xref: /openbmc/linux/mm/page_io.c (revision 981ab3f1)
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <asm/pgtable.h>
27 
28 static struct bio *get_swap_bio(gfp_t gfp_flags,
29 				struct page *page, bio_end_io_t end_io)
30 {
31 	struct bio *bio;
32 
33 	bio = bio_alloc(gfp_flags, 1);
34 	if (bio) {
35 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
36 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
37 		bio->bi_end_io = end_io;
38 
39 		bio_add_page(bio, page, PAGE_SIZE, 0);
40 		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
41 	}
42 	return bio;
43 }
44 
45 void end_swap_bio_write(struct bio *bio)
46 {
47 	struct page *page = bio->bi_io_vec[0].bv_page;
48 
49 	if (bio->bi_status) {
50 		SetPageError(page);
51 		/*
52 		 * We failed to write the page out to swap-space.
53 		 * Re-dirty the page in order to avoid it being reclaimed.
54 		 * Also print a dire warning that things will go BAD (tm)
55 		 * very quickly.
56 		 *
57 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
58 		 */
59 		set_page_dirty(page);
60 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
61 			 imajor(bio->bi_bdev->bd_inode),
62 			 iminor(bio->bi_bdev->bd_inode),
63 			 (unsigned long long)bio->bi_iter.bi_sector);
64 		ClearPageReclaim(page);
65 	}
66 	end_page_writeback(page);
67 	bio_put(bio);
68 }
69 
70 static void swap_slot_free_notify(struct page *page)
71 {
72 	struct swap_info_struct *sis;
73 	struct gendisk *disk;
74 
75 	/*
76 	 * There is no guarantee that the page is in swap cache - the software
77 	 * suspend code (at least) uses end_swap_bio_read() against a non-
78 	 * swapcache page.  So we must check PG_swapcache before proceeding with
79 	 * this optimization.
80 	 */
81 	if (unlikely(!PageSwapCache(page)))
82 		return;
83 
84 	sis = page_swap_info(page);
85 	if (!(sis->flags & SWP_BLKDEV))
86 		return;
87 
88 	/*
89 	 * The swap subsystem performs lazy swap slot freeing,
90 	 * expecting that the page will be swapped out again.
91 	 * So we can avoid an unnecessary write if the page
92 	 * isn't redirtied.
93 	 * This is good for real swap storage because we can
94 	 * reduce unnecessary I/O and enhance wear-leveling
95 	 * if an SSD is used as the as swap device.
96 	 * But if in-memory swap device (eg zram) is used,
97 	 * this causes a duplicated copy between uncompressed
98 	 * data in VM-owned memory and compressed data in
99 	 * zram-owned memory.  So let's free zram-owned memory
100 	 * and make the VM-owned decompressed page *dirty*,
101 	 * so the page should be swapped out somewhere again if
102 	 * we again wish to reclaim it.
103 	 */
104 	disk = sis->bdev->bd_disk;
105 	if (disk->fops->swap_slot_free_notify) {
106 		swp_entry_t entry;
107 		unsigned long offset;
108 
109 		entry.val = page_private(page);
110 		offset = swp_offset(entry);
111 
112 		SetPageDirty(page);
113 		disk->fops->swap_slot_free_notify(sis->bdev,
114 				offset);
115 	}
116 }
117 
118 static void end_swap_bio_read(struct bio *bio)
119 {
120 	struct page *page = bio->bi_io_vec[0].bv_page;
121 	struct task_struct *waiter = bio->bi_private;
122 
123 	if (bio->bi_status) {
124 		SetPageError(page);
125 		ClearPageUptodate(page);
126 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
127 			 imajor(bio->bi_bdev->bd_inode),
128 			 iminor(bio->bi_bdev->bd_inode),
129 			 (unsigned long long)bio->bi_iter.bi_sector);
130 		goto out;
131 	}
132 
133 	SetPageUptodate(page);
134 	swap_slot_free_notify(page);
135 out:
136 	unlock_page(page);
137 	WRITE_ONCE(bio->bi_private, NULL);
138 	bio_put(bio);
139 	wake_up_process(waiter);
140 	put_task_struct(waiter);
141 }
142 
143 int generic_swapfile_activate(struct swap_info_struct *sis,
144 				struct file *swap_file,
145 				sector_t *span)
146 {
147 	struct address_space *mapping = swap_file->f_mapping;
148 	struct inode *inode = mapping->host;
149 	unsigned blocks_per_page;
150 	unsigned long page_no;
151 	unsigned blkbits;
152 	sector_t probe_block;
153 	sector_t last_block;
154 	sector_t lowest_block = -1;
155 	sector_t highest_block = 0;
156 	int nr_extents = 0;
157 	int ret;
158 
159 	blkbits = inode->i_blkbits;
160 	blocks_per_page = PAGE_SIZE >> blkbits;
161 
162 	/*
163 	 * Map all the blocks into the extent list.  This code doesn't try
164 	 * to be very smart.
