xref: /openbmc/linux/mm/page_io.c (revision d7a3d85e)
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26 
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 				struct page *page, bio_end_io_t end_io)
29 {
30 	struct bio *bio;
31 
32 	bio = bio_alloc(gfp_flags, 1);
33 	if (bio) {
34 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 		bio->bi_io_vec[0].bv_page = page;
37 		bio->bi_io_vec[0].bv_len = PAGE_SIZE;
38 		bio->bi_io_vec[0].bv_offset = 0;
39 		bio->bi_vcnt = 1;
40 		bio->bi_iter.bi_size = PAGE_SIZE;
41 		bio->bi_end_io = end_io;
42 	}
43 	return bio;
44 }
45 
46 void end_swap_bio_write(struct bio *bio, int err)
47 {
48 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
49 	struct page *page = bio->bi_io_vec[0].bv_page;
50 
51 	if (!uptodate) {
52 		SetPageError(page);
53 		/*
54 		 * We failed to write the page out to swap-space.
55 		 * Re-dirty the page in order to avoid it being reclaimed.
56 		 * Also print a dire warning that things will go BAD (tm)
57 		 * very quickly.
58 		 *
59 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
60 		 */
61 		set_page_dirty(page);
62 		printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
63 				imajor(bio->bi_bdev->bd_inode),
64 				iminor(bio->bi_bdev->bd_inode),
65 				(unsigned long long)bio->bi_iter.bi_sector);
66 		ClearPageReclaim(page);
67 	}
68 	end_page_writeback(page);
69 	bio_put(bio);
70 }
71 
72 void end_swap_bio_read(struct bio *bio, int err)
73 {
74 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
75 	struct page *page = bio->bi_io_vec[0].bv_page;
76 
77 	if (!uptodate) {
78 		SetPageError(page);
79 		ClearPageUptodate(page);
80 		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
81 				imajor(bio->bi_bdev->bd_inode),
82 				iminor(bio->bi_bdev->bd_inode),
83 				(unsigned long long)bio->bi_iter.bi_sector);
84 		goto out;
85 	}
86 
87 	SetPageUptodate(page);
88 
89 	/*
90 	 * There is no guarantee that the page is in swap cache - the software
91 	 * suspend code (at least) uses end_swap_bio_read() against a non-
92 	 * swapcache page.  So we must check PG_swapcache before proceeding with
93 	 * this optimization.
94 	 */
95 	if (likely(PageSwapCache(page))) {
96 		struct swap_info_struct *sis;
97 
98 		sis = page_swap_info(page);
99 		if (sis->flags & SWP_BLKDEV) {
100 			/*
101 			 * The swap subsystem performs lazy swap slot freeing,
102 			 * expecting that the page will be swapped out again.
103 			 * So we can avoid an unnecessary write if the page
104 			 * isn't redirtied.
105 			 * This is good for real swap storage because we can
106 			 * reduce unnecessary I/O and enhance wear-leveling
107 			 * if an SSD is used as the as swap device.
108 			 * But if in-memory swap device (eg zram) is used,
109 			 * this causes a duplicated copy between uncompressed
110 			 * data in VM-owned memory and compressed data in
111 			 * zram-owned memory.  So let's free zram-owned memory
112 			 * and make the VM-owned decompressed page *dirty*,
113 			 * so the page should be swapped out somewhere again if
114 			 * we again wish to reclaim it.
