xref: /openbmc/linux/mm/page_io.c (revision eb3fcf00)
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26 
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 				struct page *page, bio_end_io_t end_io)
29 {
30 	struct bio *bio;
31 
32 	bio = bio_alloc(gfp_flags, 1);
33 	if (bio) {
34 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 		bio->bi_end_io = end_io;
37 
38 		bio_add_page(bio, page, PAGE_SIZE, 0);
39 		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40 	}
41 	return bio;
42 }
43 
44 void end_swap_bio_write(struct bio *bio)
45 {
46 	struct page *page = bio->bi_io_vec[0].bv_page;
47 
48 	if (bio->bi_error) {
49 		SetPageError(page);
50 		/*
51 		 * We failed to write the page out to swap-space.
52 		 * Re-dirty the page in order to avoid it being reclaimed.
53 		 * Also print a dire warning that things will go BAD (tm)
54 		 * very quickly.
55 		 *
56 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57 		 */
58 		set_page_dirty(page);
59 		printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
60 				imajor(bio->bi_bdev->bd_inode),
61 				iminor(bio->bi_bdev->bd_inode),
62 				(unsigned long long)bio->bi_iter.bi_sector);
63 		ClearPageReclaim(page);
64 	}
65 	end_page_writeback(page);
66 	bio_put(bio);
67 }
68 
69 static void end_swap_bio_read(struct bio *bio)
70 {
71 	struct page *page = bio->bi_io_vec[0].bv_page;
72 
73 	if (bio->bi_error) {
74 		SetPageError(page);
75 		ClearPageUptodate(page);
76 		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
77 				imajor(bio->bi_bdev->bd_inode),
78 				iminor(bio->bi_bdev->bd_inode),
79 				(unsigned long long)bio->bi_iter.bi_sector);
80 		goto out;
81 	}
82 
83 	SetPageUptodate(page);
84 
85 	/*
86 	 * There is no guarantee that the page is in swap cache - the software
87 	 * suspend code (at least) uses end_swap_bio_read() against a non-
88 	 * swapcache page.  So we must check PG_swapcache before proceeding with
89 	 * this optimization.
90 	 */
91 	if (likely(PageSwapCache(page))) {
92 		struct swap_info_struct *sis;
93 
94 		sis = page_swap_info(page);
95 		if (sis->flags & SWP_BLKDEV) {
96 			/*
97 			 * The swap subsystem performs lazy swap slot freeing,
98 			 * expecting that the page will be swapped out again.
99 			 * So we can avoid an unnecessary write if the page
100 			 * isn't redirtied.
101 			 * This is good for real swap storage because we can
102 			 * reduce unnecessary I/O and enhance wear-leveling
103 			 * if an SSD is used as the as swap device.
104 			 * But if in-memory swap device (eg zram) is used,
105 			 * this causes a duplicated copy between uncompressed
106 			 * data in VM-owned memory and compressed data in
107 			 * zram-owned memory.  So let's free zram-owned memory
108 			 * and make the VM-owned decompressed page *dirty*,
109 			 * so the page should be swapped out somewhere again if
110 			 * we again wish to reclaim it.
111 			 */
112 			struct gendisk *disk = sis->bdev->bd_disk;
113 			if (disk->fops->swap_slot_free_notify) {
114 				swp_entry_t entry;
115 				unsigned long offset;
116 
117 				entry.val = page_private(page);
118 				offset = swp_offset(entry);
119 
120 				SetPageDirty(page);
121 				disk->fops->swap_slot_free_notify(sis->bdev,
122 						offset);
123 			}
124 		}
125 	}
126 
127 out:
128 	unlock_page(page);
129 	bio_put(bio);
130 }
131 
132 int generic_swapfile_activate(struct swap_info_struct *sis,
133 				struct file *swap_file,
134 				sector_t *span)
135 {
136 	struct address_space *mapping = swap_file->f_mapping;
137 	struct inode *inode = mapping->host;
138 	unsigned blocks_per_page;
139 	unsigned long page_no;
140 	unsigned blkbits;
141 	sector_t probe_block;
142 	sector_t last_block;
143 	sector_t lowest_block = -1;
144 	sector_t highest_block = 0;
145 	int nr_extents = 0;
146 	int ret;
147 
148 	blkbits = inode->i_blkbits;
149 	blocks_per_page = PAGE_SIZE >> blkbits;
150 
151 	/*
152 	 * Map all the blocks into the extent list.  This code doesn't try
153 	 * to be very smart.
154 	 */
155 	probe_block = 0;
156 	page_no = 0;
157 	last_block = i_size_read(inode) >> blkbits;
158 	while ((probe_block + blocks_per_page) <= last_block &&
159 			page_no < sis->max) {
160 		unsigned block_in_page;
161 		sector_t first_block;
162 
163 		first_block = bmap(inode, probe_block);
164 		if (first_block == 0)
165 			goto bad_bmap;
166 
167 		/*
168 		 * It must be PAGE_SIZE aligned on-disk
169 		 */
170 		if (first_block & (blocks_per_page - 1)) {
171 			probe_block++;
172 			goto reprobe;
173 		}
174 
175 		for (block_in_page = 1; block_in_page < blocks_per_page;
176 					block_in_page++) {
177 			sector_t block;
178 
179 			block = bmap(inode, probe_block + block_in_page);
180 			if (block == 0)
181 				goto bad_bmap;
182 			if (block != first_block + block_in_page) {
183 				/* Discontiguity */
184 				probe_block++;
185 				goto reprobe;
186 			}
187 		}
188 
189 		first_block >>= (PAGE_SHIFT - blkbits);
190 		if (page_no) {	/* exclude the header page */
191 			if (first_block < lowest_block)
192 				lowest_block = first_block;
193 			if (first_block > highest_block)
194 				highest_block = first_block;
195 		}
196 
197 		/*
198 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
199 		 */
200 		ret = add_swap_extent(sis, page_no, 1, first_block);
201 		if (ret < 0)
202 			goto out;
203 		nr_extents += ret;
204 		page_no++;
205 		probe_block += blocks_per_page;
206 reprobe:
207 		continue;
208 	}
209 	ret = nr_extents;
210 	*span = 1 + highest_block - lowest_block;
211 	if (page_no == 0)
212 		page_no = 1;	/* force Empty message */
213 	sis->max = page_no;
214 	sis->pages = page_no - 1;
215 	sis->highest_bit = page_no - 1;
216 out:
217 	return ret;
218 bad_bmap:
219 	printk(KERN_ERR "swapon: swapfile has holes\n");
220 	ret = -EINVAL;
221 	goto out;
222 }
223 
224 /*
225  * We may have stale swap cache pages in memory: notice
226  * them here and get rid of the unnecessary final write.
