1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_isolation.c 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/page-isolation.h> 8 #include <linux/pageblock-flags.h> 9 #include <linux/memory.h> 10 #include <linux/hugetlb.h> 11 #include <linux/page_owner.h> 12 #include <linux/migrate.h> 13 #include "internal.h" 14 15 #define CREATE_TRACE_POINTS 16 #include <trace/events/page_isolation.h> 17 18 /* 19 * This function checks whether the range [start_pfn, end_pfn) includes 20 * unmovable pages or not. The range must fall into a single pageblock and 21 * consequently belong to a single zone. 22 * 23 * PageLRU check without isolation or lru_lock could race so that 24 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 25 * check without lock_page also may miss some movable non-lru pages at 26 * race condition. So you can't expect this function should be exact. 27 * 28 * Returns a page without holding a reference. If the caller wants to 29 * dereference that page (e.g., dumping), it has to make sure that it 30 * cannot get removed (e.g., via memory unplug) concurrently. 31 * 32 */ 33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn, 34 int migratetype, int flags) 35 { 36 struct page *page = pfn_to_page(start_pfn); 37 struct zone *zone = page_zone(page); 38 unsigned long pfn; 39 40 VM_BUG_ON(ALIGN_DOWN(start_pfn, pageblock_nr_pages) != 41 ALIGN_DOWN(end_pfn - 1, pageblock_nr_pages)); 42 43 if (is_migrate_cma_page(page)) { 44 /* 45 * CMA allocations (alloc_contig_range) really need to mark 46 * isolate CMA pageblocks even when they are not movable in fact 47 * so consider them movable here. 48 */ 49 if (is_migrate_cma(migratetype)) 50 return NULL; 51 52 return page; 53 } 54 55 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 56 page = pfn_to_page(pfn); 57 58 /* 59 * Both, bootmem allocations and memory holes are marked 60 * PG_reserved and are unmovable. We can even have unmovable 61 * allocations inside ZONE_MOVABLE, for example when 62 * specifying "movablecore". 63 */ 64 if (PageReserved(page)) 65 return page; 66 67 /* 68 * If the zone is movable and we have ruled out all reserved 69 * pages then it should be reasonably safe to assume the rest 70 * is movable. 71 */ 72 if (zone_idx(zone) == ZONE_MOVABLE) 73 continue; 74 75 /* 76 * Hugepages are not in LRU lists, but they're movable. 77 * THPs are on the LRU, but need to be counted as #small pages. 78 * We need not scan over tail pages because we don't 79 * handle each tail page individually in migration. 80 */ 81 if (PageHuge(page) || PageTransCompound(page)) { 82 struct page *head = compound_head(page); 83 unsigned int skip_pages; 84 85 if (PageHuge(page)) { 86 if (!hugepage_migration_supported(page_hstate(head))) 87 return page; 88 } else if (!PageLRU(head) && !__PageMovable(head)) { 89 return page; 90 } 91 92 skip_pages = compound_nr(head) - (page - head); 93 pfn += skip_pages - 1; 94 continue; 95 } 96 97 /* 98 * We can't use page_count without pin a page 99 * because another CPU can free compound page. 100 * This check already skips compound tails of THP 101 * because their page->_refcount is zero at all time. 102 */ 103 if (!page_ref_count(page)) { 104 if (PageBuddy(page)) 105 pfn += (1 << buddy_order(page)) - 1; 106 continue; 107 } 108 109 /* 110 * The HWPoisoned page may be not in buddy system, and 111 * page_count() is not 0. 112 */ 113 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 114 continue; 115 116 /* 117 * We treat all PageOffline() pages as movable when offlining 118 * to give drivers a chance to decrement their reference count 119 * in MEM_GOING_OFFLINE in order to indicate that these pages 120 * can be offlined as there are no direct references anymore. 121 * For actually unmovable PageOffline() where the driver does 122 * not support this, we will fail later when trying to actually 123 * move these pages that still have a reference count > 0. 124 * (false negatives in this function only) 125 */ 126 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 127 continue; 128 129 if (__PageMovable(page) || PageLRU(page)) 130 continue; 131 132 /* 133 * If there are RECLAIMABLE pages, we need to check 134 * it. But now, memory offline itself doesn't call 135 * shrink_node_slabs() and it still to be fixed. 