			continue;
284 		}
285 		if (ops->pgd_entry) {
286 			err = ops->pgd_entry(pgd, addr, next, walk);
287 			if (err)
288 				break;
289 		}
290 		if (is_hugepd(__hugepd(pgd_val(*pgd))))
291 			err = walk_hugepd_range((hugepd_t *)pgd, addr, next, walk, PGDIR_SHIFT);
292 		else if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
293 			err = walk_p4d_range(pgd, addr, next, walk);
294 		if (err)
295 			break;
296 	} while (pgd++, addr = next, addr != end);
297 
298 	return err;
299 }
300 
301 #ifdef CONFIG_HUGETLB_PAGE
302 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
303 				       unsigned long end)
304 {
305 	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
306 	return boundary < end ? boundary : end;
307 }
308 
309 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
310 			      struct mm_walk *walk)
311 {
312 	struct vm_area_struct *vma = walk->vma;
313 	struct hstate *h = hstate_vma(vma);
314 	unsigned long next;
315 	unsigned long hmask = huge_page_mask(h);
316 	unsigned long sz = huge_page_size(h);
317 	pte_t *pte;
318 	const struct mm_walk_ops *ops = walk->ops;
319 	int err = 0;
320 
321 	hugetlb_vma_lock_read(vma);
322 	do {
323 		next = hugetlb_entry_end(h, addr, end);
324 		pte = hugetlb_walk(vma, addr & hmask, sz);
325 		if (pte)
326 			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
327 		else if (ops->pte_hole)
328 			err = ops->pte_hole(addr, next, -1, walk);
329 		if (err)
330 			break;
331 	} while (addr = next, addr != end);
332 	hugetlb_vma_unlock_read(vma);
333 
334 	return err;
335 }
336 
337 #else /* CONFIG_HUGETLB_PAGE */
338 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
339 			      struct mm_walk *walk)
340 {
341 	return 0;
342 }
343 
344 #endif /* CONFIG_HUGETLB_PAGE */
345 
346 /*
347  * Decide whether we really walk over the current vma on [@start, @end)
348  * or skip it via the returned value. Return 0 if we do walk over the
349  * current vma, and return 1 if we skip the vma. Negative values means
350  * error, where we abort the current walk.
351  */
352 static int walk_page_test(unsigned long start, unsigned long end,
353 			struct mm_walk *walk)
354 {
355 	struct vm_area_struct *vma = walk->vma;
356 	const struct mm_walk_ops *ops = walk->ops;
357 
358 	if (ops->test_walk)
359 		return ops->test_walk(start, end, walk);
360 
361 	/*
362 	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
363 	 * range, so we don't walk over it as we do for normal vmas. However,
364 	 * Some callers are interested in handling hole range and they don't
365 	 * want to just ignore any single address range. Such users certainly
366 	 * define their ->pte_hole() callbacks, so let's delegate them to handle
367 	 * vma(VM_PFNMAP).
368 	 */
369 	if (vma->vm_flags & VM_PFNMAP) {
370 		int err = 1;
371 		if (ops->pte_hole)
372 			err = ops->pte_hole(start, end, -1, walk);
373 		return err ? err : 1;
374 	}
375 	return 0;
376 }
377 
378 static int __walk_page_range(unsigned long start, unsigned long end,
379 			struct mm_walk *walk)
380 {
381 	int err = 0;
382 	struct vm_area_struct *vma = walk->vma;
383 	const struct mm_walk_ops *ops = walk->ops;
384 
385 	if (ops->pre_vma) {
386 		err = ops->pre_vma(start, end, walk);
387 		if (err)
388 			return err;
389 	}
390 
391 	if (is_vm_hugetlb_page(vma)) {
392 		if (ops->hugetlb_entry)
393 			err = walk_hugetlb_range(start, end, walk);
394 	} else
395 		err = walk_pgd_range(start, end, walk);
396 
397 	if (ops->post_vma)
398 		ops->post_vma(walk);
399 
400 	return err;
401 }
402 
403 /**
404  * walk_page_range - walk page table with caller specific callbacks
405  * @mm:		mm_struct representing the target process of page table walk
406  * @start:	start address of the virtual address range
407  * @end:	end address of the virtual address range
408  * @ops:	operation to call during the walk
409  * @private:	private data for callbacks' usage
410  *
411  * Recursively walk the page table tree of the process represented by @mm
412  * within the virtual address range [@start, @end). During walking, we can do
413  * some caller-specific works for each entry, by setting up pmd_entry(),
414  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
415  * callbacks, the associated entries/pages are just ignored.
