xref: /openbmc/linux/mm/page_isolation.c (revision a8fe58ce)
1 /*
2  * linux/mm/page_isolation.c
3  */
4 
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include "internal.h"
11 
12 #define CREATE_TRACE_POINTS
13 #include <trace/events/page_isolation.h>
14 
15 static int set_migratetype_isolate(struct page *page,
16 				bool skip_hwpoisoned_pages)
17 {
18 	struct zone *zone;
19 	unsigned long flags, pfn;
20 	struct memory_isolate_notify arg;
21 	int notifier_ret;
22 	int ret = -EBUSY;
23 
24 	zone = page_zone(page);
25 
26 	spin_lock_irqsave(&zone->lock, flags);
27 
28 	pfn = page_to_pfn(page);
29 	arg.start_pfn = pfn;
30 	arg.nr_pages = pageblock_nr_pages;
31 	arg.pages_found = 0;
32 
33 	/*
34 	 * It may be possible to isolate a pageblock even if the
35 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
36 	 * notifier chain is used by balloon drivers to return the
37 	 * number of pages in a range that are held by the balloon
38 	 * driver to shrink memory. If all the pages are accounted for
39 	 * by balloons, are free, or on the LRU, isolation can continue.
40 	 * Later, for example, when memory hotplug notifier runs, these
41 	 * pages reported as "can be isolated" should be isolated(freed)
42 	 * by the balloon driver through the memory notifier chain.
43 	 */
44 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
45 	notifier_ret = notifier_to_errno(notifier_ret);
46 	if (notifier_ret)
47 		goto out;
48 	/*
49 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
50 	 * We just check MOVABLE pages.
51 	 */
52 	if (!has_unmovable_pages(zone, page, arg.pages_found,
53 				 skip_hwpoisoned_pages))
54 		ret = 0;
55 
56 	/*
57 	 * immobile means "not-on-lru" paes. If immobile is larger than
58 	 * removable-by-driver pages reported by notifier, we'll fail.
59 	 */
60 
61 out:
62 	if (!ret) {
63 		unsigned long nr_pages;
64 		int migratetype = get_pageblock_migratetype(page);
65 
66 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
67 		zone->nr_isolate_pageblock++;
68 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
69 
70 		__mod_zone_freepage_state(zone, -nr_pages, migratetype);
71 	}
72 
73 	spin_unlock_irqrestore(&zone->lock, flags);
74 	if (!ret)
75 		drain_all_pages(zone);
76 	return ret;
77 }
78 
79 static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
80 {
81 	struct zone *zone;
82 	unsigned long flags, nr_pages;
83 	struct page *isolated_page = NULL;
84 	unsigned int order;
85 	unsigned long page_idx, buddy_idx;
86 	struct page *buddy;
87 
88 	zone = page_zone(page);
89 	spin_lock_irqsave(&zone->lock, flags);
90 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
91 		goto out;
92 
93 	/*
94 	 * Because freepage with more than pageblock_order on isolated
95 	 * pageblock is restricted to merge due to freepage counting problem,
96 	 * it is possible that there is free buddy page.
97 	 * move_freepages_block() doesn't care of merge so we need other
98 	 * approach in order to merge them. Isolation and free will make
99 	 * these pages to be merged.
100 	 */
101 	if (PageBuddy(page)) {
102 		order = page_order(page);
103 		if (order >= pageblock_order) {
104 			page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
105 			buddy_idx = __find_buddy_index(page_idx, order);
106 			buddy = page + (buddy_idx - page_idx);
107 
108 			if (pfn_valid_within(page_to_pfn(buddy)) &&
109 			    !is_migrate_isolate_page(buddy)) {
110 				__isolate_free_page(page, order);
111 				kernel_map_pages(page, (1 << order), 1);
112 				set_page_refcounted(page);
113 				isolated_page = page;
114 			}
115 		}
116 	}
117 
118 	/*
119 	 * If we isolate freepage with more than pageblock_order, there
120 	 * should be no freepage in the range, so we could avoid costly
121 	 * pageblock scanning for freepage moving.
122 	 */
123 	if (!isolated_page) {
124 		nr_pages = move_freepages_block(zone, page, migratetype);
125 		__mod_zone_freepage_state(zone, nr_pages, migratetype);
126 	}
127 	set_pageblock_migratetype(page, migratetype);
128 	zone->nr_isolate_pageblock--;
129 out:
130 	spin_unlock_irqrestore(&zone->lock, flags);
131 	if (isolated_page)
132 		__free_pages(isolated_page, order);
133 }
134 
135 static inline struct page *
136 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
137 {
138 	int i;
139 	for (i = 0; i < nr_pages; i++)
140 		if (pfn_valid_within(pfn + i))
141 			break;
142 	if (unlikely(i == nr_pages))
143 		return NULL;
144 	return pfn_to_page(pfn + i);
145 }
146 
147 /*
148  * start_isolate_page_range() -- make page-allocation-type of range of pages
149  * to be MIGRATE_ISOLATE.