136 */ 137 return page; 138 } 139 return NULL; 140 } 141 142 /* 143 * This function set pageblock migratetype to isolate if no unmovable page is 144 * present in [start_pfn, end_pfn). The pageblock must intersect with 145 * [start_pfn, end_pfn). 146 */ 147 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags, 148 unsigned long start_pfn, unsigned long end_pfn) 149 { 150 struct zone *zone = page_zone(page); 151 struct page *unmovable; 152 unsigned long flags; 153 unsigned long check_unmovable_start, check_unmovable_end; 154 155 spin_lock_irqsave(&zone->lock, flags); 156 157 /* 158 * We assume the caller intended to SET migrate type to isolate. 159 * If it is already set, then someone else must have raced and 160 * set it before us. 161 */ 162 if (is_migrate_isolate_page(page)) { 163 spin_unlock_irqrestore(&zone->lock, flags); 164 return -EBUSY; 165 } 166 167 /* 168 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 169 * We just check MOVABLE pages. 170 * 171 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock 172 * to avoid redundant checks. 173 */ 174 check_unmovable_start = max(page_to_pfn(page), start_pfn); 175 check_unmovable_end = min(ALIGN(page_to_pfn(page) + 1, pageblock_nr_pages), 176 end_pfn); 177 178 unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end, 179 migratetype, isol_flags); 180 if (!unmovable) { 181 unsigned long nr_pages; 182 int mt = get_pageblock_migratetype(page); 183 184 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 185 zone->nr_isolate_pageblock++; 186 nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE, 187 NULL); 188 189 __mod_zone_freepage_state(zone, -nr_pages, mt); 190 spin_unlock_irqrestore(&zone->lock, flags); 191 return 0; 192 } 193 194 spin_unlock_irqrestore(&zone->lock, flags); 195 if (isol_flags & REPORT_FAILURE) { 196 /* 197 * printk() with zone->lock held will likely trigger a 198 * lockdep splat, so defer it here. 199 */ 200 dump_page(unmovable, "unmovable page"); 201 } 202 203 return -EBUSY; 204 } 205 206 static void unset_migratetype_isolate(struct page *page, int migratetype) 207 { 208 struct zone *zone; 209 unsigned long flags, nr_pages; 210 bool isolated_page = false; 211 unsigned int order; 212 struct page *buddy; 213 214 zone = page_zone(page); 215 spin_lock_irqsave(&zone->lock, flags); 216 if (!is_migrate_isolate_page(page)) 217 goto out; 218 219 /* 220 * Because freepage with more than pageblock_order on isolated 221 * pageblock is restricted to merge due to freepage counting problem, 222 * it is possible that there is free buddy page. 223 * move_freepages_block() doesn't care of merge so we need other 224 * approach in order to merge them. Isolation and free will make 225 * these pages to be merged. 226 */ 227 if (PageBuddy(page)) { 228 order = buddy_order(page); 229 if (order >= pageblock_order && order < MAX_ORDER - 1) { 230 buddy = find_buddy_page_pfn(page, page_to_pfn(page), 231 order, NULL); 232 if (buddy && !is_migrate_isolate_page(buddy)) { 233 isolated_page = !!__isolate_free_page(page, order); 234 /* 235 * Isolating a free page in an isolated pageblock 236 * is expected to always work as watermarks don't 237 * apply here. 238 */ 239 VM_WARN_ON(!isolated_page); 240 } 241 } 242 } 243 244 /* 245 * If we isolate freepage with more than pageblock_order, there 246 * should be no freepage in the range, so we could avoid costly 247 * pageblock scanning for freepage moving. 248 * 249 * We didn't actually touch any of the isolated pages, so place them 250 * to the tail of the freelist. This is an optimization for memory 251 * onlining - just onlined memory won't immediately be considered for 252 * allocation. 253 */ 254 if (!isolated_page) { 255 nr_pages = move_freepages_block(zone, page, migratetype, NULL); 256 __mod_zone_freepage_state(zone, nr_pages, migratetype); 257 } 258 set_pageblock_migratetype(page, migratetype); 259 if (isolated_page) 260 __putback_isolated_page(page, order, migratetype); 261 zone->nr_isolate_pageblock--; 262 out: 263 spin_unlock_irqrestore(&zone->lock, flags); 264 } 265 266 static inline struct page * 267 __first_valid_page(unsigned long pfn, unsigned long nr_pages) 268 { 269 int i; 270 271 for (i = 0; i < nr_pages; i++) { 272 struct page *page; 273 274 page = pfn_to_online_page(pfn + i); 275 if (!page) 276 continue; 277 return page; 278 } 279 return NULL; 280 } 281 282 /** 283 * isolate_single_pageblock() -- tries to isolate a pageblock that might be 284 * within a free or in-use page. 285 * @boundary_pfn: pageblock-aligned pfn that a page might cross 286 * @flags: isolation flags 287 * @gfp_flags: GFP flags used for migrating pages 288 * @isolate_before: isolate the pageblock before the boundary_pfn 289 * 290 * Free and in-use pages can be as big as MAX_ORDER-1 and contain more than one 291 * pageblock. When not all pageblocks within a page are isolated at the same 292 * time, free page accounting can go wrong. For example, in the case of 293 * MAX_ORDER-1 = pageblock_order + 1, a MAX_ORDER-1 page has two pagelbocks. 