416  * The return values of these callbacks are commonly defined like below:
417  *
418  *  - 0  : succeeded to handle the current entry, and if you don't reach the
419  *         end address yet, continue to walk.
420  *  - >0 : succeeded to handle the current entry, and return to the caller
421  *         with caller specific value.
422  *  - <0 : failed to handle the current entry, and return to the caller
423  *         with error code.
424  *
425  * Before starting to walk page table, some callers want to check whether
426  * they really want to walk over the current vma, typically by checking
427  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
428  * purpose.
429  *
430  * If operations need to be staged before and committed after a vma is walked,
431  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
432  * since it is intended to handle commit-type operations, can't return any
433  * errors.
434  *
435  * struct mm_walk keeps current values of some common data like vma and pmd,
436  * which are useful for the access from callbacks. If you want to pass some
437  * caller-specific data to callbacks, @private should be helpful.
438  *
439  * Locking:
440  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
441  *   because these function traverse vma list and/or access to vma's data.
442  */
443 int walk_page_range(struct mm_struct *mm, unsigned long start,
444 		unsigned long end, const struct mm_walk_ops *ops,
445 		void *private)
446 {
447 	int err = 0;
448 	unsigned long next;
449 	struct vm_area_struct *vma;
450 	struct mm_walk walk = {
451 		.ops		= ops,
452 		.mm		= mm,
453 		.private	= private,
454 	};
455 
456 	if (start >= end)
457 		return -EINVAL;
458 
459 	if (!walk.mm)
460 		return -EINVAL;
461 
462 	mmap_assert_locked(walk.mm);
463 
464 	vma = find_vma(walk.mm, start);
465 	do {
466 		if (!vma) { /* after the last vma */
467 			walk.vma = NULL;
468 			next = end;
469 			if (ops->pte_hole)
470 				err = ops->pte_hole(start, next, -1, &walk);
471 		} else if (start < vma->vm_start) { /* outside vma */
472 			walk.vma = NULL;
473 			next = min(end, vma->vm_start);
474 			if (ops->pte_hole)
475 				err = ops->pte_hole(start, next, -1, &walk);
476 		} else { /* inside vma */
477 			walk.vma = vma;
478 			next = min(end, vma->vm_end);
479 			vma = find_vma(mm, vma->vm_end);
480 
481 			err = walk_page_test(start, next, &walk);
482 			if (err > 0) {
483 				/*
484 				 * positive return values are purely for
485 				 * controlling the pagewalk, so should never
486 				 * be passed to the callers.
487 				 */
488 				err = 0;
489 				continue;
490 			}
491 			if (err < 0)
492 				break;
493 			err = __walk_page_range(start, next, &walk);
494 		}
495 		if (err)
496 			break;
497 	} while (start = next, start < end);
498 	return err;
499 }
500 
501 /**
502  * walk_page_range_novma - walk a range of pagetables not backed by a vma
503  * @mm:		mm_struct representing the target process of page table walk
504  * @start:	start address of the virtual address range
505  * @end:	end address of the virtual address range
506  * @ops:	operation to call during the walk
507  * @pgd:	pgd to walk if different from mm->pgd
508  * @private:	private data for callbacks' usage
509  *
510  * Similar to walk_page_range() but can walk any page tables even if they are
511  * not backed by VMAs. Because 'unusual' entries may be walked this function
512  * will also not lock the PTEs for the pte_entry() callback. This is useful for
513  * walking the kernel pages tables or page tables for firmware.
