xref: /openbmc/linux/mm/page_io.c (revision 6a6d6681ac1add9655b7ab5dd0b46b54aeb1b44f)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/page_io.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   *
7   *  Swap reorganised 29.12.95,
8   *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9   *  Removed race in async swapping. 14.4.1996. Bruno Haible
10   *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11   *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12   */
13  
14  #include <linux/mm.h>
15  #include <linux/kernel_stat.h>
16  #include <linux/gfp.h>
17  #include <linux/pagemap.h>
18  #include <linux/swap.h>
19  #include <linux/bio.h>
20  #include <linux/swapops.h>
21  #include <linux/buffer_head.h>
22  #include <linux/writeback.h>
23  #include <linux/frontswap.h>
24  #include <linux/blkdev.h>
25  #include <linux/uio.h>
26  #include <linux/sched/task.h>
27  #include <asm/pgtable.h>
28  
29  static struct bio *get_swap_bio(gfp_t gfp_flags,
30  				struct page *page, bio_end_io_t end_io)
31  {
32  	int i, nr = hpage_nr_pages(page);
33  	struct bio *bio;
34  
35  	bio = bio_alloc(gfp_flags, nr);
36  	if (bio) {
37  		struct block_device *bdev;
38  
39  		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40  		bio_set_dev(bio, bdev);
41  		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42  		bio->bi_end_io = end_io;
43  
44  		for (i = 0; i < nr; i++)
45  			bio_add_page(bio, page + i, PAGE_SIZE, 0);
46  		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
47  	}
48  	return bio;
49  }
50  
51  void end_swap_bio_write(struct bio *bio)
52  {
53  	struct page *page = bio_first_page_all(bio);
54  
55  	if (bio->bi_status) {
56  		SetPageError(page);
57  		/*
58  		 * We failed to write the page out to swap-space.
59  		 * Re-dirty the page in order to avoid it being reclaimed.
60  		 * Also print a dire warning that things will go BAD (tm)
61  		 * very quickly.
62  		 *
63  		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
64  		 */
65  		set_page_dirty(page);
66  		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
67  			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
68  			 (unsigned long long)bio->bi_iter.bi_sector);
69  		ClearPageReclaim(page);
70  	}
71  	end_page_writeback(page);
72  	bio_put(bio);
73  }
74  
75  static void swap_slot_free_notify(struct page *page)
76  {
77  	struct swap_info_struct *sis;
78  	struct gendisk *disk;
79  
80  	/*
81  	 * There is no guarantee that the page is in swap cache - the software
82  	 * suspend code (at least) uses end_swap_bio_read() against a non-
83  	 * swapcache page.  So we must check PG_swapcache before proceeding with
84  	 * this optimization.
85  	 */
86  	if (unlikely(!PageSwapCache(page)))
87  		return;
88  
89  	sis = page_swap_info(page);
90  	if (!(sis->flags & SWP_BLKDEV))
91  		return;
92  
93  	/*
94  	 * The swap subsystem performs lazy swap slot freeing,
95  	 * expecting that the page will be swapped out again.
96  	 * So we can avoid an unnecessary write if the page
97  	 * isn't redirtied.
98  	 * This is good for real swap storage because we can
99  	 * reduce unnecessary I/O and enhance wear-leveling
100  	 * if an SSD is used as the as swap device.
101  	 * But if in-memory swap device (eg zram) is used,
102  	 * this causes a duplicated copy between uncompressed
103  	 * data in VM-owned memory and compressed data in
104  	 * zram-owned memory.  So let's free zram-owned memory
105  	 * and make the VM-owned decompressed page *dirty*,
106  	 * so the page should be swapped out somewhere again if
107  	 * we again wish to reclaim it.
