xref: /openbmc/linux/mm/page_io.c (revision e9adcfec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/psi.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <linux/delayacct.h>
28 #include "swap.h"
29 
30 static void end_swap_bio_write(struct bio *bio)
31 {
32 	struct page *page = bio_first_page_all(bio);
33 
34 	if (bio->bi_status) {
35 		SetPageError(page);
36 		/*
37 		 * We failed to write the page out to swap-space.
38 		 * Re-dirty the page in order to avoid it being reclaimed.
39 		 * Also print a dire warning that things will go BAD (tm)
40 		 * very quickly.
41 		 *
42 		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
43 		 */
44 		set_page_dirty(page);
45 		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
46 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
47 				     (unsigned long long)bio->bi_iter.bi_sector);
48 		ClearPageReclaim(page);
49 	}
50 	end_page_writeback(page);
51 	bio_put(bio);
52 }
53 
54 static void end_swap_bio_read(struct bio *bio)
55 {
56 	struct page *page = bio_first_page_all(bio);
57 	struct task_struct *waiter = bio->bi_private;
58 
59 	if (bio->bi_status) {
60 		SetPageError(page);
61 		ClearPageUptodate(page);
62 		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
63 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
64 				     (unsigned long long)bio->bi_iter.bi_sector);
65 		goto out;
66 	}
67 
68 	SetPageUptodate(page);
69 out:
70 	unlock_page(page);
71 	WRITE_ONCE(bio->bi_private, NULL);
72 	bio_put(bio);
73 	if (waiter) {
74 		blk_wake_io_task(waiter);
75 		put_task_struct(waiter);
76 	}
77 }
78 
79 int generic_swapfile_activate(struct swap_info_struct *sis,
80 				struct file *swap_file,
81 				sector_t *span)
82 {
83 	struct address_space *mapping = swap_file->f_mapping;
84 	struct inode *inode = mapping->host;
85 	unsigned blocks_per_page;
86 	unsigned long page_no;
87 	unsigned blkbits;
88 	sector_t probe_block;
89 	sector_t last_block;
90 	sector_t lowest_block = -1;
91 	sector_t highest_block = 0;
92 	int nr_extents = 0;
93 	int ret;
94 
95 	blkbits = inode->i_blkbits;
96 	blocks_per_page = PAGE_SIZE >> blkbits;
97 
98 	/*
99 	 * Map all the blocks into the extent tree.  This code doesn't try
100 	 * to be very smart.
101 	 */
102 	probe_block = 0;
103 	page_no = 0;
104 	last_block = i_size_read(inode) >> blkbits;
105 	while ((probe_block + blocks_per_page) <= last_block &&
106 			page_no < sis->max) {
107 		unsigned block_in_page;
108 		sector_t first_block;
109 
110 		cond_resched();
111 
112 		first_block = probe_block;
113 		ret = bmap(inode, &first_block);
114 		if (ret || !first_block)
115 			goto bad_bmap;
116 
117 		/*
118 		 * It must be PAGE_SIZE aligned on-disk
119 		 */
120 		if (first_block & (blocks_per_page - 1)) {
121 			probe_block++;
122 			goto reprobe;
123 		}
124 
125 		for (block_in_page = 1; block_in_page < blocks_per_page;
126 					block_in_page++) {
127 			sector_t block;
128 
129 			block = probe_block + block_in_page;
130 			ret = bmap(inode, &block);
131 			if (ret || !block)
132 				goto bad_bmap;
133 
134 			if (block != first_block + block_in_page) {
135 				/* Discontiguity */
136 				probe_block++;
137 				goto reprobe;
138 			}
139 		}
140 
141 		first_block >>= (PAGE_SHIFT - blkbits);
142 		if (page_no) {	/* exclude the header page */
143 			if (first_block < lowest_block)
144 				lowest_block = first_block;
145 			if (first_block > highest_block)
146 				highest_block = first_block;
147 		}
148 
149 		/*
150 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
151 		 */
152 		ret = add_swap_extent(sis, page_no, 1, first_block);
153 		if (ret < 0)
154 			goto out;
155 		nr_extents += ret;
156 		page_no++;
157 		probe_block += blocks_per_page;
158 reprobe:
159 		continue;
160 	}
161 	ret = nr_extents;
162 	*span = 1 + highest_block - lowest_block;
163 	if (page_no == 0)
164 		page_no = 1;	/* force Empty message */
165 	sis->max = page_no;
166 	sis->pages = page_no - 1;
167 	sis->highest_bit = page_no - 1;
168 out:
169 	return ret;
170 bad_bmap:
171 	pr_err("swapon: swapfile has holes\n");
172 	ret = -EINVAL;
173 	goto out;
174 }
175 
176 /*
177  * We may have stale swap cache pages in memory: notice
178  * them here and get rid of the unnecessary final write.