514  */
515 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
516 			  unsigned long end, const struct mm_walk_ops *ops,
517 			  pgd_t *pgd,
518 			  void *private)
519 {
520 	struct mm_walk walk = {
521 		.ops		= ops,
522 		.mm		= mm,
523 		.pgd		= pgd,
524 		.private	= private,
525 		.no_vma		= true
526 	};
527 
528 	if (start >= end || !walk.mm)
529 		return -EINVAL;
530 
531 	mmap_assert_write_locked(walk.mm);
532 
533 	return walk_pgd_range(start, end, &walk);
534 }
535 
536 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
537 			unsigned long end, const struct mm_walk_ops *ops,
538 			void *private)
539 {
540 	struct mm_walk walk = {
541 		.ops		= ops,
542 		.mm		= vma->vm_mm,
543 		.vma		= vma,
544 		.private	= private,
545 	};
546 
547 	if (start >= end || !walk.mm)
548 		return -EINVAL;
549 	if (start < vma->vm_start || end > vma->vm_end)
550 		return -EINVAL;
551 
552 	mmap_assert_locked(walk.mm);
553 	return __walk_page_range(start, end, &walk);
554 }
555 
556 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
557 		void *private)
558 {
559 	struct mm_walk walk = {
560 		.ops		= ops,
561 		.mm		= vma->vm_mm,
562 		.vma		= vma,
563 		.private	= private,
564 	};
565 
566 	if (!walk.mm)
567 		return -EINVAL;
568 
569 	mmap_assert_locked(walk.mm);
570 	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
571 }
572 
573 /**
574  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
575  * @mapping: Pointer to the struct address_space
576  * @first_index: First page offset in the address_space
577  * @nr: Number of incremental page offsets to cover
578  * @ops:	operation to call during the walk
579  * @private:	private data for callbacks' usage
580  *
581  * This function walks all memory areas mapped into a struct address_space.
582  * The walk is limited to only the given page-size index range, but if
583  * the index boundaries cross a huge page-table entry, that entry will be
584  * included.
585  *
586  * Also see walk_page_range() for additional information.
587  *
588  * Locking:
589  *   This function can't require that the struct mm_struct::mmap_lock is held,
590  *   since @mapping may be mapped by multiple processes. Instead
591  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
592  *   callbacks, and it's up tho the caller to ensure that the
593  *   struct mm_struct::mmap_lock is not needed.
594  *
595  *   Also this means that a caller can't rely on the struct
596  *   vm_area_struct::vm_flags to be constant across a call,
597  *   except for immutable flags. Callers requiring this shouldn't use
598  *   this function.
599  *
600  * Return: 0 on success, negative error code on failure, positive number on
601  * caller defined premature termination.
602  */
603 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
604 		      pgoff_t nr, const struct mm_walk_ops *ops,
605 		      void *private)
606 {
607 	struct mm_walk walk = {
608 		.ops		= ops,
609 		.private	= private,
610 	};
611 	struct vm_area_struct *vma;
612 	pgoff_t vba, vea, cba, cea;
613 	unsigned long start_addr, end_addr;
614 	int err = 0;
615 
616 	lockdep_assert_held(&mapping->i_mmap_rwsem);
617 	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
618 				  first_index + nr - 1) {
619 		/* Clip to the vma */
620 		vba = vma->vm_pgoff;
621 		vea = vba + vma_pages(vma);
622 		cba = first_index;
623 		cba = max(cba, vba);
624 		cea = first_index + nr;
625 		cea = min(cea, vea);
626 
627 		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
628 		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
629 		if (start_addr >= end_addr)
630 			continue;
631 
632 		walk.vma = vma;
633 		walk.mm = vma->vm_mm;
634 
635 		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
636 		if (err > 0) {
637 			err = 0;
638 			break;
639 		} else if (err < 0)
640 			break;
641 
642 		err = __walk_page_range(start_addr, end_addr, &walk);
643 		if (err)
644 			break;
645 	}
646 
647 	return err;
648 }
649