xref: /openbmc/linux/mm/page_io.c (revision 4cff79e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28 
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30 				struct page *page, bio_end_io_t end_io)
31 {
32 	int i, nr = hpage_nr_pages(page);
33 	struct bio *bio;
34 
35 	bio = bio_alloc(gfp_flags, nr);
36 	if (bio) {
37 		struct block_device *bdev;
38 
39 		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
40 		bio_set_dev(bio, bdev);
41 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
42 		bio->bi_end_io = end_io;
43 
44 		for (i = 0; i < nr; i++)
45 			bio_add_page(bio, page + i, PAGE_SIZE, 0);
46 		VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
47 	}
48 	return bio;
49 }
50 
51 void end_swap_bio_write(struct bio *bio)
52 {
53 	struct page *page = bio_first_page_all(bio);
54 
55 	if (bio->bi_status) {
56 		SetPageError(page);
57 		/*
58 		 * We failed to write the page out to swap-space.
59 		 * Re-dirty the page in order to avoid it being reclaimed.
60 		 * Also print a dire warning that things will go BAD (tm)
61 		 * very quickly.
62 		 *
63 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
64 		 */
65 		set_page_dirty(page);
66 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
67 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
68 			 (unsigned long long)bio->bi_iter.bi_sector);
69 		ClearPageReclaim(page);
70 	}
71 	end_page_writeback(page);
72 	bio_put(bio);
73 }
74 
75 static void swap_slot_free_notify(struct page *page)
76 {
77 	struct swap_info_struct *sis;
78 	struct gendisk *disk;
79 
80 	/*
81 	 * There is no guarantee that the page is in swap cache - the software
82 	 * suspend code (at least) uses end_swap_bio_read() against a non-
83 	 * swapcache page.  So we must check PG_swapcache before proceeding with
84 	 * this optimization.
85 	 */
86 	if (unlikely(!PageSwapCache(page)))
87 		return;
88 
89 	sis = page_swap_info(page);
90 	if (!(sis->flags & SWP_BLKDEV))
91 		return;
92 
93 	/*
94 	 * The swap subsystem performs lazy swap slot freeing,
95 	 * expecting that the page will be swapped out again.
96 	 * So we can avoid an unnecessary write if the page
97 	 * isn't redirtied.
98 	 * This is good for real swap storage because we can
99 	 * reduce unnecessary I/O and enhance wear-leveling
100 	 * if an SSD is used as the as swap device.
101 	 * But if in-memory swap device (eg zram) is used,
102 	 * this causes a duplicated copy between uncompressed
103 	 * data in VM-owned memory and compressed data in
104 	 * zram-owned memory.  So let's free zram-owned memory
105 	 * and make the VM-owned decompressed page *dirty*,
106 	 * so the page should be swapped out somewhere again if
107 	 * we again wish to reclaim it.
108 	 */
109 	disk = sis->bdev->bd_disk;
110 	if (disk->fops->swap_slot_free_notify) {
111 		swp_entry_t entry;
112 		unsigned long offset;
113 
114 		entry.val = page_private(page);
115 		offset = swp_offset(entry);
116 
117 		SetPageDirty(page);
118 		disk->fops->swap_slot_free_notify(sis->bdev,
119 				offset);
120 	}
121 }
122 
123 static void end_swap_bio_read(struct bio *bio)
124 {
125 	struct page *page = bio_first_page_all(bio);
126 	struct task_struct *waiter = bio->bi_private;
127 
128 	if (bio->bi_status) {
129 		SetPageError(page);
130 		ClearPageUptodate(page);
131 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
132 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
133 			 (unsigned long long)bio->bi_iter.bi_sector);
134 		goto out;
135 	}
136 
137 	SetPageUptodate(page);
138 	swap_slot_free_notify(page);
139 out:
140 	unlock_page(page);
141 	WRITE_ONCE(bio->bi_private, NULL);
142 	bio_put(bio);
143 	wake_up_process(waiter);
144 	put_task_struct(waiter);
145 }
146 
147 int generic_swapfile_activate(struct swap_info_struct *sis,
148 				struct file *swap_file,
149 				sector_t *span)
150 {
151 	struct address_space *mapping = swap_file->f_mapping;
152 	struct inode *inode = mapping->host;
153 	unsigned blocks_per_page;
154 	unsigned long page_no;
155 	unsigned blkbits;
156 	sector_t probe_block;
157 	sector_t last_block;
158 	sector_t lowest_block = -1;
159 	sector_t highest_block = 0;
160 	int nr_extents = 0;
161 	int ret;
162 
163 	blkbits = inode->i_blkbits;
164 	blocks_per_page = PAGE_SIZE >> blkbits;
165 
166 	/*
167 	 * Map all the blocks into the extent list.  This code doesn't try
168 	 * to be very smart.