115 			 */
116 			struct gendisk *disk = sis->bdev->bd_disk;
117 			if (disk->fops->swap_slot_free_notify) {
118 				swp_entry_t entry;
119 				unsigned long offset;
120 
121 				entry.val = page_private(page);
122 				offset = swp_offset(entry);
123 
124 				SetPageDirty(page);
125 				disk->fops->swap_slot_free_notify(sis->bdev,
126 						offset);
127 			}
128 		}
129 	}
130 
131 out:
132 	unlock_page(page);
133 	bio_put(bio);
134 }
135 
136 int generic_swapfile_activate(struct swap_info_struct *sis,
137 				struct file *swap_file,
138 				sector_t *span)
139 {
140 	struct address_space *mapping = swap_file->f_mapping;
141 	struct inode *inode = mapping->host;
142 	unsigned blocks_per_page;
143 	unsigned long page_no;
144 	unsigned blkbits;
145 	sector_t probe_block;
146 	sector_t last_block;
147 	sector_t lowest_block = -1;
148 	sector_t highest_block = 0;
149 	int nr_extents = 0;
150 	int ret;
151 
152 	blkbits = inode->i_blkbits;
153 	blocks_per_page = PAGE_SIZE >> blkbits;
154 
155 	/*
156 	 * Map all the blocks into the extent list.  This code doesn't try
157 	 * to be very smart.
158 	 */
159 	probe_block = 0;
160 	page_no = 0;
161 	last_block = i_size_read(inode) >> blkbits;
162 	while ((probe_block + blocks_per_page) <= last_block &&
163 			page_no < sis->max) {
164 		unsigned block_in_page;
165 		sector_t first_block;
166 
167 		first_block = bmap(inode, probe_block);
168 		if (first_block == 0)
169 			goto bad_bmap;
170 
171 		/*
172 		 * It must be PAGE_SIZE aligned on-disk
173 		 */
174 		if (first_block & (blocks_per_page - 1)) {
175 			probe_block++;
176 			goto reprobe;
177 		}
178 
179 		for (block_in_page = 1; block_in_page < blocks_per_page;
180 					block_in_page++) {
181 			sector_t block;
182 
183 			block = bmap(inode, probe_block + block_in_page);
184 			if (block == 0)
185 				goto bad_bmap;
186 			if (block != first_block + block_in_page) {
187 				/* Discontiguity */
188 				probe_block++;
189 				goto reprobe;
190 			}
191 		}
192 
193 		first_block >>= (PAGE_SHIFT - blkbits);
194 		if (page_no) {	/* exclude the header page */
195 			if (first_block < lowest_block)
196 				lowest_block = first_block;
197 			if (first_block > highest_block)
198 				highest_block = first_block;
199 		}
200 
201 		/*
202 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
203 		 */
204 		ret = add_swap_extent(sis, page_no, 1, first_block);
205 		if (ret < 0)
206 			goto out;
207 		nr_extents += ret;
208 		page_no++;
209 		probe_block += blocks_per_page;
210 reprobe:
211 		continue;
212 	}
213 	ret = nr_extents;
214 	*span = 1 + highest_block - lowest_block;
215 	if (page_no == 0)
216 		page_no = 1;	/* force Empty message */
217 	sis->max = page_no;
218 	sis->pages = page_no - 1;
219 	sis->highest_bit = page_no - 1;
220 out:
221 	return ret;
222 bad_bmap:
223 	printk(KERN_ERR "swapon: swapfile has holes\n");
224 	ret = -EINVAL;
225 	goto out;
226 }
227 
228 /*
229  * We may have stale swap cache pages in memory: notice
230  * them here and get rid of the unnecessary final write.
