xref: /openbmc/linux/mm/page_io.c (revision bd4af432)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
28 #include <asm/pgtable.h>
29 
30 static struct bio *get_swap_bio(gfp_t gfp_flags,
31 				struct page *page, bio_end_io_t end_io)
32 {
33 	struct bio *bio;
34 
35 	bio = bio_alloc(gfp_flags, 1);
36 	if (bio) {
37 		struct block_device *bdev;
38 
39 		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40 		bio_set_dev(bio, bdev);
41 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42 		bio->bi_end_io = end_io;
43 
44 		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
45 	}
46 	return bio;
47 }
48 
49 void end_swap_bio_write(struct bio *bio)
50 {
51 	struct page *page = bio_first_page_all(bio);
52 
53 	if (bio->bi_status) {
54 		SetPageError(page);
55 		/*
56 		 * We failed to write the page out to swap-space.
57 		 * Re-dirty the page in order to avoid it being reclaimed.
58 		 * Also print a dire warning that things will go BAD (tm)
59 		 * very quickly.
60 		 *
61 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
62 		 */
63 		set_page_dirty(page);
64 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
65 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
66 			 (unsigned long long)bio->bi_iter.bi_sector);
67 		ClearPageReclaim(page);
68 	}
69 	end_page_writeback(page);
70 	bio_put(bio);
71 }
72 
73 static void swap_slot_free_notify(struct page *page)
74 {
75 	struct swap_info_struct *sis;
76 	struct gendisk *disk;
77 	swp_entry_t entry;
78 
79 	/*
80 	 * There is no guarantee that the page is in swap cache - the software
81 	 * suspend code (at least) uses end_swap_bio_read() against a non-
82 	 * swapcache page.  So we must check PG_swapcache before proceeding with
83 	 * this optimization.
84 	 */
85 	if (unlikely(!PageSwapCache(page)))
86 		return;
87 
88 	sis = page_swap_info(page);
89 	if (!(sis->flags & SWP_BLKDEV))
90 		return;
91 
92 	/*
93 	 * The swap subsystem performs lazy swap slot freeing,
94 	 * expecting that the page will be swapped out again.
95 	 * So we can avoid an unnecessary write if the page
96 	 * isn't redirtied.
97 	 * This is good for real swap storage because we can
98 	 * reduce unnecessary I/O and enhance wear-leveling
99 	 * if an SSD is used as the as swap device.
100 	 * But if in-memory swap device (eg zram) is used,
101 	 * this causes a duplicated copy between uncompressed
102 	 * data in VM-owned memory and compressed data in
103 	 * zram-owned memory.  So let's free zram-owned memory
104 	 * and make the VM-owned decompressed page *dirty*,
105 	 * so the page should be swapped out somewhere again if
106 	 * we again wish to reclaim it.
107 	 */
108 	disk = sis->bdev->bd_disk;
109 	entry.val = page_private(page);
110 	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
111 		unsigned long offset;
112 
113 		offset = swp_offset(entry);
114 
115 		SetPageDirty(page);
116 		disk->fops->swap_slot_free_notify(sis->bdev,
117 				offset);
118 	}
119 }
120 
121 static void end_swap_bio_read(struct bio *bio)
122 {
123 	struct page *page = bio_first_page_all(bio);
124 	struct task_struct *waiter = bio->bi_private;
125 
126 	if (bio->bi_status) {
127 		SetPageError(page);
128 		ClearPageUptodate(page);
129 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
130 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
131 			 (unsigned long long)bio->bi_iter.bi_sector);
132 		goto out;
133 	}
134 
135 	SetPageUptodate(page);
136 	swap_slot_free_notify(page);
137 out:
138 	unlock_page(page);
139 	WRITE_ONCE(bio->bi_private, NULL);
140 	bio_put(bio);
141 	if (waiter) {
142 		blk_wake_io_task(waiter);
143 		put_task_struct(waiter);
144 	}
145 }
146 
147 int generic_swapfile_activate(struct swap_info_struct *sis,
148 				struct file *swap_file,
149 				sector_t *span)
150 {
151 	struct address_space *mapping = swap_file->f_mapping;
152 	struct inode *inode = mapping->host;
153 	unsigned blocks_per_page;
154 	unsigned long page_no;
155 	unsigned blkbits;
156 	sector_t probe_block;
157 	sector_t last_block;
158 	sector_t lowest_block = -1;
159 	sector_t highest_block = 0;
160 	int nr_extents = 0;
161 	int ret;
162 
163 	blkbits = inode->i_blkbits;
164 	blocks_per_page = PAGE_SIZE >> blkbits;
165 
166 	/*
167 	 * Map all the blocks into the extent tree.  This code doesn't try
168 	 * to be very smart.