169 	 */
170 	probe_block = 0;
171 	page_no = 0;
172 	last_block = i_size_read(inode) >> blkbits;
173 	while ((probe_block + blocks_per_page) <= last_block &&
174 			page_no < sis->max) {
175 		unsigned block_in_page;
176 		sector_t first_block;
177 
178 		cond_resched();
179 
180 		first_block = bmap(inode, probe_block);
181 		if (first_block == 0)
182 			goto bad_bmap;
183 
184 		/*
185 		 * It must be PAGE_SIZE aligned on-disk
186 		 */
187 		if (first_block & (blocks_per_page - 1)) {
188 			probe_block++;
189 			goto reprobe;
190 		}
191 
192 		for (block_in_page = 1; block_in_page < blocks_per_page;
193 					block_in_page++) {
194 			sector_t block;
195 
196 			block = bmap(inode, probe_block + block_in_page);
197 			if (block == 0)
198 				goto bad_bmap;
199 			if (block != first_block + block_in_page) {
200 				/* Discontiguity */
201 				probe_block++;
202 				goto reprobe;
203 			}
204 		}
205 
206 		first_block >>= (PAGE_SHIFT - blkbits);
207 		if (page_no) {	/* exclude the header page */
208 			if (first_block < lowest_block)
209 				lowest_block = first_block;
210 			if (first_block > highest_block)
211 				highest_block = first_block;
212 		}
213 
214 		/*
215 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
216 		 */
217 		ret = add_swap_extent(sis, page_no, 1, first_block);
218 		if (ret < 0)
219 			goto out;
220 		nr_extents += ret;
221 		page_no++;
222 		probe_block += blocks_per_page;
223 reprobe:
224 		continue;
225 	}
226 	ret = nr_extents;
227 	*span = 1 + highest_block - lowest_block;
228 	if (page_no == 0)
229 		page_no = 1;	/* force Empty message */
230 	sis->max = page_no;
231 	sis->pages = page_no - 1;
232 	sis->highest_bit = page_no - 1;
233 out:
234 	return ret;
235 bad_bmap:
236 	pr_err("swapon: swapfile has holes\n");
237 	ret = -EINVAL;
238 	goto out;
239 }
240 
241 /*
242  * We may have stale swap cache pages in memory: notice
243  * them here and get rid of the unnecessary final write.
244  */
245 int swap_writepage(struct page *page, struct writeback_control *wbc)
246 {
247 	int ret = 0;
248 
249 	if (try_to_free_swap(page)) {
250 		unlock_page(page);
251 		goto out;
252 	}
253 	if (frontswap_store(page) == 0) {
254 		set_page_writeback(page);
255 		unlock_page(page);
256 		end_page_writeback(page);
257 		goto out;
258 	}
259 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
260 out:
261 	return ret;
262 }
263 
264 static sector_t swap_page_sector(struct page *page)
265 {
266 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
267 }
268 
269 static inline void count_swpout_vm_event(struct page *page)
270 {
271 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
272 	if (unlikely(PageTransHuge(page)))
273 		count_vm_event(THP_SWPOUT);
274 #endif
275 	count_vm_events(PSWPOUT, hpage_nr_pages(page));
276 }
277 
278 int __swap_writepage(struct page *page, struct writeback_control *wbc,
279 		bio_end_io_t end_write_func)
280 {
281 	struct bio *bio;
282 	int ret;
283 	struct swap_info_struct *sis = page_swap_info(page);
284 
285 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
286 	if (sis->flags & SWP_FILE) {
287 		struct kiocb kiocb;
288 		struct file *swap_file = sis->swap_file;
289 		struct address_space *mapping = swap_file->f_mapping;
290 		struct bio_vec bv = {
291 			.bv_page = page,
292 			.bv_len  = PAGE_SIZE,
293 			.bv_offset = 0
294 		};
295 		struct iov_iter from;
296 
297 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
298 		init_sync_kiocb(&kiocb, swap_file);
299 		kiocb.ki_pos = page_file_offset(page);
300 
301 		set_page_writeback(page);
302 		unlock_page(page);
303 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
304 		if (ret == PAGE_SIZE) {
305 			count_vm_event(PSWPOUT);
306 			ret = 0;
307 		} else {
308 			/*
309 			 * In the case of swap-over-nfs, this can be a
310 			 * temporary failure if the system has limited
311 			 * memory for allocating transmit buffers.