179  */
180 int swap_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 	struct folio *folio = page_folio(page);
183 	int ret = 0;
184 
185 	if (folio_free_swap(folio)) {
186 		folio_unlock(folio);
187 		goto out;
188 	}
189 	/*
190 	 * Arch code may have to preserve more data than just the page
191 	 * contents, e.g. memory tags.
192 	 */
193 	ret = arch_prepare_to_swap(&folio->page);
194 	if (ret) {
195 		folio_mark_dirty(folio);
196 		folio_unlock(folio);
197 		goto out;
198 	}
199 	if (frontswap_store(&folio->page) == 0) {
200 		folio_start_writeback(folio);
201 		folio_unlock(folio);
202 		folio_end_writeback(folio);
203 		goto out;
204 	}
205 	ret = __swap_writepage(&folio->page, wbc);
206 out:
207 	return ret;
208 }
209 
210 static inline void count_swpout_vm_event(struct page *page)
211 {
212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
213 	if (unlikely(PageTransHuge(page)))
214 		count_vm_event(THP_SWPOUT);
215 #endif
216 	count_vm_events(PSWPOUT, thp_nr_pages(page));
217 }
218 
219 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
220 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
221 {
222 	struct cgroup_subsys_state *css;
223 	struct mem_cgroup *memcg;
224 
225 	memcg = page_memcg(page);
226 	if (!memcg)
227 		return;
228 
229 	rcu_read_lock();
230 	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
231 	bio_associate_blkg_from_css(bio, css);
232 	rcu_read_unlock();
233 }
234 #else
235 #define bio_associate_blkg_from_page(bio, page)		do { } while (0)
236 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
237 
238 struct swap_iocb {
239 	struct kiocb		iocb;
240 	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
241 	int			pages;
242 	int			len;
243 };
244 static mempool_t *sio_pool;
245 
246 int sio_pool_init(void)
247 {
248 	if (!sio_pool) {
249 		mempool_t *pool = mempool_create_kmalloc_pool(
250 			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
251 		if (cmpxchg(&sio_pool, NULL, pool))
252 			mempool_destroy(pool);
253 	}
254 	if (!sio_pool)
255 		return -ENOMEM;
256 	return 0;
257 }
258 
259 static void sio_write_complete(struct kiocb *iocb, long ret)
260 {
261 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
262 	struct page *page = sio->bvec[0].bv_page;
263 	int p;
264 
265 	if (ret != sio->len) {
266 		/*
267 		 * In the case of swap-over-nfs, this can be a
268 		 * temporary failure if the system has limited
269 		 * memory for allocating transmit buffers.
270 		 * Mark the page dirty and avoid
271 		 * folio_rotate_reclaimable but rate-limit the
272 		 * messages but do not flag PageError like
273 		 * the normal direct-to-bio case as it could
274 		 * be temporary.
