1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_io.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, 8 * Asynchronous swapping added 30.12.95. Stephen Tweedie 9 * Removed race in async swapping. 14.4.1996. Bruno Haible 10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie 11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/gfp.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/bio.h> 20 #include <linux/swapops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/writeback.h> 23 #include <linux/frontswap.h> 24 #include <linux/blkdev.h> 25 #include <linux/psi.h> 26 #include <linux/uio.h> 27 #include <linux/sched/task.h> 28 #include <linux/delayacct.h> 29 #include "swap.h" 30 31 void end_swap_bio_write(struct bio *bio) 32 { 33 struct page *page = bio_first_page_all(bio); 34 35 if (bio->bi_status) { 36 SetPageError(page); 37 /* 38 * We failed to write the page out to swap-space. 39 * Re-dirty the page in order to avoid it being reclaimed. 40 * Also print a dire warning that things will go BAD (tm) 41 * very quickly. 42 * 43 * Also clear PG_reclaim to avoid folio_rotate_reclaimable() 44 */ 45 set_page_dirty(page); 46 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n", 47 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 48 (unsigned long long)bio->bi_iter.bi_sector); 49 ClearPageReclaim(page); 50 } 51 end_page_writeback(page); 52 bio_put(bio); 53 } 54 55 static void end_swap_bio_read(struct bio *bio) 56 { 57 struct page *page = bio_first_page_all(bio); 58 struct task_struct *waiter = bio->bi_private; 59 60 if (bio->bi_status) { 61 SetPageError(page); 62 ClearPageUptodate(page); 63 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n", 64 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 65 (unsigned long long)bio->bi_iter.bi_sector); 66 goto out; 67 } 68 69 SetPageUptodate(page); 70 out: 71 unlock_page(page); 72 WRITE_ONCE(bio->bi_private, NULL); 73 bio_put(bio); 74 if (waiter) { 75 blk_wake_io_task(waiter); 76 put_task_struct(waiter); 77 } 78 } 79 80 int generic_swapfile_activate(struct swap_info_struct *sis, 81 struct file *swap_file, 82 sector_t *span) 83 { 84 struct address_space *mapping = swap_file->f_mapping; 85 struct inode *inode = mapping->host; 86 unsigned blocks_per_page; 87 unsigned long page_no; 88 unsigned blkbits; 89 sector_t probe_block; 90 sector_t last_block; 91 sector_t lowest_block = -1; 92 sector_t highest_block = 0; 93 int nr_extents = 0; 94 int ret; 95 96 blkbits = inode->i_blkbits; 97 blocks_per_page = PAGE_SIZE >> blkbits; 98 99 /* 100 * Map all the blocks into the extent tree. This code doesn't try 101 * to be very smart. 102 */ 103 probe_block = 0; 104 page_no = 0; 105 last_block = i_size_read(inode) >> blkbits; 106 while ((probe_block + blocks_per_page) <= last_block && 107 page_no < sis->max) { 108 unsigned block_in_page; 109 sector_t first_block; 110 111 cond_resched(); 112 113 first_block = probe_block; 114 ret = bmap(inode, &first_block); 115 if (ret || !first_block) 116 goto bad_bmap; 117 118 /* 119 * It must be PAGE_SIZE aligned on-disk 120 */ 121 if (first_block & (blocks_per_page - 1)) { 122 probe_block++; 123 goto reprobe; 124 } 125 126 for (block_in_page = 1; block_in_page < blocks_per_page; 127 block_in_page++) { 128 sector_t block; 129 130 block = probe_block + block_in_page; 131 ret = bmap(inode, &block); 132 if (ret || !block) 133 goto bad_bmap; 134 135 if (block != first_block + block_in_page) { 136 /* Discontiguity */ 137 probe_block++; 138 goto reprobe; 139 } 140 } 141 142 