312 			 * Mark the page dirty and avoid
313 			 * rotate_reclaimable_page but rate-limit the
314 			 * messages but do not flag PageError like
315 			 * the normal direct-to-bio case as it could
316 			 * be temporary.
317 			 */
318 			set_page_dirty(page);
319 			ClearPageReclaim(page);
320 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
321 					   page_file_offset(page));
322 		}
323 		end_page_writeback(page);
324 		return ret;
325 	}
326 
327 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
328 	if (!ret) {
329 		count_swpout_vm_event(page);
330 		return 0;
331 	}
332 
333 	ret = 0;
334 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
335 	if (bio == NULL) {
336 		set_page_dirty(page);
337 		unlock_page(page);
338 		ret = -ENOMEM;
339 		goto out;
340 	}
341 	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
342 	count_swpout_vm_event(page);
343 	set_page_writeback(page);
344 	unlock_page(page);
345 	submit_bio(bio);
346 out:
347 	return ret;
348 }
349 
350 int swap_readpage(struct page *page, bool synchronous)
351 {
352 	struct bio *bio;
353 	int ret = 0;
354 	struct swap_info_struct *sis = page_swap_info(page);
355 	blk_qc_t qc;
356 	struct gendisk *disk;
357 
358 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359 	VM_BUG_ON_PAGE(!PageLocked(page), page);
360 	VM_BUG_ON_PAGE(PageUptodate(page), page);
361 	if (frontswap_load(page) == 0) {
362 		SetPageUptodate(page);
363 		unlock_page(page);
364 		goto out;
365 	}
366 
367 	if (sis->flags & SWP_FILE) {
368 		struct file *swap_file = sis->swap_file;
369 		struct address_space *mapping = swap_file->f_mapping;
370 
371 		ret = mapping->a_ops->readpage(swap_file, page);
372 		if (!ret)
373 			count_vm_event(PSWPIN);
374 		return ret;
375 	}
376 
377 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378 	if (!ret) {
379 		if (trylock_page(page)) {
380 			swap_slot_free_notify(page);
381 			unlock_page(page);
382 		}
383 
384 		count_vm_event(PSWPIN);
385 		return 0;
386 	}
387 
388 	ret = 0;
389 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390 	if (bio == NULL) {
391 		unlock_page(page);
392 		ret = -ENOMEM;
393 		goto out;
394 	}
395 	disk = bio->bi_disk;
396 	/*
397 	 * Keep this task valid during swap readpage because the oom killer may
398 	 * attempt to access it in the page fault retry time check.
399 	 */
400 	get_task_struct(current);
401 	bio->bi_private = current;
402 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
403 	count_vm_event(PSWPIN);
404 	bio_get(bio);
405 	qc = submit_bio(bio);
406 	while (synchronous) {
407 		set_current_state(TASK_UNINTERRUPTIBLE);
408 		if (!READ_ONCE(bio->bi_private))
409 			break;
410 
411 		if (!blk_poll(disk->queue, qc))
412 			break;
413 	}
414 	__set_current_state(TASK_RUNNING);
415 	bio_put(bio);
416 
417 out:
418 	return ret;
419 }
420 
421 int swap_set_page_dirty(struct page *page)
422 {
423 	struct swap_info_struct *sis = page_swap_info(page);
424 
425 	if (sis->flags & SWP_FILE) {
426 		struct address_space *mapping = sis->swap_file->f_mapping;
427 
428 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
429 		return mapping->a_ops->set_page_dirty(page);
430 	} else {
431 		return __set_page_dirty_no_writeback(page);
432 	}
433 }
434