xref: /openbmc/linux/mm/page_io.c (revision e6dec923)
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26 
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 				struct page *page, bio_end_io_t end_io)
29 {
30 	struct bio *bio;
31 
32 	bio = bio_alloc(gfp_flags, 1);
33 	if (bio) {
34 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 		bio->bi_end_io = end_io;
37 
38 		bio_add_page(bio, page, PAGE_SIZE, 0);
39 		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40 	}
41 	return bio;
42 }
43 
44 void end_swap_bio_write(struct bio *bio)
45 {
46 	struct page *page = bio->bi_io_vec[0].bv_page;
47 
48 	if (bio->bi_status) {
49 		SetPageError(page);
50 		/*
51 		 * We failed to write the page out to swap-space.
52 		 * Re-dirty the page in order to avoid it being reclaimed.
53 		 * Also print a dire warning that things will go BAD (tm)
54 		 * very quickly.
55 		 *
56 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57 		 */
58 		set_page_dirty(page);
59 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60 			 imajor(bio->bi_bdev->bd_inode),
61 			 iminor(bio->bi_bdev->bd_inode),
62 			 (unsigned long long)bio->bi_iter.bi_sector);
63 		ClearPageReclaim(page);
64 	}
65 	end_page_writeback(page);
66 	bio_put(bio);
67 }
68 
69 static void swap_slot_free_notify(struct page *page)
70 {
71 	struct swap_info_struct *sis;
72 	struct gendisk *disk;
73 
74 	/*
75 	 * There is no guarantee that the page is in swap cache - the software
76 	 * suspend code (at least) uses end_swap_bio_read() against a non-
77 	 * swapcache page.  So we must check PG_swapcache before proceeding with
78 	 * this optimization.
79 	 */
80 	if (unlikely(!PageSwapCache(page)))
81 		return;
82 
83 	sis = page_swap_info(page);
84 	if (!(sis->flags & SWP_BLKDEV))
85 		return;
86 
87 	/*
88 	 * The swap subsystem performs lazy swap slot freeing,
89 	 * expecting that the page will be swapped out again.
90 	 * So we can avoid an unnecessary write if the page
91 	 * isn't redirtied.
92 	 * This is good for real swap storage because we can
93 	 * reduce unnecessary I/O and enhance wear-leveling
94 	 * if an SSD is used as the as swap device.
95 	 * But if in-memory swap device (eg zram) is used,
96 	 * this causes a duplicated copy between uncompressed
97 	 * data in VM-owned memory and compressed data in
98 	 * zram-owned memory.  So let's free zram-owned memory
99 	 * and make the VM-owned decompressed page *dirty*,
100 	 * so the page should be swapped out somewhere again if
101 	 * we again wish to reclaim it.
102 	 */
103 	disk = sis->bdev->bd_disk;
104 	if (disk->fops->swap_slot_free_notify) {
105 		swp_entry_t entry;
106 		unsigned long offset;
107 
108 		entry.val = page_private(page);
109 		offset = swp_offset(entry);
110 
111 		SetPageDirty(page);
112 		disk->fops->swap_slot_free_notify(sis->bdev,
113 				offset);
114 	}
115 }
116 
117 static void end_swap_bio_read(struct bio *bio)
118 {
119 	struct page *page = bio->bi_io_vec[0].bv_page;
120 	struct task_struct *waiter = bio->bi_private;
121 
122 	if (bio->bi_status) {
123 		SetPageError(page);
124 		ClearPageUptodate(page);
125 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
126 			 imajor(bio->bi_bdev->bd_inode),
127 			 iminor(bio->bi_bdev->bd_inode),
128 			 (unsigned long long)bio->bi_iter.bi_sector);
129 		goto out;
130 	}
131 
132 	SetPageUptodate(page);
133 	swap_slot_free_notify(page);
134 out:
135 	unlock_page(page);
136 	WRITE_ONCE(bio->bi_private, NULL);
137 	bio_put(bio);
138 	wake_up_process(waiter);
139 }
140 
141 int generic_swapfile_activate(struct swap_info_struct *sis,
142 				struct file *swap_file,
143 				sector_t *span)
144 {
145 	struct address_space *mapping = swap_file->f_mapping;
146 	struct inode *inode = mapping->host;
147 	unsigned blocks_per_page;
148 	unsigned long page_no;
149 	unsigned blkbits;
150 	sector_t probe_block;
151 	sector_t last_block;
152 	sector_t lowest_block = -1;
153 	sector_t highest_block = 0;
154 	int nr_extents = 0;
155 	int ret;
156 
157 	blkbits = inode->i_blkbits;
158 	blocks_per_page = PAGE_SIZE >> blkbits;
159 
160 	/*
161 	 * Map all the blocks into the extent list.  This code doesn't try
162 	 * to be very smart.