first_block >>= (PAGE_SHIFT - blkbits); 143 if (page_no) { /* exclude the header page */ 144 if (first_block < lowest_block) 145 lowest_block = first_block; 146 if (first_block > highest_block) 147 highest_block = first_block; 148 } 149 150 /* 151 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 152 */ 153 ret = add_swap_extent(sis, page_no, 1, first_block); 154 if (ret < 0) 155 goto out; 156 nr_extents += ret; 157 page_no++; 158 probe_block += blocks_per_page; 159 reprobe: 160 continue; 161 } 162 ret = nr_extents; 163 *span = 1 + highest_block - lowest_block; 164 if (page_no == 0) 165 page_no = 1; /* force Empty message */ 166 sis->max = page_no; 167 sis->pages = page_no - 1; 168 sis->highest_bit = page_no - 1; 169 out: 170 return ret; 171 bad_bmap: 172 pr_err("swapon: swapfile has holes\n"); 173 ret = -EINVAL; 174 goto out; 175 } 176 177 /* 178 * We may have stale swap cache pages in memory: notice 179 * them here and get rid of the unnecessary final write. 180 */ 181 int swap_writepage(struct page *page, struct writeback_control *wbc) 182 { 183 int ret = 0; 184 185 if (try_to_free_swap(page)) { 186 unlock_page(page); 187 goto out; 188 } 189 /* 190 * Arch code may have to preserve more data than just the page 191 * contents, e.g. memory tags. 192 */ 193 ret = arch_prepare_to_swap(page); 194 if (ret) { 195 set_page_dirty(page); 196 unlock_page(page); 197 goto out; 198 } 199 if (frontswap_store(page) == 0) { 200 set_page_writeback(page); 201 unlock_page(page); 202 end_page_writeback(page); 203 goto out; 204 } 205 ret = __swap_writepage(page, wbc, end_swap_bio_write); 206 out: 207 return ret; 208 } 209 210 static inline void count_swpout_vm_event(struct page *page) 211 { 212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 213 if (unlikely(PageTransHuge(page))) 214 count_vm_event(THP_SWPOUT); 215 #endif 216 count_vm_events(PSWPOUT, thp_nr_pages(page)); 217 } 218 219 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 220 static void bio_associate_blkg_from_page(struct bio *bio, struct page *page) 221 { 222 struct cgroup_subsys_state *css; 223 struct mem_cgroup *memcg; 224 225 memcg = page_memcg(page); 226 if (!memcg) 227 return; 228 229 rcu_read_lock(); 230 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys); 231 bio_associate_blkg_from_css(bio, css); 232 rcu_read_unlock(); 233 } 234 #else 235 #define bio_associate_blkg_from_page(bio, page) do { } while (0) 236 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */ 237 238 struct swap_iocb { 239 struct kiocb iocb; 240 struct bio_vec bvec[SWAP_CLUSTER_MAX]; 241 int pages; 242 int len; 243 }; 244 static mempool_t *sio_pool; 245 246 int sio_pool_init(void) 247 { 248 if (!sio_pool) { 249 mempool_t *pool = mempool_create_kmalloc_pool( 250 SWAP_CLUSTER_MAX, sizeof(struct swap_iocb)); 251 if (cmpxchg(&sio_pool, NULL, pool)) 252 mempool_destroy(pool); 253 } 254 if (!sio_pool) 255 return -ENOMEM; 256 return 0; 257 } 258 259 static void sio_write_complete(struct kiocb *iocb, long ret) 260 { 261 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 262 struct page *page = sio->bvec[0].bv_page; 263 int p; 264 265 if (ret != sio->len) { 266 /* 267 * In the case of swap-over-nfs, this can be a 268 * temporary failure if the system has limited 269 * memory for allocating transmit buffers. 270 * Mark the page dirty and avoid 271 * folio_rotate_reclaimable but rate-limit the 272 * messages but do not flag PageError like 273 * the normal direct-to-bio case as it could 274 * be temporary. 