227  */
228 int swap_writepage(struct page *page, struct writeback_control *wbc)
229 {
230 	int ret = 0;
231 
232 	if (try_to_free_swap(page)) {
233 		unlock_page(page);
234 		goto out;
235 	}
236 	if (frontswap_store(page) == 0) {
237 		set_page_writeback(page);
238 		unlock_page(page);
239 		end_page_writeback(page);
240 		goto out;
241 	}
242 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
243 out:
244 	return ret;
245 }
246 
247 static sector_t swap_page_sector(struct page *page)
248 {
249 	return (sector_t)__page_file_index(page) << (PAGE_CACHE_SHIFT - 9);
250 }
251 
252 int __swap_writepage(struct page *page, struct writeback_control *wbc,
253 		bio_end_io_t end_write_func)
254 {
255 	struct bio *bio;
256 	int ret, rw = WRITE;
257 	struct swap_info_struct *sis = page_swap_info(page);
258 
259 	if (sis->flags & SWP_FILE) {
260 		struct kiocb kiocb;
261 		struct file *swap_file = sis->swap_file;
262 		struct address_space *mapping = swap_file->f_mapping;
263 		struct bio_vec bv = {
264 			.bv_page = page,
265 			.bv_len  = PAGE_SIZE,
266 			.bv_offset = 0
267 		};
268 		struct iov_iter from;
269 
270 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
271 		init_sync_kiocb(&kiocb, swap_file);
272 		kiocb.ki_pos = page_file_offset(page);
273 
274 		set_page_writeback(page);
275 		unlock_page(page);
276 		ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
277 		if (ret == PAGE_SIZE) {
278 			count_vm_event(PSWPOUT);
279 			ret = 0;
280 		} else {
281 			/*
282 			 * In the case of swap-over-nfs, this can be a
283 			 * temporary failure if the system has limited
284 			 * memory for allocating transmit buffers.
285 			 * Mark the page dirty and avoid
286 			 * rotate_reclaimable_page but rate-limit the
287 			 * messages but do not flag PageError like
288 			 * the normal direct-to-bio case as it could
289 			 * be temporary.
290 			 */
291 			set_page_dirty(page);
292 			ClearPageReclaim(page);
293 			pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
294 				page_file_offset(page));
295 		}
296 		end_page_writeback(page);
297 		return ret;
298 	}
299 
300 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
301 	if (!ret) {
302 		count_vm_event(PSWPOUT);
303 		return 0;
304 	}
305 
306 	ret = 0;
307 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
308 	if (bio == NULL) {
309 		set_page_dirty(page);
310 		unlock_page(page);
311 		ret = -ENOMEM;
312 		goto out;
313 	}
314 	if (wbc->sync_mode == WB_SYNC_ALL)
315 		rw |= REQ_SYNC;
316 	count_vm_event(PSWPOUT);
317 	set_page_writeback(page);
318 	unlock_page(page);
319 	submit_bio(rw, bio);
320 out:
321 	return ret;
322 }
323 
324 int swap_readpage(struct page *page)
325 {
326 	struct bio *bio;
327 	int ret = 0;
328 	struct swap_info_struct *sis = page_swap_info(page);
329 
330 	VM_BUG_ON_PAGE(!PageLocked(page), page);
331 	VM_BUG_ON_PAGE(PageUptodate(page), page);
332 	if (frontswap_load(page) == 0) {
333 		SetPageUptodate(page);
334 		unlock_page(page);
335 		goto out;
336 	}
337 
338 	if (sis->flags & SWP_FILE) {
339 		struct file *swap_file = sis->swap_file;
340 		struct address_space *mapping = swap_file->f_mapping;
341 
342 		ret = mapping->a_ops->readpage(swap_file, page);
343 		if (!ret)
344 			count_vm_event(PSWPIN);
345 		return ret;
346 	}
347 
348 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
349 	if (!ret) {
350 		count_vm_event(PSWPIN);
351 		return 0;
352 	}
353 
354 	ret = 0;
355 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
356 	if (bio == NULL) {
357 		unlock_page(page);
358 		ret = -ENOMEM;
359 		goto out;
360 	}
361 	count_vm_event(PSWPIN);
362 	submit_bio(READ, bio);
363 out:
364 	return ret;
365 }
366 
367 int swap_set_page_dirty(struct page *page)
368 {
369 	struct swap_info_struct *sis = page_swap_info(page);
370 
371 	if (sis->flags & SWP_FILE) {
372 		struct address_space *mapping = sis->swap_file->f_mapping;
373 		return mapping->a_ops->set_page_dirty(page);
374 	} else {
375 		return __set_page_dirty_no_writeback(page);
376 	}
377 }
378