275 		 */
276 		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
277 				   ret, page_file_offset(page));
278 		for (p = 0; p < sio->pages; p++) {
279 			page = sio->bvec[p].bv_page;
280 			set_page_dirty(page);
281 			ClearPageReclaim(page);
282 		}
283 	} else {
284 		for (p = 0; p < sio->pages; p++)
285 			count_swpout_vm_event(sio->bvec[p].bv_page);
286 	}
287 
288 	for (p = 0; p < sio->pages; p++)
289 		end_page_writeback(sio->bvec[p].bv_page);
290 
291 	mempool_free(sio, sio_pool);
292 }
293 
294 static int swap_writepage_fs(struct page *page, struct writeback_control *wbc)
295 {
296 	struct swap_iocb *sio = NULL;
297 	struct swap_info_struct *sis = page_swap_info(page);
298 	struct file *swap_file = sis->swap_file;
299 	loff_t pos = page_file_offset(page);
300 
301 	set_page_writeback(page);
302 	unlock_page(page);
303 	if (wbc->swap_plug)
304 		sio = *wbc->swap_plug;
305 	if (sio) {
306 		if (sio->iocb.ki_filp != swap_file ||
307 		    sio->iocb.ki_pos + sio->len != pos) {
308 			swap_write_unplug(sio);
309 			sio = NULL;
310 		}
311 	}
312 	if (!sio) {
313 		sio = mempool_alloc(sio_pool, GFP_NOIO);
314 		init_sync_kiocb(&sio->iocb, swap_file);
315 		sio->iocb.ki_complete = sio_write_complete;
316 		sio->iocb.ki_pos = pos;
317 		sio->pages = 0;
318 		sio->len = 0;
319 	}
320 	sio->bvec[sio->pages].bv_page = page;
321 	sio->bvec[sio->pages].bv_len = thp_size(page);
322 	sio->bvec[sio->pages].bv_offset = 0;
323 	sio->len += thp_size(page);
324 	sio->pages += 1;
325 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
326 		swap_write_unplug(sio);
327 		sio = NULL;
328 	}
329 	if (wbc->swap_plug)
330 		*wbc->swap_plug = sio;
331 
332 	return 0;
333 }
334 
335 int __swap_writepage(struct page *page, struct writeback_control *wbc)
336 {
337 	struct bio *bio;
338 	int ret;
339 	struct swap_info_struct *sis = page_swap_info(page);
340 
341 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
342 	/*
343 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
344 	 * but that will never affect SWP_FS_OPS, so the data_race
345 	 * is safe.
346 	 */
347 	if (data_race(sis->flags & SWP_FS_OPS))
348 		return swap_writepage_fs(page, wbc);
349 
350 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
351 	if (!ret) {
352 		count_swpout_vm_event(page);
353 		return 0;
354 	}
355 
356 	bio = bio_alloc(sis->bdev, 1,
357 			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
358 			GFP_NOIO);
359 	bio->bi_iter.bi_sector = swap_page_sector(page);
360 	bio->bi_end_io = end_swap_bio_write;
361 	bio_add_page(bio, page, thp_size(page), 0);
362 
363 	bio_associate_blkg_from_page(bio, page);
364 	count_swpout_vm_event(page);
365 	set_page_writeback(page);
366 	unlock_page(page);
367 	submit_bio(bio);
368 
369 	return 0;
370 }
371 
372 void swap_write_unplug(struct swap_iocb *sio)
373 {
374 	struct iov_iter from;
375 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
376 	int ret;
377 
378 	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
379 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
380 	if (ret != -EIOCBQUEUED)
381 		sio_write_complete(&sio->iocb, ret);
382 }
383 
384 static void sio_read_complete(struct kiocb *iocb, long ret)
385 {
386 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
387 	int p;
388 
389 	if (ret == sio->len) {
390 		for (p = 0; p < sio->pages; p++) {
391 			struct page *page = sio->bvec[p].bv_page;
392 
393 			SetPageUptodate(page);
394 			unlock_page(page);
395 		}
396 		count_vm_events(PSWPIN, sio->pages);
397 	} else {
398 		for (p = 0; p < sio->pages; p++) {
399 			struct page *page = sio->bvec[p].bv_page;
400 
401 			SetPageError(page);
402 			ClearPageUptodate(page);
403 			unlock_page(page);
