xref: /openbmc/linux/mm/page_io.c (revision 980c3799)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/psi.h>
26 #include <linux/uio.h>
27 #include <linux/sched/task.h>
28 #include <linux/delayacct.h>
29 
30 void end_swap_bio_write(struct bio *bio)
31 {
32 	struct page *page = bio_first_page_all(bio);
33 
34 	if (bio->bi_status) {
35 		SetPageError(page);
36 		/*
37 		 * We failed to write the page out to swap-space.
38 		 * Re-dirty the page in order to avoid it being reclaimed.
39 		 * Also print a dire warning that things will go BAD (tm)
40 		 * very quickly.
41 		 *
42 		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
43 		 */
44 		set_page_dirty(page);
45 		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
46 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
47 				     (unsigned long long)bio->bi_iter.bi_sector);
48 		ClearPageReclaim(page);
49 	}
50 	end_page_writeback(page);
51 	bio_put(bio);
52 }
53 
54 static void swap_slot_free_notify(struct page *page)
55 {
56 	struct swap_info_struct *sis;
57 	struct gendisk *disk;
58 	swp_entry_t entry;
59 
60 	/*
61 	 * There is no guarantee that the page is in swap cache - the software
62 	 * suspend code (at least) uses end_swap_bio_read() against a non-
63 	 * swapcache page.  So we must check PG_swapcache before proceeding with
64 	 * this optimization.
65 	 */
66 	if (unlikely(!PageSwapCache(page)))
67 		return;
68 
69 	sis = page_swap_info(page);
70 	if (data_race(!(sis->flags & SWP_BLKDEV)))
71 		return;
72 
73 	/*
74 	 * The swap subsystem performs lazy swap slot freeing,
75 	 * expecting that the page will be swapped out again.
76 	 * So we can avoid an unnecessary write if the page
77 	 * isn't redirtied.
78 	 * This is good for real swap storage because we can
79 	 * reduce unnecessary I/O and enhance wear-leveling
80 	 * if an SSD is used as the as swap device.
81 	 * But if in-memory swap device (eg zram) is used,
82 	 * this causes a duplicated copy between uncompressed
83 	 * data in VM-owned memory and compressed data in
84 	 * zram-owned memory.  So let's free zram-owned memory
85 	 * and make the VM-owned decompressed page *dirty*,
86 	 * so the page should be swapped out somewhere again if
87 	 * we again wish to reclaim it.
88 	 */
89 	disk = sis->bdev->bd_disk;
90 	entry.val = page_private(page);
91 	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
92 		unsigned long offset;
93 
94 		offset = swp_offset(entry);
95 
96 		SetPageDirty(page);
97 		disk->fops->swap_slot_free_notify(sis->bdev,
98 				offset);
99 	}
100 }
101 
102 static void end_swap_bio_read(struct bio *bio)
103 {
104 	struct page *page = bio_first_page_all(bio);
105 	struct task_struct *waiter = bio->bi_private;
106 
107 	if (bio->bi_status) {
108 		SetPageError(page);
109 		ClearPageUptodate(page);
110 		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
111 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
112 				     (unsigned long long)bio->bi_iter.bi_sector);
113 		goto out;
114 	}
115 
116 	SetPageUptodate(page);
117 	swap_slot_free_notify(page);
118 out:
119 	unlock_page(page);
120 	WRITE_ONCE(bio->bi_private, NULL);
121 	bio_put(bio);
122 	if (waiter) {
123 		blk_wake_io_task(waiter);
124 		put_task_struct(waiter);
125 	}
126 }
127 
128 int generic_swapfile_activate(struct swap_info_struct *sis,
129 				struct file *swap_file,
130 				sector_t *span)
131 {
132 	struct address_space *mapping = swap_file->f_mapping;
133 	struct inode *inode = mapping->host;
134 	unsigned blocks_per_page;
135 	unsigned long page_no;
136 	unsigned blkbits;
137 	sector_t probe_block;
138 	sector_t last_block;
139 	sector_t lowest_block = -1;
140 	sector_t highest_block = 0;
141 	int nr_extents = 0;
142 	int ret;
143 
144 	blkbits = inode->i_blkbits;
145 	blocks_per_page = PAGE_SIZE >> blkbits;
146 
147 	/*
148 	 * Map all the blocks into the extent tree.  This code doesn't try
149 	 * to be very smart.
