xref: /openbmc/linux/mm/page_isolation.c (revision f7fafd08)
1 /*
2  * linux/mm/page_isolation.c
3  */
4 
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include "internal.h"
11 
12 int set_migratetype_isolate(struct page *page, bool skip_hwpoisoned_pages)
13 {
14 	struct zone *zone;
15 	unsigned long flags, pfn;
16 	struct memory_isolate_notify arg;
17 	int notifier_ret;
18 	int ret = -EBUSY;
19 
20 	zone = page_zone(page);
21 
22 	spin_lock_irqsave(&zone->lock, flags);
23 
24 	pfn = page_to_pfn(page);
25 	arg.start_pfn = pfn;
26 	arg.nr_pages = pageblock_nr_pages;
27 	arg.pages_found = 0;
28 
29 	/*
30 	 * It may be possible to isolate a pageblock even if the
31 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
32 	 * notifier chain is used by balloon drivers to return the
33 	 * number of pages in a range that are held by the balloon
34 	 * driver to shrink memory. If all the pages are accounted for
35 	 * by balloons, are free, or on the LRU, isolation can continue.
36 	 * Later, for example, when memory hotplug notifier runs, these
37 	 * pages reported as "can be isolated" should be isolated(freed)
38 	 * by the balloon driver through the memory notifier chain.
39 	 */
40 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
41 	notifier_ret = notifier_to_errno(notifier_ret);
42 	if (notifier_ret)
43 		goto out;
44 	/*
45 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
46 	 * We just check MOVABLE pages.
47 	 */
48 	if (!has_unmovable_pages(zone, page, arg.pages_found,
49 				 skip_hwpoisoned_pages))
50 		ret = 0;
51 
52 	/*
53 	 * immobile means "not-on-lru" paes. If immobile is larger than
54 	 * removable-by-driver pages reported by notifier, we'll fail.
55 	 */
56 
57 out:
58 	if (!ret) {
59 		unsigned long nr_pages;
60 		int migratetype = get_pageblock_migratetype(page);
61 
62 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
63 		zone->nr_isolate_pageblock++;
64 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
65 
66 		__mod_zone_freepage_state(zone, -nr_pages, migratetype);
67 	}
68 
69 	spin_unlock_irqrestore(&zone->lock, flags);
70 	if (!ret)
71 		drain_all_pages(zone);
72 	return ret;
73 }
74 
75 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
76 {
77 	struct zone *zone;
78 	unsigned long flags, nr_pages;
79 	struct page *isolated_page = NULL;
80 	unsigned int order;
81 	unsigned long page_idx, buddy_idx;
82 	struct page *buddy;
83 
84 	zone = page_zone(page);
85 	spin_lock_irqsave(&zone->lock, flags);
86 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
87 		goto out;
88 
89 	/*
90 	 * Because freepage with more than pageblock_order on isolated
91 	 * pageblock is restricted to merge due to freepage counting problem,
92 	 * it is possible that there is free buddy page.
93 	 * move_freepages_block() doesn't care of merge so we need other
94 	 * approach in order to merge them. Isolation and free will make
95 	 * these pages to be merged.
96 	 */
97 	if (PageBuddy(page)) {
98 		order = page_order(page);
99 		if (order >= pageblock_order) {
100 			page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
101 			buddy_idx = __find_buddy_index(page_idx, order);
102 			buddy = page + (buddy_idx - page_idx);
103 
104 			if (pfn_valid_within(page_to_pfn(buddy)) &&
105 			    !is_migrate_isolate_page(buddy)) {
106 				__isolate_free_page(page, order);
107 				kernel_map_pages(page, (1 << order), 1);
108 				set_page_refcounted(page);
109 				isolated_page = page;
110 			}
111 		}
112 	}
113 
114 	/*
115 	 * If we isolate freepage with more than pageblock_order, there
116 	 * should be no freepage in the range, so we could avoid costly
117 	 * pageblock scanning for freepage moving.
118 	 */
119 	if (!isolated_page) {
120 		nr_pages = move_freepages_block(zone, page, migratetype);
121 		__mod_zone_freepage_state(zone, nr_pages, migratetype);
122 	}
123 	set_pageblock_migratetype(page, migratetype);
124 	zone->nr_isolate_pageblock--;
125 out:
126 	spin_unlock_irqrestore(&zone->lock, flags);
127 	if (isolated_page)
128 		__free_pages(isolated_page, order);
129 }
130 
131 static inline struct page *
132 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
133 {
134 	int i;
135 	for (i = 0; i < nr_pages; i++)
136 		if (pfn_valid_within(pfn + i))
137 			break;
138 	if (unlikely(i == nr_pages))
139 		return NULL;
140 	return pfn_to_page(pfn + i);
141 }
142 
143 /*
144  * start_isolate_page_range() -- make page-allocation-type of range of pages
145  * to be MIGRATE_ISOLATE.
146  * @start_pfn: The lower PFN of the range to be isolated.
147  * @end_pfn: The upper PFN of the range to be isolated.
148  * @migratetype: migrate type to set in error recovery.