404 		}
405 		pr_alert_ratelimited("Read-error on swap-device\n");
406 	}
407 	mempool_free(sio, sio_pool);
408 }
409 
410 static void swap_readpage_fs(struct page *page,
411 			     struct swap_iocb **plug)
412 {
413 	struct swap_info_struct *sis = page_swap_info(page);
414 	struct swap_iocb *sio = NULL;
415 	loff_t pos = page_file_offset(page);
416 
417 	if (plug)
418 		sio = *plug;
419 	if (sio) {
420 		if (sio->iocb.ki_filp != sis->swap_file ||
421 		    sio->iocb.ki_pos + sio->len != pos) {
422 			swap_read_unplug(sio);
423 			sio = NULL;
424 		}
425 	}
426 	if (!sio) {
427 		sio = mempool_alloc(sio_pool, GFP_KERNEL);
428 		init_sync_kiocb(&sio->iocb, sis->swap_file);
429 		sio->iocb.ki_pos = pos;
430 		sio->iocb.ki_complete = sio_read_complete;
431 		sio->pages = 0;
432 		sio->len = 0;
433 	}
434 	sio->bvec[sio->pages].bv_page = page;
435 	sio->bvec[sio->pages].bv_len = thp_size(page);
436 	sio->bvec[sio->pages].bv_offset = 0;
437 	sio->len += thp_size(page);
438 	sio->pages += 1;
439 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
440 		swap_read_unplug(sio);
441 		sio = NULL;
442 	}
443 	if (plug)
444 		*plug = sio;
445 }
446 
447 int swap_readpage(struct page *page, bool synchronous,
448 		  struct swap_iocb **plug)
449 {
450 	struct bio *bio;
451 	int ret = 0;
452 	struct swap_info_struct *sis = page_swap_info(page);
453 	bool workingset = PageWorkingset(page);
454 	unsigned long pflags;
455 	bool in_thrashing;
456 
457 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
458 	VM_BUG_ON_PAGE(!PageLocked(page), page);
459 	VM_BUG_ON_PAGE(PageUptodate(page), page);
460 
461 	/*
462 	 * Count submission time as memory stall and delay. When the device
463 	 * is congested, or the submitting cgroup IO-throttled, submission
464 	 * can be a significant part of overall IO time.
465 	 */
466 	if (workingset) {
467 		delayacct_thrashing_start(&in_thrashing);
468 		psi_memstall_enter(&pflags);
469 	}
470 	delayacct_swapin_start();
471 
472 	if (frontswap_load(page) == 0) {
473 		SetPageUptodate(page);
474 		unlock_page(page);
475 		goto out;
476 	}
477 
478 	if (data_race(sis->flags & SWP_FS_OPS)) {
479 		swap_readpage_fs(page, plug);
480 		goto out;
481 	}
482 
483 	if (sis->flags & SWP_SYNCHRONOUS_IO) {
484 		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
485 		if (!ret) {
486 			count_vm_event(PSWPIN);
487 			goto out;
488 		}
489 	}
490 
491 	ret = 0;
492 	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
493 	bio->bi_iter.bi_sector = swap_page_sector(page);
494 	bio->bi_end_io = end_swap_bio_read;
495 	bio_add_page(bio, page, thp_size(page), 0);
496 	/*
497 	 * Keep this task valid during swap readpage because the oom killer may
498 	 * attempt to access it in the page fault retry time check.
499 	 */
500 	if (synchronous) {
501 		get_task_struct(current);
502 		bio->bi_private = current;
503 	}
504 	count_vm_event(PSWPIN);
505 	bio_get(bio);
506 	submit_bio(bio);
507 	while (synchronous) {
508 		set_current_state(TASK_UNINTERRUPTIBLE);
509 		if (!READ_ONCE(bio->bi_private))
510 			break;
511 
512 		blk_io_schedule();
513 	}
514 	__set_current_state(TASK_RUNNING);
515 	bio_put(bio);
516 
517 out:
518 	if (workingset) {
519 		delayacct_thrashing_end(&in_thrashing);
520 		psi_memstall_leave(&pflags);
521 	}
522 	delayacct_swapin_end();
523 	return ret;
524 }
525 
526 void __swap_read_unplug(struct swap_iocb *sio)
527 {
528 	struct iov_iter from;
529 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
530 	int ret;
531 
532 	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
533 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
534 	if (ret != -EIOCBQUEUED)
535 		sio_read_complete(&sio->iocb, ret);
536 }
537