163 	 */
164 	probe_block = 0;
165 	page_no = 0;
166 	last_block = i_size_read(inode) >> blkbits;
167 	while ((probe_block + blocks_per_page) <= last_block &&
168 			page_no < sis->max) {
169 		unsigned block_in_page;
170 		sector_t first_block;
171 
172 		cond_resched();
173 
174 		first_block = bmap(inode, probe_block);
175 		if (first_block == 0)
176 			goto bad_bmap;
177 
178 		/*
179 		 * It must be PAGE_SIZE aligned on-disk
180 		 */
181 		if (first_block & (blocks_per_page - 1)) {
182 			probe_block++;
183 			goto reprobe;
184 		}
185 
186 		for (block_in_page = 1; block_in_page < blocks_per_page;
187 					block_in_page++) {
188 			sector_t block;
189 
190 			block = bmap(inode, probe_block + block_in_page);
191 			if (block == 0)
192 				goto bad_bmap;
193 			if (block != first_block + block_in_page) {
194 				/* Discontiguity */
195 				probe_block++;
196 				goto reprobe;
197 			}
198 		}
199 
200 		first_block >>= (PAGE_SHIFT - blkbits);
201 		if (page_no) {	/* exclude the header page */
202 			if (first_block < lowest_block)
203 				lowest_block = first_block;
204 			if (first_block > highest_block)
205 				highest_block = first_block;
206 		}
207 
208 		/*
209 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
210 		 */
211 		ret = add_swap_extent(sis, page_no, 1, first_block);
212 		if (ret < 0)
213 			goto out;
214 		nr_extents += ret;
215 		page_no++;
216 		probe_block += blocks_per_page;
217 reprobe:
218 		continue;
219 	}
220 	ret = nr_extents;
221 	*span = 1 + highest_block - lowest_block;
222 	if (page_no == 0)
223 		page_no = 1;	/* force Empty message */
224 	sis->max = page_no;
225 	sis->pages = page_no - 1;
226 	sis->highest_bit = page_no - 1;
227 out:
228 	return ret;
229 bad_bmap:
230 	pr_err("swapon: swapfile has holes\n");
231 	ret = -EINVAL;
232 	goto out;
233 }
234 
235 /*
236  * We may have stale swap cache pages in memory: notice
237  * them here and get rid of the unnecessary final write.
238  */
239 int swap_writepage(struct page *page, struct writeback_control *wbc)
240 {
241 	int ret = 0;
242 
243 	if (try_to_free_swap(page)) {
244 		unlock_page(page);
245 		goto out;
246 	}
247 	if (frontswap_store(page) == 0) {
248 		set_page_writeback(page);
249 		unlock_page(page);
250 		end_page_writeback(page);
251 		goto out;
252 	}
253 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
254 out:
255 	return ret;
256 }
257 
258 static sector_t swap_page_sector(struct page *page)
259 {
260 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
261 }
262 
263 int __swap_writepage(struct page *page, struct writeback_control *wbc,
264 		bio_end_io_t end_write_func)
265 {
266 	struct bio *bio;
267 	int ret;
268 	struct swap_info_struct *sis = page_swap_info(page);
269 
270 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
271 	if (sis->flags & SWP_FILE) {
272 		struct kiocb kiocb;
273 		struct file *swap_file = sis->swap_file;
274 		struct address_space *mapping = swap_file->f_mapping;
275 		struct bio_vec bv = {
276 			.bv_page = page,
277 			.bv_len  = PAGE_SIZE,
278 			.bv_offset = 0
279 		};
280 		struct iov_iter from;
281 
282 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
283 		init_sync_kiocb(&kiocb, swap_file);
284 		kiocb.ki_pos = page_file_offset(page);
285 
286 		set_page_writeback(page);
287 		unlock_page(page);
288 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
289 		if (ret == PAGE_SIZE) {
290 			count_vm_event(PSWPOUT);
291 			ret = 0;
292 		} else {
293 			/*
294 			 * In the case of swap-over-nfs, this can be a
295 			 * temporary failure if the system has limited
296 			 * memory for allocating transmit buffers.