149  *
150  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
151  * the range will never be allocated. Any free pages and pages freed in the
152  * future will not be allocated again.
153  *
154  * start_pfn/end_pfn must be aligned to pageblock_order.
155  * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
156  */
157 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
158 			     unsigned migratetype, bool skip_hwpoisoned_pages)
159 {
160 	unsigned long pfn;
161 	unsigned long undo_pfn;
162 	struct page *page;
163 
164 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
165 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
166 
167 	for (pfn = start_pfn;
168 	     pfn < end_pfn;
169 	     pfn += pageblock_nr_pages) {
170 		page = __first_valid_page(pfn, pageblock_nr_pages);
171 		if (page &&
172 		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
173 			undo_pfn = pfn;
174 			goto undo;
175 		}
176 	}
177 	return 0;
178 undo:
179 	for (pfn = start_pfn;
180 	     pfn < undo_pfn;
181 	     pfn += pageblock_nr_pages)
182 		unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
183 
184 	return -EBUSY;
185 }
186 
187 /*
188  * Make isolated pages available again.
189  */
190 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
191 			    unsigned migratetype)
192 {
193 	unsigned long pfn;
194 	struct page *page;
195 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
196 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
197 	for (pfn = start_pfn;
198 	     pfn < end_pfn;
199 	     pfn += pageblock_nr_pages) {
200 		page = __first_valid_page(pfn, pageblock_nr_pages);
201 		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
202 			continue;
203 		unset_migratetype_isolate(page, migratetype);
204 	}
205 	return 0;
206 }
207 /*
208  * Test all pages in the range is free(means isolated) or not.
209  * all pages in [start_pfn...end_pfn) must be in the same zone.
210  * zone->lock must be held before call this.
211  *
212  * Returns 1 if all pages in the range are isolated.
213  */
214 static int
215 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
216 				  bool skip_hwpoisoned_pages)
217 {
218 	struct page *page;
219 
220 	while (pfn < end_pfn) {
221 		if (!pfn_valid_within(pfn)) {
222 			pfn++;
223 			continue;
224 		}
225 		page = pfn_to_page(pfn);
226 		if (PageBuddy(page)) {
227 			/*
228 			 * If race between isolatation and allocation happens,
229 			 * some free pages could be in MIGRATE_MOVABLE list
230 			 * although pageblock's migratation type of the page
231 			 * is MIGRATE_ISOLATE. Catch it and move the page into
232 			 * MIGRATE_ISOLATE list.
233 			 */
234 			if (get_freepage_migratetype(page) != MIGRATE_ISOLATE) {
235 				struct page *end_page;
236 
237 				end_page = page + (1 << page_order(page)) - 1;
238 				move_freepages(page_zone(page), page, end_page,
239 						MIGRATE_ISOLATE);
240 			}
241 			pfn += 1 << page_order(page);
242 		}
243 		else if (page_count(page) == 0 &&
244 			get_freepage_migratetype(page) == MIGRATE_ISOLATE)
245 			pfn += 1;
246 		else if (skip_hwpoisoned_pages && PageHWPoison(page)) {
247 			/*
248 			 * The HWPoisoned page may be not in buddy
249 			 * system, and page_count() is not 0.
250 			 */
251 			pfn++;
252 			continue;
253 		}
254 		else
255 			break;
256 	}
257 	if (pfn < end_pfn)
258 		return 0;
259 	return 1;
260 }
261 
262 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
263 			bool skip_hwpoisoned_pages)
264 {
265 	unsigned long pfn, flags;
266 	struct page *page;
267 	struct zone *zone;
268 	int ret;
269 
270 	/*
271 	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
272 	 * are not aligned to pageblock_nr_pages.
273 	 * Then we just check migratetype first.
274 	 */
275 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
276 		page = __first_valid_page(pfn, pageblock_nr_pages);
277 		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
278 			break;
279 	}
280 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
281 	if ((pfn < end_pfn) || !page)
282 		return -EBUSY;
283 	/* Check all pages are free or marked as ISOLATED */
284 	zone = page_zone(page);
285 	spin_lock_irqsave(&zone->lock, flags);
286 	ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
287 						skip_hwpoisoned_pages);
288 	spin_unlock_irqrestore(&zone->lock, flags);
289 	return ret ? 0 : -EBUSY;
290 }
291 
292 struct page *alloc_migrate_target(struct page *page, unsigned long private,
293 				  int **resultp)
294 {
295 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
296 
297 	/*
298 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
299 	 * accordance with memory policy of the user process if possible. For
300 	 * now as a simple work-around, we use the next node for destination.
301 	 */
302 	if (PageHuge(page)) {
303 		nodemask_t src = nodemask_of_node(page_to_nid(page));
304 		nodemask_t dst;
305 		nodes_complement(dst, src);
306 		return alloc_huge_page_node(page_hstate(compound_head(page)),
307 					    next_node(page_to_nid(page), dst));
308 	}
309 
310 	if (PageHighMem(page))
311 		gfp_mask |= __GFP_HIGHMEM;
312 
313 	return alloc_page(gfp_mask);
314 }
315