294 * [ MAX_ORDER-1 ] 295 * [ pageblock0 | pageblock1 ] 296 * When either pageblock is isolated, if it is a free page, the page is not 297 * split into separate migratetype lists, which is supposed to; if it is an 298 * in-use page and freed later, __free_one_page() does not split the free page 299 * either. The function handles this by splitting the free page or migrating 300 * the in-use page then splitting the free page. 301 */ 302 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags, 303 gfp_t gfp_flags, bool isolate_before, bool skip_isolation) 304 { 305 unsigned char saved_mt; 306 unsigned long start_pfn; 307 unsigned long isolate_pageblock; 308 unsigned long pfn; 309 struct zone *zone; 310 int ret; 311 312 VM_BUG_ON(!IS_ALIGNED(boundary_pfn, pageblock_nr_pages)); 313 314 if (isolate_before) 315 isolate_pageblock = boundary_pfn - pageblock_nr_pages; 316 else 317 isolate_pageblock = boundary_pfn; 318 319 /* 320 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid 321 * only isolating a subset of pageblocks from a bigger than pageblock 322 * free or in-use page. Also make sure all to-be-isolated pageblocks 323 * are within the same zone. 324 */ 325 zone = page_zone(pfn_to_page(isolate_pageblock)); 326 start_pfn = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES), 327 zone->zone_start_pfn); 328 329 saved_mt = get_pageblock_migratetype(pfn_to_page(isolate_pageblock)); 330 331 if (skip_isolation) 332 VM_BUG_ON(!is_migrate_isolate(saved_mt)); 333 else { 334 ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), saved_mt, flags, 335 isolate_pageblock, isolate_pageblock + pageblock_nr_pages); 336 337 if (ret) 338 return ret; 339 } 340 341 /* 342 * Bail out early when the to-be-isolated pageblock does not form 343 * a free or in-use page across boundary_pfn: 344 * 345 * 1. isolate before boundary_pfn: the page after is not online 346 * 2. isolate after boundary_pfn: the page before is not online 347 * 348 * This also ensures correctness. Without it, when isolate after 349 * boundary_pfn and [start_pfn, boundary_pfn) are not online, 350 * __first_valid_page() will return unexpected NULL in the for loop 351 * below. 352 */ 353 if (isolate_before) { 354 if (!pfn_to_online_page(boundary_pfn)) 355 return 0; 356 } else { 357 if (!pfn_to_online_page(boundary_pfn - 1)) 358 return 0; 359 } 360 361 for (pfn = start_pfn; pfn < boundary_pfn;) { 362 struct page *page = __first_valid_page(pfn, boundary_pfn - pfn); 363 364 VM_BUG_ON(!page); 365 pfn = page_to_pfn(page); 366 /* 367 * start_pfn is MAX_ORDER_NR_PAGES aligned, if there is any 368 * free pages in [start_pfn, boundary_pfn), its head page will 369 * always be in the range. 370 */ 371 if (PageBuddy(page)) { 372 int order = buddy_order(page); 373 374 if (pfn + (1UL << order) > boundary_pfn) { 375 /* free page changed before split, check it again */ 376 if (split_free_page(page, order, boundary_pfn - pfn)) 377 continue; 378 } 379 380 pfn += 1UL << order; 381 continue; 382 } 383 /* 384 * migrate compound pages then let the free page handling code 385 * above do the rest. If migration is not possible, just fail. 386 */ 387 if (PageCompound(page)) { 388 struct page *head = compound_head(page); 389 unsigned long head_pfn = page_to_pfn(head); 390 unsigned long nr_pages = compound_nr(head); 391 392 if (head_pfn + nr_pages <= boundary_pfn) { 393 pfn = head_pfn + nr_pages; 394 continue; 395 } 396 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 397 /* 398 * hugetlb, lru compound (THP), and movable compound pages 399 * can be migrated. Otherwise, fail the isolation. 