108  	 */
109  	disk = sis->bdev->bd_disk;
110  	if (disk->fops->swap_slot_free_notify) {
111  		swp_entry_t entry;
112  		unsigned long offset;
113  
114  		entry.val = page_private(page);
115  		offset = swp_offset(entry);
116  
117  		SetPageDirty(page);
118  		disk->fops->swap_slot_free_notify(sis->bdev,
119  				offset);
120  	}
121  }
122  
123  static void end_swap_bio_read(struct bio *bio)
124  {
125  	struct page *page = bio_first_page_all(bio);
126  	struct task_struct *waiter = bio->bi_private;
127  
128  	if (bio->bi_status) {
129  		SetPageError(page);
130  		ClearPageUptodate(page);
131  		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
132  			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
133  			 (unsigned long long)bio->bi_iter.bi_sector);
134  		goto out;
135  	}
136  
137  	SetPageUptodate(page);
138  	swap_slot_free_notify(page);
139  out:
140  	unlock_page(page);
141  	WRITE_ONCE(bio->bi_private, NULL);
142  	bio_put(bio);
143  	wake_up_process(waiter);
144  	put_task_struct(waiter);
145  }
146  
147  int generic_swapfile_activate(struct swap_info_struct *sis,
148  				struct file *swap_file,
149  				sector_t *span)
150  {
151  	struct address_space *mapping = swap_file->f_mapping;
152  	struct inode *inode = mapping->host;
153  	unsigned blocks_per_page;
154  	unsigned long page_no;
155  	unsigned blkbits;
156  	sector_t probe_block;
157  	sector_t last_block;
158  	sector_t lowest_block = -1;
159  	sector_t highest_block = 0;
160  	int nr_extents = 0;
161  	int ret;
162  
163  	blkbits = inode->i_blkbits;
164  	blocks_per_page = PAGE_SIZE >> blkbits;
165  
166  	/*
167  	 * Map all the blocks into the extent list.  This code doesn't try
168  	 * to be very smart.
169  	 */
170  	probe_block = 0;
171  	page_no = 0;
172  	last_block = i_size_read(inode) >> blkbits;
173  	while ((probe_block + blocks_per_page) <= last_block &&
174  			page_no < sis->max) {
175  		unsigned block_in_page;
176  		sector_t first_block;
177  
178  		cond_resched();
179  
180  		first_block = bmap(inode, probe_block);
181  		if (first_block == 0)
182  			goto bad_bmap;
183  
184  		/*
185  		 * It must be PAGE_SIZE aligned on-disk
186  		 */
187  		if (first_block & (blocks_per_page - 1)) {
188  			probe_block++;
189  			goto reprobe;
190  		}
191  
192  		for (block_in_page = 1; block_in_page < blocks_per_page;
193  					block_in_page++) {
194  			sector_t block;
195  
196  			block = bmap(inode, probe_block + block_in_page);
197  			if (block == 0)
198  				goto bad_bmap;
199  			if (block != first_block + block_in_page) {
200  				/* Discontiguity */
201  				probe_block++;
202  				goto reprobe;
203  			}
204  		}
205  
206  		first_block >>= (PAGE_SHIFT - blkbits);
207  		if (page_no) {	/* exclude the header page */
208  			if (first_block < lowest_block)
209  				lowest_block = first_block;
210  			if (first_block > highest_block)
211  				highest_block = first_block;
212  		}
213  
214  		/*
215  		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
216  		 */
217  		ret = add_swap_extent(sis, page_no, 1, first_block);
218  		if (ret < 0)
219  			goto out;
220  		nr_extents += ret;
221  		page_no++;
222  		probe_block += blocks_per_page;
223  reprobe:
224  		continue;
225  	}
226  	ret = nr_extents;
227  	*span = 1 + highest_block - lowest_block;
228  	if (page_no == 0)
229  		page_no = 1;	/* force Empty message */
230  	sis->max = page_no;
231  	sis->pages = page_no - 1;
232  	sis->highest_bit = page_no - 1;
233  out:
234  	return ret;
235  bad_bmap:
236  	pr_err("swapon: swapfile has holes\n");
237  	ret = -EINVAL;
238  	goto out;
239  }
240  
241  /*
242   * We may have stale swap cache pages in memory: notice
243   * them here and get rid of the unnecessary final write.
244   */
245  int swap_writepage(struct page *page, struct writeback_control *wbc)
246  {
247  	int ret = 0;
248  
249  	if (try_to_free_swap(page)) {
250  		unlock_page(page);
251  		goto out;
252  	}
253  	if (frontswap_store(page) == 0) {
254  		set_page_writeback(page);
255  		unlock_page(page);
256  		end_page_writeback(page);
257  		goto out;
258  	}
259  	ret = __swap_writepage(page, wbc, end_swap_bio_write);
260  out:
261  	return ret;
262  }
263  
264  static sector_t swap_page_sector(struct page *page)
265  {
266  	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
267  }
268  
269  static inline void count_swpout_vm_event(struct page *page)
270  {
271  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
272  	if (unlikely(PageTransHuge(page)))
273  		count_vm_event(THP_SWPOUT);
274  #endif
275  	count_vm_events(PSWPOUT, hpage_nr_pages(page));
276  }
277  
278  int __swap_writepage(struct page *page, struct writeback_control *wbc,
279  		bio_end_io_t end_write_func)
280  {
281  	struct bio *bio;
282  	int ret;
283  	struct swap_info_struct *sis = page_swap_info(page);
284  
285  	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
286  	if (sis->flags & SWP_FS) {
287  		struct kiocb kiocb;
288  		struct file *swap_file = sis->swap_file;
289  		struct address_space *mapping = swap_file->f_mapping;
290  		struct bio_vec bv = {
291  			.bv_page = page,
292  			.bv_len  = PAGE_SIZE,
293  			.bv_offset = 0
294  		};
295  		struct iov_iter from;
296  
297  		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
298  		init_sync_kiocb(&kiocb, swap_file);
299  		kiocb.ki_pos = page_file_offset(page);
300  
301  		set_page_writeback(page);
302  		unlock_page(page);
303  		ret = mapping->a_ops->direct_IO(&kiocb, &from);
304  		if (ret == PAGE_SIZE) {
305  			count_vm_event(PSWPOUT);
306  			ret = 0;
307  		} else {
308  			/*
309  			 * In the case of swap-over-nfs, this can be a
310  			 * temporary failure if the system has limited
311  			 * memory for allocating transmit buffers.
