xref: /openbmc/linux/mm/page_io.c (revision b5f184fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
28 
29 void end_swap_bio_write(struct bio *bio)
30 {
31 	struct page *page = bio_first_page_all(bio);
32 
33 	if (bio->bi_status) {
34 		SetPageError(page);
35 		/*
36 		 * We failed to write the page out to swap-space.
37 		 * Re-dirty the page in order to avoid it being reclaimed.
38 		 * Also print a dire warning that things will go BAD (tm)
39 		 * very quickly.
40 		 *
41 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
42 		 */
43 		set_page_dirty(page);
44 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
45 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46 			 (unsigned long long)bio->bi_iter.bi_sector);
47 		ClearPageReclaim(page);
48 	}
49 	end_page_writeback(page);
50 	bio_put(bio);
51 }
52 
53 static void swap_slot_free_notify(struct page *page)
54 {
55 	struct swap_info_struct *sis;
56 	struct gendisk *disk;
57 	swp_entry_t entry;
58 
59 	/*
60 	 * There is no guarantee that the page is in swap cache - the software
61 	 * suspend code (at least) uses end_swap_bio_read() against a non-
62 	 * swapcache page.  So we must check PG_swapcache before proceeding with
63 	 * this optimization.
64 	 */
65 	if (unlikely(!PageSwapCache(page)))
66 		return;
67 
68 	sis = page_swap_info(page);
69 	if (data_race(!(sis->flags & SWP_BLKDEV)))
70 		return;
71 
72 	/*
73 	 * The swap subsystem performs lazy swap slot freeing,
74 	 * expecting that the page will be swapped out again.
75 	 * So we can avoid an unnecessary write if the page
76 	 * isn't redirtied.
77 	 * This is good for real swap storage because we can
78 	 * reduce unnecessary I/O and enhance wear-leveling
79 	 * if an SSD is used as the as swap device.
80 	 * But if in-memory swap device (eg zram) is used,
81 	 * this causes a duplicated copy between uncompressed
82 	 * data in VM-owned memory and compressed data in
83 	 * zram-owned memory.  So let's free zram-owned memory
84 	 * and make the VM-owned decompressed page *dirty*,
85 	 * so the page should be swapped out somewhere again if
86 	 * we again wish to reclaim it.
87 	 */
88 	disk = sis->bdev->bd_disk;
89 	entry.val = page_private(page);
90 	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
91 		unsigned long offset;
92 
93 		offset = swp_offset(entry);
94 
95 		SetPageDirty(page);
96 		disk->fops->swap_slot_free_notify(sis->bdev,
97 				offset);
98 	}
99 }
100 
101 static void end_swap_bio_read(struct bio *bio)
102 {
103 	struct page *page = bio_first_page_all(bio);
104 	struct task_struct *waiter = bio->bi_private;
105 
106 	if (bio->bi_status) {
107 		SetPageError(page);
108 		ClearPageUptodate(page);
109 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
110 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
111 			 (unsigned long long)bio->bi_iter.bi_sector);
112 		goto out;
113 	}
114 
115 	SetPageUptodate(page);
116 	swap_slot_free_notify(page);
117 out:
118 	unlock_page(page);
119 	WRITE_ONCE(bio->bi_private, NULL);
120 	bio_put(bio);
121 	if (waiter) {
122 		blk_wake_io_task(waiter);
123 		put_task_struct(waiter);
124 	}
125 }
126 
127 int generic_swapfile_activate(struct swap_info_struct *sis,
128 				struct file *swap_file,
129 				sector_t *span)
130 {
131 	struct address_space *mapping = swap_file->f_mapping;
132 	struct inode *inode = mapping->host;
133 	unsigned blocks_per_page;
134 	unsigned long page_no;
135 	unsigned blkbits;
136 	sector_t probe_block;
137 	sector_t last_block;
138 	sector_t lowest_block = -1;
139 	sector_t highest_block = 0;
140 	int nr_extents = 0;
141 	int ret;
142 
143 	blkbits = inode->i_blkbits;
144 	blocks_per_page = PAGE_SIZE >> blkbits;
145 
146 	/*
147 	 * Map all the blocks into the extent tree.  This code doesn't try
148 	 * to be very smart.