150  * @start_pfn: The lower PFN of the range to be isolated.
151  * @end_pfn: The upper PFN of the range to be isolated.
152  * @migratetype: migrate type to set in error recovery.
153  *
154  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
155  * the range will never be allocated. Any free pages and pages freed in the
156  * future will not be allocated again.
157  *
158  * start_pfn/end_pfn must be aligned to pageblock_order.
159  * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
160  */
161 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
162 			     unsigned migratetype, bool skip_hwpoisoned_pages)
163 {
164 	unsigned long pfn;
165 	unsigned long undo_pfn;
166 	struct page *page;
167 
168 	BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
169 	BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
170 
171 	for (pfn = start_pfn;
172 	     pfn < end_pfn;
173 	     pfn += pageblock_nr_pages) {
174 		page = __first_valid_page(pfn, pageblock_nr_pages);
175 		if (page &&
176 		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
177 			undo_pfn = pfn;
178 			goto undo;
179 		}
180 	}
181 	return 0;
182 undo:
183 	for (pfn = start_pfn;
184 	     pfn < undo_pfn;
185 	     pfn += pageblock_nr_pages)
186 		unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
187 
188 	return -EBUSY;
189 }
190 
191 /*
192  * Make isolated pages available again.
193  */
194 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
195 			    unsigned migratetype)
196 {
197 	unsigned long pfn;
198 	struct page *page;
199 
200 	BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
201 	BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
202 
203 	for (pfn = start_pfn;
204 	     pfn < end_pfn;
205 	     pfn += pageblock_nr_pages) {
206 		page = __first_valid_page(pfn, pageblock_nr_pages);
207 		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
208 			continue;
209 		unset_migratetype_isolate(page, migratetype);
210 	}
211 	return 0;
212 }
213 /*
214  * Test all pages in the range is free(means isolated) or not.
215  * all pages in [start_pfn...end_pfn) must be in the same zone.
216  * zone->lock must be held before call this.
217  *
218  * Returns 1 if all pages in the range are isolated.
219  */
220 static unsigned long
221 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
222 				  bool skip_hwpoisoned_pages)
223 {
224 	struct page *page;
225 
226 	while (pfn < end_pfn) {
227 		if (!pfn_valid_within(pfn)) {
228 			pfn++;
229 			continue;
230 		}
231 		page = pfn_to_page(pfn);
232 		if (PageBuddy(page))
233 			/*
234 			 * If the page is on a free list, it has to be on
235 			 * the correct MIGRATE_ISOLATE freelist. There is no
236 			 * simple way to verify that as VM_BUG_ON(), though.
237 			 */
238 			pfn += 1 << page_order(page);
239 		else if (skip_hwpoisoned_pages && PageHWPoison(page))
240 			/* A HWPoisoned page cannot be also PageBuddy */
241 			pfn++;
242 		else
243 			break;
244 	}
245 
246 	return pfn;
247 }
248 
249 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
250 			bool skip_hwpoisoned_pages)
251 {
252 	unsigned long pfn, flags;
253 	struct page *page;
254 	struct zone *zone;
255 
256 	/*
257 	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
258 	 * are not aligned to pageblock_nr_pages.
259 	 * Then we just check migratetype first.
260 	 */
261 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
262 		page = __first_valid_page(pfn, pageblock_nr_pages);
263 		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
264 			break;
265 	}
266 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
267 	if ((pfn < end_pfn) || !page)
268 		return -EBUSY;
269 	/* Check all pages are free or marked as ISOLATED */
270 	zone = page_zone(page);
271 	spin_lock_irqsave(&zone->lock, flags);
272 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
273 						skip_hwpoisoned_pages);
274 	spin_unlock_irqrestore(&zone->lock, flags);
275 
276 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
277 
278 	return pfn < end_pfn ? -EBUSY : 0;
279 }
280 
281 struct page *alloc_migrate_target(struct page *page, unsigned long private,
282 				  int **resultp)
283 {
284 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
285 
286 	/*
287 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
288 	 * accordance with memory policy of the user process if possible. For
289 	 * now as a simple work-around, we use the next node for destination.
290 	 */
291 	if (PageHuge(page)) {
292 		nodemask_t src = nodemask_of_node(page_to_nid(page));
293 		nodemask_t dst;
294 		nodes_complement(dst, src);
295 		return alloc_huge_page_node(page_hstate(compound_head(page)),
296 					    next_node(page_to_nid(page), dst));
297 	}
298 
299 	if (PageHighMem(page))
300 		gfp_mask |= __GFP_HIGHMEM;
301 
302 	return alloc_page(gfp_mask);
303 }
304