xref: /openbmc/linux/mm/page_isolation.c (revision 82003e04)
1 /*
2  * linux/mm/page_isolation.c
3  */
4 
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include <linux/page_owner.h>
11 #include "internal.h"
12 
13 #define CREATE_TRACE_POINTS
14 #include <trace/events/page_isolation.h>
15 
16 static int set_migratetype_isolate(struct page *page,
17 				bool skip_hwpoisoned_pages)
18 {
19 	struct zone *zone;
20 	unsigned long flags, pfn;
21 	struct memory_isolate_notify arg;
22 	int notifier_ret;
23 	int ret = -EBUSY;
24 
25 	zone = page_zone(page);
26 
27 	spin_lock_irqsave(&zone->lock, flags);
28 
29 	pfn = page_to_pfn(page);
30 	arg.start_pfn = pfn;
31 	arg.nr_pages = pageblock_nr_pages;
32 	arg.pages_found = 0;
33 
34 	/*
35 	 * It may be possible to isolate a pageblock even if the
36 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
37 	 * notifier chain is used by balloon drivers to return the
38 	 * number of pages in a range that are held by the balloon
39 	 * driver to shrink memory. If all the pages are accounted for
40 	 * by balloons, are free, or on the LRU, isolation can continue.
41 	 * Later, for example, when memory hotplug notifier runs, these
42 	 * pages reported as "can be isolated" should be isolated(freed)
43 	 * by the balloon driver through the memory notifier chain.
44 	 */
45 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
46 	notifier_ret = notifier_to_errno(notifier_ret);
47 	if (notifier_ret)
48 		goto out;
49 	/*
50 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
51 	 * We just check MOVABLE pages.
52 	 */
53 	if (!has_unmovable_pages(zone, page, arg.pages_found,
54 				 skip_hwpoisoned_pages))
55 		ret = 0;
56 
57 	/*
58 	 * immobile means "not-on-lru" pages. If immobile is larger than
59 	 * removable-by-driver pages reported by notifier, we'll fail.
60 	 */
61 
62 out:
63 	if (!ret) {
64 		unsigned long nr_pages;
65 		int migratetype = get_pageblock_migratetype(page);
66 
67 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
68 		zone->nr_isolate_pageblock++;
69 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
70 
71 		__mod_zone_freepage_state(zone, -nr_pages, migratetype);
72 	}
73 
74 	spin_unlock_irqrestore(&zone->lock, flags);
75 	if (!ret)
76 		drain_all_pages(zone);
77 	return ret;
78 }
79 
80 static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
81 {
82 	struct zone *zone;
83 	unsigned long flags, nr_pages;
84 	bool isolated_page = false;
85 	unsigned int order;
86 	unsigned long page_idx, buddy_idx;
87 	struct page *buddy;
88 
89 	zone = page_zone(page);
90 	spin_lock_irqsave(&zone->lock, flags);
91 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
92 		goto out;
93 
94 	/*
95 	 * Because freepage with more than pageblock_order on isolated
96 	 * pageblock is restricted to merge due to freepage counting problem,
97 	 * it is possible that there is free buddy page.
98 	 * move_freepages_block() doesn't care of merge so we need other
99 	 * approach in order to merge them. Isolation and free will make
100 	 * these pages to be merged.
101 	 */
102 	if (PageBuddy(page)) {
103 		order = page_order(page);
104 		if (order >= pageblock_order) {
105 			page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
106 			buddy_idx = __find_buddy_index(page_idx, order);
107 			buddy = page + (buddy_idx - page_idx);
108 
109 			if (pfn_valid_within(page_to_pfn(buddy)) &&
110 			    !is_migrate_isolate_page(buddy)) {
111 				__isolate_free_page(page, order);
112 				isolated_page = true;
113 			}
114 		}
115 	}
116 
117 	/*
118 	 * If we isolate freepage with more than pageblock_order, there
119 	 * should be no freepage in the range, so we could avoid costly
120 	 * pageblock scanning for freepage moving.
121 	 */
122 	if (!isolated_page) {
123 		nr_pages = move_freepages_block(zone, page, migratetype);
124 		__mod_zone_freepage_state(zone, nr_pages, migratetype);
125 	}
126 	set_pageblock_migratetype(page, migratetype);
127 	zone->nr_isolate_pageblock--;
128 out:
129 	spin_unlock_irqrestore(&zone->lock, flags);
130 	if (isolated_page) {
131 		post_alloc_hook(page, order, __GFP_MOVABLE);
132 		__free_pages(page, order);
133 	}
134 }
135 
136 static inline struct page *
137 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
138 {
139 	int i;
140 	for (i = 0; i < nr_pages; i++)
141 		if (pfn_valid_within(pfn + i))
142 			break;
143 	if (unlikely(i == nr_pages))
144 		return NULL;
145 	return pfn_to_page(pfn + i);
146 }
147 
148 /*
149  * start_isolate_page_range() -- make page-allocation-type of range of pages
150  * to be MIGRATE_ISOLATE.