400 */ 401 if (PageHuge(page) || PageLRU(page) || __PageMovable(page)) { 402 int order; 403 unsigned long outer_pfn; 404 int page_mt = get_pageblock_migratetype(page); 405 bool isolate_page = !is_migrate_isolate_page(page); 406 struct compact_control cc = { 407 .nr_migratepages = 0, 408 .order = -1, 409 .zone = page_zone(pfn_to_page(head_pfn)), 410 .mode = MIGRATE_SYNC, 411 .ignore_skip_hint = true, 412 .no_set_skip_hint = true, 413 .gfp_mask = gfp_flags, 414 .alloc_contig = true, 415 }; 416 INIT_LIST_HEAD(&cc.migratepages); 417 418 /* 419 * XXX: mark the page as MIGRATE_ISOLATE so that 420 * no one else can grab the freed page after migration. 421 * Ideally, the page should be freed as two separate 422 * pages to be added into separate migratetype free 423 * lists. 424 */ 425 if (isolate_page) { 426 ret = set_migratetype_isolate(page, page_mt, 427 flags, head_pfn, head_pfn + nr_pages); 428 if (ret) 429 goto failed; 430 } 431 432 ret = __alloc_contig_migrate_range(&cc, head_pfn, 433 head_pfn + nr_pages); 434 435 /* 436 * restore the page's migratetype so that it can 437 * be split into separate migratetype free lists 438 * later. 439 */ 440 if (isolate_page) 441 unset_migratetype_isolate(page, page_mt); 442 443 if (ret) 444 goto failed; 445 /* 446 * reset pfn to the head of the free page, so 447 * that the free page handling code above can split 448 * the free page to the right migratetype list. 449 * 450 * head_pfn is not used here as a hugetlb page order 451 * can be bigger than MAX_ORDER-1, but after it is 452 * freed, the free page order is not. Use pfn within 453 * the range to find the head of the free page. 454 */ 455 order = 0; 456 outer_pfn = pfn; 457 while (!PageBuddy(pfn_to_page(outer_pfn))) { 458 /* stop if we cannot find the free page */ 459 if (++order >= MAX_ORDER) 460 goto failed; 461 outer_pfn &= ~0UL << order; 462 } 463 pfn = outer_pfn; 464 continue; 465 } else 466 #endif 467 goto failed; 468 } 469 470 pfn++; 471 } 472 return 0; 473 failed: 474 /* restore the original migratetype */ 475 if (!skip_isolation) 476 unset_migratetype_isolate(pfn_to_page(isolate_pageblock), saved_mt); 477 return -EBUSY; 478 } 479 480 /** 481 * start_isolate_page_range() - make page-allocation-type of range of pages to 482 * be MIGRATE_ISOLATE. 483 * @start_pfn: The lower PFN of the range to be isolated. 484 * @end_pfn: The upper PFN of the range to be isolated. 485 * @migratetype: Migrate type to set in error recovery. 486 * @flags: The following flags are allowed (they can be combined in 487 * a bit mask) 488 * MEMORY_OFFLINE - isolate to offline (!allocate) memory 489 * e.g., skip over PageHWPoison() pages 490 * and PageOffline() pages. 491 * REPORT_FAILURE - report details about the failure to 492 * isolate the range 493 * @gfp_flags: GFP flags used for migrating pages that sit across the 494 * range boundaries. 495 * 496 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in 497 * the range will never be allocated. Any free pages and pages freed in the 498 * future will not be allocated again. If specified range includes migrate types 499 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all 500 * pages in the range finally, the caller have to free all pages in the range. 501 * test_page_isolated() can be used for test it. 502 * 503 * The function first tries to isolate the pageblocks at the beginning and end 504 * of the range, since there might be pages across the range boundaries. 505 * Afterwards, it isolates the rest of the range. 506 * 507 * There is no high level synchronization mechanism that prevents two threads 508 * from trying to isolate overlapping ranges. If this happens, one thread 509 * will notice pageblocks in the overlapping range already set to isolate. 510 * This happens in set_migratetype_isolate, and set_migratetype_isolate 511 * returns an error. We then clean up by restoring the migration type on 512 * pageblocks we may have modified and return -EBUSY to caller. This 513 * prevents two threads from simultaneously working on overlapping ranges. 514 * 515 * Please note that there is no strong synchronization with the page allocator 516 * either. Pages might be freed while their page blocks are marked ISOLATED. 517 * A call to drain_all_pages() after isolation can flush most of them. However 518 * in some cases pages might still end up on pcp lists and that would allow 519 * for their allocation even when they are in fact isolated already. Depending 520 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable() 521 * might be used to flush and disable pcplist before isolation and enable after 522 * unisolation. 