165 	 */
166 	probe_block = 0;
167 	page_no = 0;
168 	last_block = i_size_read(inode) >> blkbits;
169 	while ((probe_block + blocks_per_page) <= last_block &&
170 			page_no < sis->max) {
171 		unsigned block_in_page;
172 		sector_t first_block;
173 
174 		cond_resched();
175 
176 		first_block = bmap(inode, probe_block);
177 		if (first_block == 0)
178 			goto bad_bmap;
179 
180 		/*
181 		 * It must be PAGE_SIZE aligned on-disk
182 		 */
183 		if (first_block & (blocks_per_page - 1)) {
184 			probe_block++;
185 			goto reprobe;
186 		}
187 
188 		for (block_in_page = 1; block_in_page < blocks_per_page;
189 					block_in_page++) {
190 			sector_t block;
191 
192 			block = bmap(inode, probe_block + block_in_page);
193 			if (block == 0)
194 				goto bad_bmap;
195 			if (block != first_block + block_in_page) {
196 				/* Discontiguity */
197 				probe_block++;
198 				goto reprobe;
199 			}
200 		}
201 
202 		first_block >>= (PAGE_SHIFT - blkbits);
203 		if (page_no) {	/* exclude the header page */
204 			if (first_block < lowest_block)
205 				lowest_block = first_block;
206 			if (first_block > highest_block)
207 				highest_block = first_block;
208 		}
209 
210 		/*
211 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
212 		 */
213 		ret = add_swap_extent(sis, page_no, 1, first_block);
214 		if (ret < 0)
215 			goto out;
216 		nr_extents += ret;
217 		page_no++;
218 		probe_block += blocks_per_page;
219 reprobe:
220 		continue;
221 	}
222 	ret = nr_extents;
223 	*span = 1 + highest_block - lowest_block;
224 	if (page_no == 0)
225 		page_no = 1;	/* force Empty message */
226 	sis->max = page_no;
227 	sis->pages = page_no - 1;
228 	sis->highest_bit = page_no - 1;
229 out:
230 	return ret;
231 bad_bmap:
232 	pr_err("swapon: swapfile has holes\n");
233 	ret = -EINVAL;
234 	goto out;
235 }
236 
237 /*
238  * We may have stale swap cache pages in memory: notice
239  * them here and get rid of the unnecessary final write.
240  */
241 int swap_writepage(struct page *page, struct writeback_control *wbc)
242 {
243 	int ret = 0;
244 
245 	if (try_to_free_swap(page)) {
246 		unlock_page(page);
247 		goto out;
248 	}
249 	if (frontswap_store(page) == 0) {
250 		set_page_writeback(page);
251 		unlock_page(page);
252 		end_page_writeback(page);
253 		goto out;
254 	}
255 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
256 out:
257 	return ret;
258 }
259 
260 static sector_t swap_page_sector(struct page *page)
261 {
262 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
263 }
264 
265 int __swap_writepage(struct page *page, struct writeback_control *wbc,
266 		bio_end_io_t end_write_func)
267 {
268 	struct bio *bio;
269 	int ret;
270 	struct swap_info_struct *sis = page_swap_info(page);
271 
272 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
273 	if (sis->flags & SWP_FILE) {
274 		struct kiocb kiocb;
275 		struct file *swap_file = sis->swap_file;
276 		struct address_space *mapping = swap_file->f_mapping;
277 		struct bio_vec bv = {
278 			.bv_page = page,
279 			.bv_len  = PAGE_SIZE,
280 			.bv_offset = 0
281 		};
282 		struct iov_iter from;
283 
284 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
285 		init_sync_kiocb(&kiocb, swap_file);
286 		kiocb.ki_pos = page_file_offset(page);
287 
288 		set_page_writeback(page);
289 		unlock_page(page);
290 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
291 		if (ret == PAGE_SIZE) {
292 			count_vm_event(PSWPOUT);
293 			ret = 0;
294 		} else {
295 			/*
296 			 * In the case of swap-over-nfs, this can be a
297 			 * temporary failure if the system has limited
298 			 * memory for allocating transmit buffers.