151  * @start_pfn: The lower PFN of the range to be isolated.
152  * @end_pfn: The upper PFN of the range to be isolated.
153  * @migratetype: migrate type to set in error recovery.
154  *
155  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
156  * the range will never be allocated. Any free pages and pages freed in the
157  * future will not be allocated again.
158  *
159  * start_pfn/end_pfn must be aligned to pageblock_order.
160  * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
161  */
162 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
163 			     unsigned migratetype, bool skip_hwpoisoned_pages)
164 {
165 	unsigned long pfn;
166 	unsigned long undo_pfn;
167 	struct page *page;
168 
169 	BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
170 	BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
171 
172 	for (pfn = start_pfn;
173 	     pfn < end_pfn;
174 	     pfn += pageblock_nr_pages) {
175 		page = __first_valid_page(pfn, pageblock_nr_pages);
176 		if (page &&
177 		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
178 			undo_pfn = pfn;
179 			goto undo;
180 		}
181 	}
182 	return 0;
183 undo:
184 	for (pfn = start_pfn;
185 	     pfn < undo_pfn;
186 	     pfn += pageblock_nr_pages)
187 		unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
188 
189 	return -EBUSY;
190 }
191 
192 /*
193  * Make isolated pages available again.
194  */
195 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
196 			    unsigned migratetype)
197 {
198 	unsigned long pfn;
199 	struct page *page;
200 
201 	BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
202 	BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
203 
204 	for (pfn = start_pfn;
205 	     pfn < end_pfn;
206 	     pfn += pageblock_nr_pages) {
207 		page = __first_valid_page(pfn, pageblock_nr_pages);
208 		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
209 			continue;
210 		unset_migratetype_isolate(page, migratetype);
211 	}
212 	return 0;
213 }
214 /*
215  * Test all pages in the range is free(means isolated) or not.
216  * all pages in [start_pfn...end_pfn) must be in the same zone.
217  * zone->lock must be held before call this.
218  *
219  * Returns the last tested pfn.
220  */
221 static unsigned long
222 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
223 				  bool skip_hwpoisoned_pages)
224 {
225 	struct page *page;
226 
227 	while (pfn < end_pfn) {
228 		if (!pfn_valid_within(pfn)) {
229 			pfn++;
230 			continue;
231 		}
232 		page = pfn_to_page(pfn);
233 		if (PageBuddy(page))
234 			/*
235 			 * If the page is on a free list, it has to be on
236 			 * the correct MIGRATE_ISOLATE freelist. There is no
237 			 * simple way to verify that as VM_BUG_ON(), though.
238 			 */
239 			pfn += 1 << page_order(page);
240 		else if (skip_hwpoisoned_pages && PageHWPoison(page))
241 			/* A HWPoisoned page cannot be also PageBuddy */
242 			pfn++;
243 		else
244 			break;
245 	}
246 
247 	return pfn;
248 }
249 
250 /* Caller should ensure that requested range is in a single zone */
251 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
252 			bool skip_hwpoisoned_pages)
253 {
254 	unsigned long pfn, flags;
255 	struct page *page;
256 	struct zone *zone;
257 
258 	/*
259 	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
260 	 * are not aligned to pageblock_nr_pages.
261 	 * Then we just check migratetype first.
262 	 */
263 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
264 		page = __first_valid_page(pfn, pageblock_nr_pages);
265 		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
266 			break;
267 	}
268 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
269 	if ((pfn < end_pfn) || !page)
270 		return -EBUSY;
271 	/* Check all pages are free or marked as ISOLATED */
272 	zone = page_zone(page);
273 	spin_lock_irqsave(&zone->lock, flags);
274 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
275 						skip_hwpoisoned_pages);
276 	spin_unlock_irqrestore(&zone->lock, flags);
277 
278 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
279 
280 	return pfn < end_pfn ? -EBUSY : 0;
281 }
282 
283 struct page *alloc_migrate_target(struct page *page, unsigned long private,
284 				  int **resultp)
285 {
286 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
287 
288 	/*
289 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
290 	 * accordance with memory policy of the user process if possible. For
291 	 * now as a simple work-around, we use the next node for destination.
292 	 */
293 	if (PageHuge(page))
294 		return alloc_huge_page_node(page_hstate(compound_head(page)),
295 					    next_node_in(page_to_nid(page),
296 							 node_online_map));
297 
298 	if (PageHighMem(page))
299 		gfp_mask |= __GFP_HIGHMEM;
300 
301 	return alloc_page(gfp_mask);
302 }
303