523 * 524 * Return: 0 on success and -EBUSY if any part of range cannot be isolated. 525 */ 526 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, 527 int migratetype, int flags, gfp_t gfp_flags) 528 { 529 unsigned long pfn; 530 struct page *page; 531 /* isolation is done at page block granularity */ 532 unsigned long isolate_start = ALIGN_DOWN(start_pfn, pageblock_nr_pages); 533 unsigned long isolate_end = ALIGN(end_pfn, pageblock_nr_pages); 534 int ret; 535 bool skip_isolation = false; 536 537 /* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */ 538 ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false, skip_isolation); 539 if (ret) 540 return ret; 541 542 if (isolate_start == isolate_end - pageblock_nr_pages) 543 skip_isolation = true; 544 545 /* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */ 546 ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true, skip_isolation); 547 if (ret) { 548 unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype); 549 return ret; 550 } 551 552 /* skip isolated pageblocks at the beginning and end */ 553 for (pfn = isolate_start + pageblock_nr_pages; 554 pfn < isolate_end - pageblock_nr_pages; 555 pfn += pageblock_nr_pages) { 556 page = __first_valid_page(pfn, pageblock_nr_pages); 557 if (page && set_migratetype_isolate(page, migratetype, flags, 558 start_pfn, end_pfn)) { 559 undo_isolate_page_range(isolate_start, pfn, migratetype); 560 unset_migratetype_isolate( 561 pfn_to_page(isolate_end - pageblock_nr_pages), 562 migratetype); 563 return -EBUSY; 564 } 565 } 566 return 0; 567 } 568 569 /* 570 * Make isolated pages available again. 571 */ 572 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, 573 int migratetype) 574 { 575 unsigned long pfn; 576 struct page *page; 577 unsigned long isolate_start = ALIGN_DOWN(start_pfn, pageblock_nr_pages); 578 unsigned long isolate_end = ALIGN(end_pfn, pageblock_nr_pages); 579 580 581 for (pfn = isolate_start; 582 pfn < isolate_end; 583 pfn += pageblock_nr_pages) { 584 page = __first_valid_page(pfn, pageblock_nr_pages); 585 if (!page || !is_migrate_isolate_page(page)) 586 continue; 587 unset_migratetype_isolate(page, migratetype); 588 } 589 } 590 /* 591 * Test all pages in the range is free(means isolated) or not. 592 * all pages in [start_pfn...end_pfn) must be in the same zone. 593 * zone->lock must be held before call this. 594 * 595 * Returns the last tested pfn. 596 */ 597 static unsigned long 598 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, 599 int flags) 600 { 601 struct page *page; 602 603 while (pfn < end_pfn) { 604 page = pfn_to_page(pfn); 605 if (PageBuddy(page)) 606 /* 607 * If the page is on a free list, it has to be on 608 * the correct MIGRATE_ISOLATE freelist. There is no 609 * simple way to verify that as VM_BUG_ON(), though. 610 */ 611 pfn += 1 << buddy_order(page); 612 else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 613 /* A HWPoisoned page cannot be also PageBuddy */ 614 pfn++; 615 else if ((flags & MEMORY_OFFLINE) && PageOffline(page) && 616 !page_count(page)) 617 /* 618 * The responsible driver agreed to skip PageOffline() 619 * pages when offlining memory by dropping its 620 * reference in MEM_GOING_OFFLINE. 621 */ 622 pfn++; 623 else 624 break; 625 } 626 627 return pfn; 628 } 629 630 /* Caller should ensure that requested range is in a single zone */ 631 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, 632 int isol_flags) 633 { 634 unsigned long pfn, flags; 635 struct page *page; 636 struct zone *zone; 637 int ret; 638 639 /* 640 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages 641 * are not aligned to pageblock_nr_pages. 642 * Then we just check migratetype first. 643 */ 644 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 645 page = __first_valid_page(pfn, pageblock_nr_pages); 646 if (page && !is_migrate_isolate_page(page)) 647 break; 648 } 649 page = __first_valid_page(start_pfn, end_pfn - start_pfn); 650 if ((pfn < end_pfn) || !page) { 651 ret = -EBUSY; 652 goto out; 653 } 654 655 /* Check all pages are free or marked as ISOLATED */ 656 zone = page_zone(page); 657 spin_lock_irqsave(&zone->lock, flags); 658 pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags); 659 spin_unlock_irqrestore(&zone->lock, flags); 660 661 ret = pfn < end_pfn ? -EBUSY : 0; 662 663 out: 664 trace_test_pages_isolated(start_pfn, end_pfn, pfn); 665 666 return ret; 667 } 668