299 			 * Mark the page dirty and avoid
300 			 * rotate_reclaimable_page but rate-limit the
301 			 * messages but do not flag PageError like
302 			 * the normal direct-to-bio case as it could
303 			 * be temporary.
304 			 */
305 			set_page_dirty(page);
306 			ClearPageReclaim(page);
307 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
308 					   page_file_offset(page));
309 		}
310 		end_page_writeback(page);
311 		return ret;
312 	}
313 
314 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
315 	if (!ret) {
316 		count_vm_event(PSWPOUT);
317 		return 0;
318 	}
319 
320 	ret = 0;
321 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
322 	if (bio == NULL) {
323 		set_page_dirty(page);
324 		unlock_page(page);
325 		ret = -ENOMEM;
326 		goto out;
327 	}
328 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
329 	count_vm_event(PSWPOUT);
330 	set_page_writeback(page);
331 	unlock_page(page);
332 	submit_bio(bio);
333 out:
334 	return ret;
335 }
336 
337 int swap_readpage(struct page *page, bool do_poll)
338 {
339 	struct bio *bio;
340 	int ret = 0;
341 	struct swap_info_struct *sis = page_swap_info(page);
342 	blk_qc_t qc;
343 	struct block_device *bdev;
344 
345 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
346 	VM_BUG_ON_PAGE(!PageLocked(page), page);
347 	VM_BUG_ON_PAGE(PageUptodate(page), page);
348 	if (frontswap_load(page) == 0) {
349 		SetPageUptodate(page);
350 		unlock_page(page);
351 		goto out;
352 	}
353 
354 	if (sis->flags & SWP_FILE) {
355 		struct file *swap_file = sis->swap_file;
356 		struct address_space *mapping = swap_file->f_mapping;
357 
358 		ret = mapping->a_ops->readpage(swap_file, page);
359 		if (!ret)
360 			count_vm_event(PSWPIN);
361 		return ret;
362 	}
363 
364 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
365 	if (!ret) {
366 		if (trylock_page(page)) {
367 			swap_slot_free_notify(page);
368 			unlock_page(page);
369 		}
370 
371 		count_vm_event(PSWPIN);
372 		return 0;
373 	}
374 
375 	ret = 0;
376 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
377 	if (bio == NULL) {
378 		unlock_page(page);
379 		ret = -ENOMEM;
380 		goto out;
381 	}
382 	bdev = bio->bi_bdev;
383 	/*
384 	 * Keep this task valid during swap readpage because the oom killer may
385 	 * attempt to access it in the page fault retry time check.
386 	 */
387 	get_task_struct(current);
388 	bio->bi_private = current;
389 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
390 	count_vm_event(PSWPIN);
391 	bio_get(bio);
392 	qc = submit_bio(bio);
393 	while (do_poll) {
394 		set_current_state(TASK_UNINTERRUPTIBLE);
395 		if (!READ_ONCE(bio->bi_private))
396 			break;
397 
398 		if (!blk_mq_poll(bdev_get_queue(bdev), qc))
399 			break;
400 	}
401 	__set_current_state(TASK_RUNNING);
402 	bio_put(bio);
403 
404 out:
405 	return ret;
406 }
407 
408 int swap_set_page_dirty(struct page *page)
409 {
410 	struct swap_info_struct *sis = page_swap_info(page);
411 
412 	if (sis->flags & SWP_FILE) {
413 		struct address_space *mapping = sis->swap_file->f_mapping;
414 
415 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
416 		return mapping->a_ops->set_page_dirty(page);
417 	} else {
418 		return __set_page_dirty_no_writeback(page);
419 	}
420 }
421