169 	 */
170 	probe_block = 0;
171 	page_no = 0;
172 	last_block = i_size_read(inode) >> blkbits;
173 	while ((probe_block + blocks_per_page) <= last_block &&
174 			page_no < sis->max) {
175 		unsigned block_in_page;
176 		sector_t first_block;
177 
178 		cond_resched();
179 
180 		first_block = probe_block;
181 		ret = bmap(inode, &first_block);
182 		if (ret || !first_block)
183 			goto bad_bmap;
184 
185 		/*
186 		 * It must be PAGE_SIZE aligned on-disk
187 		 */
188 		if (first_block & (blocks_per_page - 1)) {
189 			probe_block++;
190 			goto reprobe;
191 		}
192 
193 		for (block_in_page = 1; block_in_page < blocks_per_page;
194 					block_in_page++) {
195 			sector_t block;
196 
197 			block = probe_block + block_in_page;
198 			ret = bmap(inode, &block);
199 			if (ret || !block)
200 				goto bad_bmap;
201 
202 			if (block != first_block + block_in_page) {
203 				/* Discontiguity */
204 				probe_block++;
205 				goto reprobe;
206 			}
207 		}
208 
209 		first_block >>= (PAGE_SHIFT - blkbits);
210 		if (page_no) {	/* exclude the header page */
211 			if (first_block < lowest_block)
212 				lowest_block = first_block;
213 			if (first_block > highest_block)
214 				highest_block = first_block;
215 		}
216 
217 		/*
218 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
219 		 */
220 		ret = add_swap_extent(sis, page_no, 1, first_block);
221 		if (ret < 0)
222 			goto out;
223 		nr_extents += ret;
224 		page_no++;
225 		probe_block += blocks_per_page;
226 reprobe:
227 		continue;
228 	}
229 	ret = nr_extents;
230 	*span = 1 + highest_block - lowest_block;
231 	if (page_no == 0)
232 		page_no = 1;	/* force Empty message */
233 	sis->max = page_no;
234 	sis->pages = page_no - 1;
235 	sis->highest_bit = page_no - 1;
236 out:
237 	return ret;
238 bad_bmap:
239 	pr_err("swapon: swapfile has holes\n");
240 	ret = -EINVAL;
241 	goto out;
242 }
243 
244 /*
245  * We may have stale swap cache pages in memory: notice
246  * them here and get rid of the unnecessary final write.
247  */
248 int swap_writepage(struct page *page, struct writeback_control *wbc)
249 {
250 	int ret = 0;
251 
252 	if (try_to_free_swap(page)) {
253 		unlock_page(page);
254 		goto out;
255 	}
256 	if (frontswap_store(page) == 0) {
257 		set_page_writeback(page);
258 		unlock_page(page);
259 		end_page_writeback(page);
260 		goto out;
261 	}
262 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
263 out:
264 	return ret;
265 }
266 
267 static sector_t swap_page_sector(struct page *page)
268 {
269 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
270 }
271 
272 static inline void count_swpout_vm_event(struct page *page)
273 {
274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
275 	if (unlikely(PageTransHuge(page)))
276 		count_vm_event(THP_SWPOUT);
277 #endif
278 	count_vm_events(PSWPOUT, hpage_nr_pages(page));
279 }
280 
281 int __swap_writepage(struct page *page, struct writeback_control *wbc,
282 		bio_end_io_t end_write_func)
283 {
284 	struct bio *bio;
285 	int ret;
286 	struct swap_info_struct *sis = page_swap_info(page);
287 
288 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
289 	if (sis->flags & SWP_FS) {
290 		struct kiocb kiocb;
291 		struct file *swap_file = sis->swap_file;
292 		struct address_space *mapping = swap_file->f_mapping;
293 		struct bio_vec bv = {
294 			.bv_page = page,
295 			.bv_len  = PAGE_SIZE,
296 			.bv_offset = 0
297 		};
298 		struct iov_iter from;
299 
300 		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
301 		init_sync_kiocb(&kiocb, swap_file);
302 		kiocb.ki_pos = page_file_offset(page);
303 
304 		set_page_writeback(page);
305 		unlock_page(page);
306 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
307 		if (ret == PAGE_SIZE) {
308 			count_vm_event(PSWPOUT);
309 			ret = 0;
310 		} else {
311 			/*
312 			 * In the case of swap-over-nfs, this can be a
313 			 * temporary failure if the system has limited
314 			 * memory for allocating transmit buffers.