312  			 * Mark the page dirty and avoid
313  			 * rotate_reclaimable_page but rate-limit the
314  			 * messages but do not flag PageError like
315  			 * the normal direct-to-bio case as it could
316  			 * be temporary.
317  			 */
318  			set_page_dirty(page);
319  			ClearPageReclaim(page);
320  			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
321  					   page_file_offset(page));
322  		}
323  		end_page_writeback(page);
324  		return ret;
325  	}
326  
327  	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
328  	if (!ret) {
329  		count_swpout_vm_event(page);
330  		return 0;
331  	}
332  
333  	ret = 0;
334  	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
335  	if (bio == NULL) {
336  		set_page_dirty(page);
337  		unlock_page(page);
338  		ret = -ENOMEM;
339  		goto out;
340  	}
341  	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
342  	bio_associate_blkcg_from_page(bio, page);
343  	count_swpout_vm_event(page);
344  	set_page_writeback(page);
345  	unlock_page(page);
346  	submit_bio(bio);
347  out:
348  	return ret;
349  }
350  
351  int swap_readpage(struct page *page, bool synchronous)
352  {
353  	struct bio *bio;
354  	int ret = 0;
355  	struct swap_info_struct *sis = page_swap_info(page);
356  	blk_qc_t qc;
357  	struct gendisk *disk;
358  
359  	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
360  	VM_BUG_ON_PAGE(!PageLocked(page), page);
361  	VM_BUG_ON_PAGE(PageUptodate(page), page);
362  	if (frontswap_load(page) == 0) {
363  		SetPageUptodate(page);
364  		unlock_page(page);
365  		goto out;
366  	}
367  
368  	if (sis->flags & SWP_FS) {
369  		struct file *swap_file = sis->swap_file;
370  		struct address_space *mapping = swap_file->f_mapping;
371  
372  		ret = mapping->a_ops->readpage(swap_file, page);
373  		if (!ret)
374  			count_vm_event(PSWPIN);
375  		return ret;
376  	}
377  
378  	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
379  	if (!ret) {
380  		if (trylock_page(page)) {
381  			swap_slot_free_notify(page);
382  			unlock_page(page);
383  		}
384  
385  		count_vm_event(PSWPIN);
386  		return 0;
387  	}
388  
389  	ret = 0;
390  	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
391  	if (bio == NULL) {
392  		unlock_page(page);
393  		ret = -ENOMEM;
394  		goto out;
395  	}
396  	disk = bio->bi_disk;
397  	/*
398  	 * Keep this task valid during swap readpage because the oom killer may
399  	 * attempt to access it in the page fault retry time check.
400  	 */
401  	get_task_struct(current);
402  	bio->bi_private = current;
403  	bio_set_op_attrs(bio, REQ_OP_READ, 0);
404  	count_vm_event(PSWPIN);
405  	bio_get(bio);
406  	qc = submit_bio(bio);
407  	while (synchronous) {
408  		set_current_state(TASK_UNINTERRUPTIBLE);
409  		if (!READ_ONCE(bio->bi_private))
410  			break;
411  
412  		if (!blk_poll(disk->queue, qc))
413  			break;
414  	}
415  	__set_current_state(TASK_RUNNING);
416  	bio_put(bio);
417  
418  out:
419  	return ret;
420  }
421  
422  int swap_set_page_dirty(struct page *page)
423  {
424  	struct swap_info_struct *sis = page_swap_info(page);
425  
426  	if (sis->flags & SWP_FS) {
427  		struct address_space *mapping = sis->swap_file->f_mapping;
428  
429  		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
430  		return mapping->a_ops->set_page_dirty(page);
431  	} else {
432  		return __set_page_dirty_no_writeback(page);
433  	}
434  }
435