275 */ 276 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n", 277 ret, page_file_offset(page)); 278 for (p = 0; p < sio->pages; p++) { 279 page = sio->bvec[p].bv_page; 280 set_page_dirty(page); 281 ClearPageReclaim(page); 282 } 283 } else { 284 for (p = 0; p < sio->pages; p++) 285 count_swpout_vm_event(sio->bvec[p].bv_page); 286 } 287 288 for (p = 0; p < sio->pages; p++) 289 end_page_writeback(sio->bvec[p].bv_page); 290 291 mempool_free(sio, sio_pool); 292 } 293 294 static int swap_writepage_fs(struct page *page, struct writeback_control *wbc) 295 { 296 struct swap_iocb *sio = NULL; 297 struct swap_info_struct *sis = page_swap_info(page); 298 struct file *swap_file = sis->swap_file; 299 loff_t pos = page_file_offset(page); 300 301 set_page_writeback(page); 302 unlock_page(page); 303 if (wbc->swap_plug) 304 sio = *wbc->swap_plug; 305 if (sio) { 306 if (sio->iocb.ki_filp != swap_file || 307 sio->iocb.ki_pos + sio->len != pos) { 308 swap_write_unplug(sio); 309 sio = NULL; 310 } 311 } 312 if (!sio) { 313 sio = mempool_alloc(sio_pool, GFP_NOIO); 314 init_sync_kiocb(&sio->iocb, swap_file); 315 sio->iocb.ki_complete = sio_write_complete; 316 sio->iocb.ki_pos = pos; 317 sio->pages = 0; 318 sio->len = 0; 319 } 320 sio->bvec[sio->pages].bv_page = page; 321 sio->bvec[sio->pages].bv_len = thp_size(page); 322 sio->bvec[sio->pages].bv_offset = 0; 323 sio->len += thp_size(page); 324 sio->pages += 1; 325 if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) { 326 swap_write_unplug(sio); 327 sio = NULL; 328 } 329 if (wbc->swap_plug) 330 *wbc->swap_plug = sio; 331 332 return 0; 333 } 334 335 int __swap_writepage(struct page *page, struct writeback_control *wbc, 336 bio_end_io_t end_write_func) 337 { 338 struct bio *bio; 339 int ret; 340 struct swap_info_struct *sis = page_swap_info(page); 341 342 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 343 /* 344 * ->flags can be updated non-atomicially (scan_swap_map_slots), 345 * but that will never affect SWP_FS_OPS, so the data_race 346 * is safe. 347 */ 348 if (data_race(sis->flags & SWP_FS_OPS)) 349 return swap_writepage_fs(page, wbc); 350 351 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc); 352 if (!ret) { 353 count_swpout_vm_event(page); 354 return 0; 355 } 356 357 bio = bio_alloc(sis->bdev, 1, 358 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc), 359 GFP_NOIO); 360 bio->bi_iter.bi_sector = swap_page_sector(page); 361 bio->bi_end_io = end_write_func; 362 bio_add_page(bio, page, thp_size(page), 0); 363 364 bio_associate_blkg_from_page(bio, page); 365 count_swpout_vm_event(page); 366 set_page_writeback(page); 367 unlock_page(page); 368 submit_bio(bio); 369 370 return 0; 371 } 372 373 void swap_write_unplug(struct swap_iocb *sio) 374 { 375 struct iov_iter from; 376 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 377 int ret; 378 379 iov_iter_bvec(&from, WRITE, sio->bvec, sio->pages, sio->len); 380 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 381 if (ret != -EIOCBQUEUED) 382 sio_write_complete(&sio->iocb, ret); 383 } 384 385 static void sio_read_complete(struct kiocb *iocb, long ret) 386 { 387 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 388 int p; 389 390 if (ret == sio->len) { 391 for (p = 0; p < sio->pages; p++) { 392 struct page *page = sio->bvec[p].bv_page; 393 394 SetPageUptodate(page); 395 unlock_page(page); 396 } 397 count_vm_events(PSWPIN, sio->pages); 398 } else { 399 for (p = 0; p < sio->pages; p++) { 400 struct page *page = sio->bvec[p].bv_page; 401 402 SetPageError(page); 403 