150 	 */
151 	probe_block = 0;
152 	page_no = 0;
153 	last_block = i_size_read(inode) >> blkbits;
154 	while ((probe_block + blocks_per_page) <= last_block &&
155 			page_no < sis->max) {
156 		unsigned block_in_page;
157 		sector_t first_block;
158 
159 		cond_resched();
160 
161 		first_block = probe_block;
162 		ret = bmap(inode, &first_block);
163 		if (ret || !first_block)
164 			goto bad_bmap;
165 
166 		/*
167 		 * It must be PAGE_SIZE aligned on-disk
168 		 */
169 		if (first_block & (blocks_per_page - 1)) {
170 			probe_block++;
171 			goto reprobe;
172 		}
173 
174 		for (block_in_page = 1; block_in_page < blocks_per_page;
175 					block_in_page++) {
176 			sector_t block;
177 
178 			block = probe_block + block_in_page;
179 			ret = bmap(inode, &block);
180 			if (ret || !block)
181 				goto bad_bmap;
182 
183 			if (block != first_block + block_in_page) {
184 				/* Discontiguity */
185 				probe_block++;
186 				goto reprobe;
187 			}
188 		}
189 
190 		first_block >>= (PAGE_SHIFT - blkbits);
191 		if (page_no) {	/* exclude the header page */
192 			if (first_block < lowest_block)
193 				lowest_block = first_block;
194 			if (first_block > highest_block)
195 				highest_block = first_block;
196 		}
197 
198 		/*
199 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
200 		 */
201 		ret = add_swap_extent(sis, page_no, 1, first_block);
202 		if (ret < 0)
203 			goto out;
204 		nr_extents += ret;
205 		page_no++;
206 		probe_block += blocks_per_page;
207 reprobe:
208 		continue;
209 	}
210 	ret = nr_extents;
211 	*span = 1 + highest_block - lowest_block;
212 	if (page_no == 0)
213 		page_no = 1;	/* force Empty message */
214 	sis->max = page_no;
215 	sis->pages = page_no - 1;
216 	sis->highest_bit = page_no - 1;
217 out:
218 	return ret;
219 bad_bmap:
220 	pr_err("swapon: swapfile has holes\n");
221 	ret = -EINVAL;
222 	goto out;
223 }
224 
225 /*
226  * We may have stale swap cache pages in memory: notice
227  * them here and get rid of the unnecessary final write.
228  */
229 int swap_writepage(struct page *page, struct writeback_control *wbc)
230 {
231 	int ret = 0;
232 
233 	if (try_to_free_swap(page)) {
234 		unlock_page(page);
235 		goto out;
236 	}
237 	/*
238 	 * Arch code may have to preserve more data than just the page
239 	 * contents, e.g. memory tags.
240 	 */
241 	ret = arch_prepare_to_swap(page);
242 	if (ret) {
243 		set_page_dirty(page);
244 		unlock_page(page);
245 		goto out;
246 	}
247 	if (frontswap_store(page) == 0) {
248 		set_page_writeback(page);
249 		unlock_page(page);
250 		end_page_writeback(page);
251 		goto out;
252 	}
253 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
254 out:
255 	return ret;
256 }
257 
258 static inline void count_swpout_vm_event(struct page *page)
259 {
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
261 	if (unlikely(PageTransHuge(page)))
262 		count_vm_event(THP_SWPOUT);
263 #endif
264 	count_vm_events(PSWPOUT, thp_nr_pages(page));
265 }
266 
267 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
268 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
269 {
270 	struct cgroup_subsys_state *css;
271 	struct mem_cgroup *memcg;
272 
273 	memcg = page_memcg(page);
274 	if (!memcg)
275 		return;
276 
277 	rcu_read_lock();
278 	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
279 	bio_associate_blkg_from_css(bio, css);
280 	rcu_read_unlock();
281 }
282 #else
283 #define bio_associate_blkg_from_page(bio, page)		do { } while (0)
284 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
285 
286 int __swap_writepage(struct page *page, struct writeback_control *wbc,
287 		bio_end_io_t end_write_func)
288 {
289 	struct bio *bio;
290 	int ret;
291 	struct swap_info_struct *sis = page_swap_info(page);
292 
293 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
294 	if (data_race(sis->flags & SWP_FS_OPS)) {
295 		struct kiocb kiocb;
296 		struct file *swap_file = sis->swap_file;
297 		struct address_space *mapping = swap_file->f_mapping;
298 		struct bio_vec bv = {
299 			.bv_page = page,
300 			.bv_len  = PAGE_SIZE,
301 			.bv_offset = 0
302 		};
303 		struct iov_iter from;
304 
305 		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
306 		init_sync_kiocb(&kiocb, swap_file);
307 		kiocb.ki_pos = page_file_offset(page);
308 
309 		set_page_writeback(page);
310 		unlock_page(page);
311 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
312 		if (ret == PAGE_SIZE) {
313 			count_vm_event(PSWPOUT);
314 			ret = 0;
315 		} else {
316 			/*
317 			 * In the case of swap-over-nfs, this can be a
318 			 * temporary failure if the system has limited
319 			 * memory for allocating transmit buffers.