149 	 */
150 	probe_block = 0;
151 	page_no = 0;
152 	last_block = i_size_read(inode) >> blkbits;
153 	while ((probe_block + blocks_per_page) <= last_block &&
154 			page_no < sis->max) {
155 		unsigned block_in_page;
156 		sector_t first_block;
157 
158 		cond_resched();
159 
160 		first_block = probe_block;
161 		ret = bmap(inode, &first_block);
162 		if (ret || !first_block)
163 			goto bad_bmap;
164 
165 		/*
166 		 * It must be PAGE_SIZE aligned on-disk
167 		 */
168 		if (first_block & (blocks_per_page - 1)) {
169 			probe_block++;
170 			goto reprobe;
171 		}
172 
173 		for (block_in_page = 1; block_in_page < blocks_per_page;
174 					block_in_page++) {
175 			sector_t block;
176 
177 			block = probe_block + block_in_page;
178 			ret = bmap(inode, &block);
179 			if (ret || !block)
180 				goto bad_bmap;
181 
182 			if (block != first_block + block_in_page) {
183 				/* Discontiguity */
184 				probe_block++;
185 				goto reprobe;
186 			}
187 		}
188 
189 		first_block >>= (PAGE_SHIFT - blkbits);
190 		if (page_no) {	/* exclude the header page */
191 			if (first_block < lowest_block)
192 				lowest_block = first_block;
193 			if (first_block > highest_block)
194 				highest_block = first_block;
195 		}
196 
197 		/*
198 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
199 		 */
200 		ret = add_swap_extent(sis, page_no, 1, first_block);
201 		if (ret < 0)
202 			goto out;
203 		nr_extents += ret;
204 		page_no++;
205 		probe_block += blocks_per_page;
206 reprobe:
207 		continue;
208 	}
209 	ret = nr_extents;
210 	*span = 1 + highest_block - lowest_block;
211 	if (page_no == 0)
212 		page_no = 1;	/* force Empty message */
213 	sis->max = page_no;
214 	sis->pages = page_no - 1;
215 	sis->highest_bit = page_no - 1;
216 out:
217 	return ret;
218 bad_bmap:
219 	pr_err("swapon: swapfile has holes\n");
220 	ret = -EINVAL;
221 	goto out;
222 }
223 
224 /*
225  * We may have stale swap cache pages in memory: notice
226  * them here and get rid of the unnecessary final write.
227  */
228 int swap_writepage(struct page *page, struct writeback_control *wbc)
229 {
230 	int ret = 0;
231 
232 	if (try_to_free_swap(page)) {
233 		unlock_page(page);
234 		goto out;
235 	}
236 	/*
237 	 * Arch code may have to preserve more data than just the page
238 	 * contents, e.g. memory tags.
239 	 */
240 	ret = arch_prepare_to_swap(page);
241 	if (ret) {
242 		set_page_dirty(page);
243 		unlock_page(page);
244 		goto out;
245 	}
246 	if (frontswap_store(page) == 0) {
247 		set_page_writeback(page);
248 		unlock_page(page);
249 		end_page_writeback(page);
250 		goto out;
251 	}
252 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
253 out:
254 	return ret;
255 }
256 
257 static sector_t swap_page_sector(struct page *page)
258 {
259 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
260 }
261 
262 static inline void count_swpout_vm_event(struct page *page)
263 {
264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
265 	if (unlikely(PageTransHuge(page)))
266 		count_vm_event(THP_SWPOUT);
267 #endif
268 	count_vm_events(PSWPOUT, thp_nr_pages(page));
269 }
270 
271 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
272 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
273 {
274 	struct cgroup_subsys_state *css;
275 	struct mem_cgroup *memcg;
276 
277 	memcg = page_memcg(page);
278 	if (!memcg)
279 		return;
280 
281 	rcu_read_lock();
282 	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
283 	bio_associate_blkg_from_css(bio, css);
284 	rcu_read_unlock();
285 }
286 #else
287 #define bio_associate_blkg_from_page(bio, page)		do { } while (0)
288 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
289 
290 int __swap_writepage(struct page *page, struct writeback_control *wbc,
291 		bio_end_io_t end_write_func)
292 {
293 	struct bio *bio;
294 	int ret;
295 	struct swap_info_struct *sis = page_swap_info(page);
296 
297 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
298 	if (data_race(sis->flags & SWP_FS_OPS)) {
299 		struct kiocb kiocb;
300 		struct file *swap_file = sis->swap_file;
301 		struct address_space *mapping = swap_file->f_mapping;
302 		struct bio_vec bv = {
303 			.bv_page = page,
304 			.bv_len  = PAGE_SIZE,
305 			.bv_offset = 0
306 		};
307 		struct iov_iter from;
308 
309 		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
310 		init_sync_kiocb(&kiocb, swap_file);
311 		kiocb.ki_pos = page_file_offset(page);
312 
313 		set_page_writeback(page);
314 		unlock_page(page);
315 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
316 		if (ret == PAGE_SIZE) {
317 			count_vm_event(PSWPOUT);
318 			ret = 0;
319 		} else {
320 			/*
321 			 * In the case of swap-over-nfs, this can be a
322 			 * temporary failure if the system has limited
323 			 * memory for allocating transmit buffers.