ClearPageUptodate(page); 404 unlock_page(page); 405 } 406 pr_alert_ratelimited("Read-error on swap-device\n"); 407 } 408 mempool_free(sio, sio_pool); 409 } 410 411 static void swap_readpage_fs(struct page *page, 412 struct swap_iocb **plug) 413 { 414 struct swap_info_struct *sis = page_swap_info(page); 415 struct swap_iocb *sio = NULL; 416 loff_t pos = page_file_offset(page); 417 418 if (plug) 419 sio = *plug; 420 if (sio) { 421 if (sio->iocb.ki_filp != sis->swap_file || 422 sio->iocb.ki_pos + sio->len != pos) { 423 swap_read_unplug(sio); 424 sio = NULL; 425 } 426 } 427 if (!sio) { 428 sio = mempool_alloc(sio_pool, GFP_KERNEL); 429 init_sync_kiocb(&sio->iocb, sis->swap_file); 430 sio->iocb.ki_pos = pos; 431 sio->iocb.ki_complete = sio_read_complete; 432 sio->pages = 0; 433 sio->len = 0; 434 } 435 sio->bvec[sio->pages].bv_page = page; 436 sio->bvec[sio->pages].bv_len = thp_size(page); 437 sio->bvec[sio->pages].bv_offset = 0; 438 sio->len += thp_size(page); 439 sio->pages += 1; 440 if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) { 441 swap_read_unplug(sio); 442 sio = NULL; 443 } 444 if (plug) 445 *plug = sio; 446 } 447 448 int swap_readpage(struct page *page, bool synchronous, 449 struct swap_iocb **plug) 450 { 451 struct bio *bio; 452 int ret = 0; 453 struct swap_info_struct *sis = page_swap_info(page); 454 bool workingset = PageWorkingset(page); 455 unsigned long pflags; 456 457 VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page); 458 VM_BUG_ON_PAGE(!PageLocked(page), page); 459 VM_BUG_ON_PAGE(PageUptodate(page), page); 460 461 /* 462 * Count submission time as memory stall. When the device is congested, 463 * or the submitting cgroup IO-throttled, submission can be a 464 * significant part of overall IO time. 465 */ 466 if (workingset) 467 psi_memstall_enter(&pflags); 468 delayacct_swapin_start(); 469 470 if (frontswap_load(page) == 0) { 471 SetPageUptodate(page); 472 unlock_page(page); 473 goto out; 474 } 475 476 if (data_race(sis->flags & SWP_FS_OPS)) { 477 swap_readpage_fs(page, plug); 478 goto out; 479 } 480 481 if (sis->flags & SWP_SYNCHRONOUS_IO) { 482 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page); 483 if (!ret) { 484 count_vm_event(PSWPIN); 485 goto out; 486 } 487 } 488 489 ret = 0; 490 bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL); 491 bio->bi_iter.bi_sector = swap_page_sector(page); 492 bio->bi_end_io = end_swap_bio_read; 493 bio_add_page(bio, page, thp_size(page), 0); 494 /* 495 * Keep this task valid during swap readpage because the oom killer may 496 * attempt to access it in the page fault retry time check. 497 */ 498 if (synchronous) { 499 bio->bi_opf |= REQ_POLLED; 500 get_task_struct(current); 501 bio->bi_private = current; 502 } 503 count_vm_event(PSWPIN); 504 bio_get(bio); 505 submit_bio(bio); 506 while (synchronous) { 507 set_current_state(TASK_UNINTERRUPTIBLE); 508 if (!READ_ONCE(bio->bi_private)) 509 break; 510 511 if (!bio_poll(bio, NULL, 0)) 512 blk_io_schedule(); 513 } 514 __set_current_state(TASK_RUNNING); 515 bio_put(bio); 516 517 out: 518 if (workingset) 519 psi_memstall_leave(&pflags); 520 delayacct_swapin_end(); 521 return ret; 522 } 523 524 void __swap_read_unplug(struct swap_iocb *sio) 525 { 526 struct iov_iter from; 527 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 528 int ret; 529 530 iov_iter_bvec(&from, READ, sio->bvec, sio->pages, sio->len); 531 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 532 if (ret != -EIOCBQUEUED) 533 sio_read_complete(&sio->iocb, ret); 534 } 535