320 			 * Mark the page dirty and avoid
321 			 * folio_rotate_reclaimable but rate-limit the
322 			 * messages but do not flag PageError like
323 			 * the normal direct-to-bio case as it could
324 			 * be temporary.
325 			 */
326 			set_page_dirty(page);
327 			ClearPageReclaim(page);
328 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
329 					   page_file_offset(page));
330 		}
331 		end_page_writeback(page);
332 		return ret;
333 	}
334 
335 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
336 	if (!ret) {
337 		count_swpout_vm_event(page);
338 		return 0;
339 	}
340 
341 	bio = bio_alloc(sis->bdev, 1,
342 			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
343 			GFP_NOIO);
344 	bio->bi_iter.bi_sector = swap_page_sector(page);
345 	bio->bi_end_io = end_write_func;
346 	bio_add_page(bio, page, thp_size(page), 0);
347 
348 	bio_associate_blkg_from_page(bio, page);
349 	count_swpout_vm_event(page);
350 	set_page_writeback(page);
351 	unlock_page(page);
352 	submit_bio(bio);
353 
354 	return 0;
355 }
356 
357 int swap_readpage(struct page *page, bool synchronous)
358 {
359 	struct bio *bio;
360 	int ret = 0;
361 	struct swap_info_struct *sis = page_swap_info(page);
362 	bool workingset = PageWorkingset(page);
363 	unsigned long pflags;
364 
365 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
366 	VM_BUG_ON_PAGE(!PageLocked(page), page);
367 	VM_BUG_ON_PAGE(PageUptodate(page), page);
368 
369 	/*
370 	 * Count submission time as memory stall. When the device is congested,
371 	 * or the submitting cgroup IO-throttled, submission can be a
372 	 * significant part of overall IO time.
373 	 */
374 	if (workingset)
375 		psi_memstall_enter(&pflags);
376 	delayacct_swapin_start();
377 
378 	if (frontswap_load(page) == 0) {
379 		SetPageUptodate(page);
380 		unlock_page(page);
381 		goto out;
382 	}
383 
384 	if (data_race(sis->flags & SWP_FS_OPS)) {
385 		struct file *swap_file = sis->swap_file;
386 		struct address_space *mapping = swap_file->f_mapping;
387 
388 		ret = mapping->a_ops->readpage(swap_file, page);
389 		if (!ret)
390 			count_vm_event(PSWPIN);
391 		goto out;
392 	}
393 
394 	if (sis->flags & SWP_SYNCHRONOUS_IO) {
395 		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
396 		if (!ret) {
397 			if (trylock_page(page)) {
398 				swap_slot_free_notify(page);
399 				unlock_page(page);
400 			}
401 
402 			count_vm_event(PSWPIN);
403 			goto out;
404 		}
405 	}
406 
407 	ret = 0;
408 	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
409 	bio->bi_iter.bi_sector = swap_page_sector(page);
410 	bio->bi_end_io = end_swap_bio_read;
411 	bio_add_page(bio, page, thp_size(page), 0);
412 	/*
413 	 * Keep this task valid during swap readpage because the oom killer may
414 	 * attempt to access it in the page fault retry time check.
415 	 */
416 	if (synchronous) {
417 		bio->bi_opf |= REQ_POLLED;
418 		get_task_struct(current);
419 		bio->bi_private = current;
420 	}
421 	count_vm_event(PSWPIN);
422 	bio_get(bio);
423 	submit_bio(bio);
424 	while (synchronous) {
425 		set_current_state(TASK_UNINTERRUPTIBLE);
426 		if (!READ_ONCE(bio->bi_private))
427 			break;
428 
429 		if (!bio_poll(bio, NULL, 0))
430 			blk_io_schedule();
431 	}
432 	__set_current_state(TASK_RUNNING);
433 	bio_put(bio);
434 
435 out:
436 	if (workingset)
437 		psi_memstall_leave(&pflags);
438 	delayacct_swapin_end();
439 	return ret;
440 }
441 
442 bool swap_dirty_folio(struct address_space *mapping, struct folio *folio)
443 {
444 	struct swap_info_struct *sis = swp_swap_info(folio_swap_entry(folio));
445 
446 	if (data_race(sis->flags & SWP_FS_OPS)) {
447 		const struct address_space_operations *aops;
448 
449 		mapping = sis->swap_file->f_mapping;
450 		aops = mapping->a_ops;
451 
452 		VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
453 		return aops->dirty_folio(mapping, folio);
454 	} else {
455 		return noop_dirty_folio(mapping, folio);
456 	}
457 }
458