231  */
232 int swap_writepage(struct page *page, struct writeback_control *wbc)
233 {
234 	int ret = 0;
235 
236 	if (try_to_free_swap(page)) {
237 		unlock_page(page);
238 		goto out;
239 	}
240 	if (frontswap_store(page) == 0) {
241 		set_page_writeback(page);
242 		unlock_page(page);
243 		end_page_writeback(page);
244 		goto out;
245 	}
246 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
247 out:
248 	return ret;
249 }
250 
251 static sector_t swap_page_sector(struct page *page)
252 {
253 	return (sector_t)__page_file_index(page) << (PAGE_CACHE_SHIFT - 9);
254 }
255 
256 int __swap_writepage(struct page *page, struct writeback_control *wbc,
257 	void (*end_write_func)(struct bio *, int))
258 {
259 	struct bio *bio;
260 	int ret, rw = WRITE;
261 	struct swap_info_struct *sis = page_swap_info(page);
262 
263 	if (sis->flags & SWP_FILE) {
264 		struct kiocb kiocb;
265 		struct file *swap_file = sis->swap_file;
266 		struct address_space *mapping = swap_file->f_mapping;
267 		struct bio_vec bv = {
268 			.bv_page = page,
269 			.bv_len  = PAGE_SIZE,
270 			.bv_offset = 0
271 		};
272 		struct iov_iter from;
273 
274 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
275 		init_sync_kiocb(&kiocb, swap_file);
276 		kiocb.ki_pos = page_file_offset(page);
277 
278 		set_page_writeback(page);
279 		unlock_page(page);
280 		ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
281 		if (ret == PAGE_SIZE) {
282 			count_vm_event(PSWPOUT);
283 			ret = 0;
284 		} else {
285 			/*
286 			 * In the case of swap-over-nfs, this can be a
287 			 * temporary failure if the system has limited
288 			 * memory for allocating transmit buffers.
289 			 * Mark the page dirty and avoid
290 			 * rotate_reclaimable_page but rate-limit the
291 			 * messages but do not flag PageError like
292 			 * the normal direct-to-bio case as it could
293 			 * be temporary.
294 			 */
295 			set_page_dirty(page);
296 			ClearPageReclaim(page);
297 			pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
298 				page_file_offset(page));
299 		}
300 		end_page_writeback(page);
301 		return ret;
302 	}
303 
304 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
305 	if (!ret) {
306 		count_vm_event(PSWPOUT);
307 		return 0;
308 	}
309 
310 	ret = 0;
311 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
312 	if (bio == NULL) {
313 		set_page_dirty(page);
314 		unlock_page(page);
315 		ret = -ENOMEM;
316 		goto out;
317 	}
318 	if (wbc->sync_mode == WB_SYNC_ALL)
319 		rw |= REQ_SYNC;
320 	count_vm_event(PSWPOUT);
321 	set_page_writeback(page);
322 	unlock_page(page);
323 	submit_bio(rw, bio);
324 out:
325 	return ret;
326 }
327 
328 int swap_readpage(struct page *page)
329 {
330 	struct bio *bio;
331 	int ret = 0;
332 	struct swap_info_struct *sis = page_swap_info(page);
333 
334 	VM_BUG_ON_PAGE(!PageLocked(page), page);
335 	VM_BUG_ON_PAGE(PageUptodate(page), page);
336 	if (frontswap_load(page) == 0) {
337 		SetPageUptodate(page);
338 		unlock_page(page);
339 		goto out;
340 	}
341 
342 	if (sis->flags & SWP_FILE) {
343 		struct file *swap_file = sis->swap_file;
344 		struct address_space *mapping = swap_file->f_mapping;
345 
346 		ret = mapping->a_ops->readpage(swap_file, page);
347 		if (!ret)
348 			count_vm_event(PSWPIN);
349 		return ret;
350 	}
351 
352 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
353 	if (!ret) {
354 		count_vm_event(PSWPIN);
355 		return 0;
356 	}
357 
358 	ret = 0;
359 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
360 	if (bio == NULL) {
361 		unlock_page(page);
362 		ret = -ENOMEM;
363 		goto out;
364 	}
365 	count_vm_event(PSWPIN);
366 	submit_bio(READ, bio);
367 out:
368 	return ret;
369 }
370 
371 int swap_set_page_dirty(struct page *page)
372 {
373 	struct swap_info_struct *sis = page_swap_info(page);
374 
375 	if (sis->flags & SWP_FILE) {
376 		struct address_space *mapping = sis->swap_file->f_mapping;
377 		return mapping->a_ops->set_page_dirty(page);
378 	} else {
379 		return __set_page_dirty_no_writeback(page);
380 	}
381 }
382