297 			 * Mark the page dirty and avoid
298 			 * rotate_reclaimable_page but rate-limit the
299 			 * messages but do not flag PageError like
300 			 * the normal direct-to-bio case as it could
301 			 * be temporary.
302 			 */
303 			set_page_dirty(page);
304 			ClearPageReclaim(page);
305 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
306 					   page_file_offset(page));
307 		}
308 		end_page_writeback(page);
309 		return ret;
310 	}
311 
312 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
313 	if (!ret) {
314 		count_vm_event(PSWPOUT);
315 		return 0;
316 	}
317 
318 	ret = 0;
319 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
320 	if (bio == NULL) {
321 		set_page_dirty(page);
322 		unlock_page(page);
323 		ret = -ENOMEM;
324 		goto out;
325 	}
326 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
327 	count_vm_event(PSWPOUT);
328 	set_page_writeback(page);
329 	unlock_page(page);
330 	submit_bio(bio);
331 out:
332 	return ret;
333 }
334 
335 int swap_readpage(struct page *page, bool do_poll)
336 {
337 	struct bio *bio;
338 	int ret = 0;
339 	struct swap_info_struct *sis = page_swap_info(page);
340 	blk_qc_t qc;
341 	struct block_device *bdev;
342 
343 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
344 	VM_BUG_ON_PAGE(!PageLocked(page), page);
345 	VM_BUG_ON_PAGE(PageUptodate(page), page);
346 	if (frontswap_load(page) == 0) {
347 		SetPageUptodate(page);
348 		unlock_page(page);
349 		goto out;
350 	}
351 
352 	if (sis->flags & SWP_FILE) {
353 		struct file *swap_file = sis->swap_file;
354 		struct address_space *mapping = swap_file->f_mapping;
355 
356 		ret = mapping->a_ops->readpage(swap_file, page);
357 		if (!ret)
358 			count_vm_event(PSWPIN);
359 		return ret;
360 	}
361 
362 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
363 	if (!ret) {
364 		if (trylock_page(page)) {
365 			swap_slot_free_notify(page);
366 			unlock_page(page);
367 		}
368 
369 		count_vm_event(PSWPIN);
370 		return 0;
371 	}
372 
373 	ret = 0;
374 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
375 	if (bio == NULL) {
376 		unlock_page(page);
377 		ret = -ENOMEM;
378 		goto out;
379 	}
380 	bdev = bio->bi_bdev;
381 	bio->bi_private = current;
382 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
383 	count_vm_event(PSWPIN);
384 	bio_get(bio);
385 	qc = submit_bio(bio);
386 	while (do_poll) {
387 		set_current_state(TASK_UNINTERRUPTIBLE);
388 		if (!READ_ONCE(bio->bi_private))
389 			break;
390 
391 		if (!blk_mq_poll(bdev_get_queue(bdev), qc))
392 			break;
393 	}
394 	__set_current_state(TASK_RUNNING);
395 	bio_put(bio);
396 
397 out:
398 	return ret;
399 }
400 
401 int swap_set_page_dirty(struct page *page)
402 {
403 	struct swap_info_struct *sis = page_swap_info(page);
404 
405 	if (sis->flags & SWP_FILE) {
406 		struct address_space *mapping = sis->swap_file->f_mapping;
407 
408 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
409 		return mapping->a_ops->set_page_dirty(page);
410 	} else {
411 		return __set_page_dirty_no_writeback(page);
412 	}
413 }
414