315 			 * Mark the page dirty and avoid
316 			 * rotate_reclaimable_page but rate-limit the
317 			 * messages but do not flag PageError like
318 			 * the normal direct-to-bio case as it could
319 			 * be temporary.
320 			 */
321 			set_page_dirty(page);
322 			ClearPageReclaim(page);
323 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
324 					   page_file_offset(page));
325 		}
326 		end_page_writeback(page);
327 		return ret;
328 	}
329 
330 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
331 	if (!ret) {
332 		count_swpout_vm_event(page);
333 		return 0;
334 	}
335 
336 	ret = 0;
337 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
338 	if (bio == NULL) {
339 		set_page_dirty(page);
340 		unlock_page(page);
341 		ret = -ENOMEM;
342 		goto out;
343 	}
344 	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
345 	bio_associate_blkg_from_page(bio, page);
346 	count_swpout_vm_event(page);
347 	set_page_writeback(page);
348 	unlock_page(page);
349 	submit_bio(bio);
350 out:
351 	return ret;
352 }
353 
354 int swap_readpage(struct page *page, bool synchronous)
355 {
356 	struct bio *bio;
357 	int ret = 0;
358 	struct swap_info_struct *sis = page_swap_info(page);
359 	blk_qc_t qc;
360 	struct gendisk *disk;
361 	unsigned long pflags;
362 
363 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
364 	VM_BUG_ON_PAGE(!PageLocked(page), page);
365 	VM_BUG_ON_PAGE(PageUptodate(page), page);
366 
367 	/*
368 	 * Count submission time as memory stall. When the device is congested,
369 	 * or the submitting cgroup IO-throttled, submission can be a
370 	 * significant part of overall IO time.
371 	 */
372 	psi_memstall_enter(&pflags);
373 
374 	if (frontswap_load(page) == 0) {
375 		SetPageUptodate(page);
376 		unlock_page(page);
377 		goto out;
378 	}
379 
380 	if (sis->flags & SWP_FS) {
381 		struct file *swap_file = sis->swap_file;
382 		struct address_space *mapping = swap_file->f_mapping;
383 
384 		ret = mapping->a_ops->readpage(swap_file, page);
385 		if (!ret)
386 			count_vm_event(PSWPIN);
387 		goto out;
388 	}
389 
390 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
391 	if (!ret) {
392 		if (trylock_page(page)) {
393 			swap_slot_free_notify(page);
394 			unlock_page(page);
395 		}
396 
397 		count_vm_event(PSWPIN);
398 		goto out;
399 	}
400 
401 	ret = 0;
402 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
403 	if (bio == NULL) {
404 		unlock_page(page);
405 		ret = -ENOMEM;
406 		goto out;
407 	}
408 	disk = bio->bi_disk;
409 	/*
410 	 * Keep this task valid during swap readpage because the oom killer may
411 	 * attempt to access it in the page fault retry time check.
412 	 */
413 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
414 	if (synchronous) {
415 		bio->bi_opf |= REQ_HIPRI;
416 		get_task_struct(current);
417 		bio->bi_private = current;
418 	}
419 	count_vm_event(PSWPIN);
420 	bio_get(bio);
421 	qc = submit_bio(bio);
422 	while (synchronous) {
423 		set_current_state(TASK_UNINTERRUPTIBLE);
424 		if (!READ_ONCE(bio->bi_private))
425 			break;
426 
427 		if (!blk_poll(disk->queue, qc, true))
428 			io_schedule();
429 	}
430 	__set_current_state(TASK_RUNNING);
431 	bio_put(bio);
432 
433 out:
434 	psi_memstall_leave(&pflags);
435 	return ret;
436 }
437 
438 int swap_set_page_dirty(struct page *page)
439 {
440 	struct swap_info_struct *sis = page_swap_info(page);
441 
442 	if (sis->flags & SWP_FS) {
443 		struct address_space *mapping = sis->swap_file->f_mapping;
444 
445 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
446 		return mapping->a_ops->set_page_dirty(page);
447 	} else {
448 		return __set_page_dirty_no_writeback(page);
449 	}
450 }
451