324 			 * Mark the page dirty and avoid
325 			 * rotate_reclaimable_page but rate-limit the
326 			 * messages but do not flag PageError like
327 			 * the normal direct-to-bio case as it could
328 			 * be temporary.
329 			 */
330 			set_page_dirty(page);
331 			ClearPageReclaim(page);
332 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
333 					   page_file_offset(page));
334 		}
335 		end_page_writeback(page);
336 		return ret;
337 	}
338 
339 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
340 	if (!ret) {
341 		count_swpout_vm_event(page);
342 		return 0;
343 	}
344 
345 	bio = bio_alloc(GFP_NOIO, 1);
346 	bio_set_dev(bio, sis->bdev);
347 	bio->bi_iter.bi_sector = swap_page_sector(page);
348 	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
349 	bio->bi_end_io = end_write_func;
350 	bio_add_page(bio, page, thp_size(page), 0);
351 
352 	bio_associate_blkg_from_page(bio, page);
353 	count_swpout_vm_event(page);
354 	set_page_writeback(page);
355 	unlock_page(page);
356 	submit_bio(bio);
357 
358 	return 0;
359 }
360 
361 int swap_readpage(struct page *page, bool synchronous)
362 {
363 	struct bio *bio;
364 	int ret = 0;
365 	struct swap_info_struct *sis = page_swap_info(page);
366 	blk_qc_t qc;
367 	struct gendisk *disk;
368 	unsigned long pflags;
369 
370 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
371 	VM_BUG_ON_PAGE(!PageLocked(page), page);
372 	VM_BUG_ON_PAGE(PageUptodate(page), page);
373 
374 	/*
375 	 * Count submission time as memory stall. When the device is congested,
376 	 * or the submitting cgroup IO-throttled, submission can be a
377 	 * significant part of overall IO time.
378 	 */
379 	psi_memstall_enter(&pflags);
380 
381 	if (frontswap_load(page) == 0) {
382 		SetPageUptodate(page);
383 		unlock_page(page);
384 		goto out;
385 	}
386 
387 	if (data_race(sis->flags & SWP_FS_OPS)) {
388 		struct file *swap_file = sis->swap_file;
389 		struct address_space *mapping = swap_file->f_mapping;
390 
391 		ret = mapping->a_ops->readpage(swap_file, page);
392 		if (!ret)
393 			count_vm_event(PSWPIN);
394 		goto out;
395 	}
396 
397 	if (sis->flags & SWP_SYNCHRONOUS_IO) {
398 		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
399 		if (!ret) {
400 			if (trylock_page(page)) {
401 				swap_slot_free_notify(page);
402 				unlock_page(page);
403 			}
404 
405 			count_vm_event(PSWPIN);
406 			goto out;
407 		}
408 	}
409 
410 	ret = 0;
411 	bio = bio_alloc(GFP_KERNEL, 1);
412 	bio_set_dev(bio, sis->bdev);
413 	bio->bi_opf = REQ_OP_READ;
414 	bio->bi_iter.bi_sector = swap_page_sector(page);
415 	bio->bi_end_io = end_swap_bio_read;
416 	bio_add_page(bio, page, thp_size(page), 0);
417 
418 	disk = bio->bi_bdev->bd_disk;
419 	/*
420 	 * Keep this task valid during swap readpage because the oom killer may
421 	 * attempt to access it in the page fault retry time check.
422 	 */
423 	if (synchronous) {
424 		bio->bi_opf |= REQ_HIPRI;
425 		get_task_struct(current);
426 		bio->bi_private = current;
427 	}
428 	count_vm_event(PSWPIN);
429 	bio_get(bio);
430 	qc = submit_bio(bio);
431 	while (synchronous) {
432 		set_current_state(TASK_UNINTERRUPTIBLE);
433 		if (!READ_ONCE(bio->bi_private))
434 			break;
435 
436 		if (!blk_poll(disk->queue, qc, true))
437 			blk_io_schedule();
438 	}
439 	__set_current_state(TASK_RUNNING);
440 	bio_put(bio);
441 
442 out:
443 	psi_memstall_leave(&pflags);
444 	return ret;
445 }
446 
447 int swap_set_page_dirty(struct page *page)
448 {
449 	struct swap_info_struct *sis = page_swap_info(page);
450 
451 	if (data_race(sis->flags & SWP_FS_OPS)) {
452 		struct address_space *mapping = sis->swap_file->f_mapping;
453 
454 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
455 		return mapping->a_ops->set_page_dirty(page);
456 	} else {
457 		return __set_page_dirty_no_writeback(page);
458 	}
459 }
460